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Introduction

Thrombosis is a prevailing vascular disorder that may 
readily occur in both arteries and veins (1-4). Thrombosis is 
often the result of vascular injuries, featured by obstruction, 
to different degrees, of vascular lumens by coagulated 
blood and thus disturbance/cessation of blood flows at the 
site surrounding the thrombus (5,6). In healthy vessels, the 
endothelium functions to prevent coagulation, through 
secretion of anti-thrombotic agents such as nitric oxide and 
expression of binding sites for similar molecules such as 
antithrombin (5,7,8). Therefore, injuries of the endothelium 
usually lead to the activation of primary homeostasis (platelet 
binding and aggregation) and the coagulation cascade (fibrin 
formation and crosslinking) (Figure 1A) (5,7,8,10). While 
acute thrombosis may be resolved via administration of 
thrombolytic agents such as tissue plasminogen activator 
(tPA) that degrade fibrin (11-14), this is not always effective. 
The invasion and propagation of fibroblasts and smooth 

muscle cells from the site of endothelial injury into the 
mass of thrombus usually result in its fibrosis and matrix 
organization, turning the thrombus to a permanent clot 
that cannot be resolved (Figure 1B) (15-20). Subsequently, 
the vessel wall stiffens and blood pressure builds up (21,22), 
further developing post-thrombotic syndrome, clinically 
manifesting as symptoms including edema, pain, and 
ulceration, among others (15,18).

While animals have been historically used as models 
to study thrombosis (23-25), these  in vivo models 
typically differ from the human system, leading to biased 
understanding and inaccurate predictions of treatment 
effects in humans. In addition, imaging and characterizing 
thrombosis in animals are cumbersome, and they cannot 
achieve high throughput that is needed in cases such as 
screening of therapeutics. Here, we discuss some recent 
advances in methods and techniques used for generating 
in vitro biomimetic models of human thrombosis, termed 
thrombosis-on-a-chip systems, which to a large extent 
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recapitulate the important pathophysiology of their in vivo 
counterparts in terms of vascular structures, extracellular 
matrix properties, and cellular composition. These 
miniaturized, usually transparent devices also allow for 
convenient analyses at much increased throughputs than 

animals. We finally conclude with future perspectives. It 
should be noted that, only hydrogel-based thrombosis-on-
a-chip models will be illustrated in the current Review, as 
they typically present better biomimetic features than those 
fabricated with silicone elastomers and plastics.

Thrombosis-on-a-chip models generated using 
soft lithography

Soft lithography is a long-established technique for 
patterning a variety of (bio)materials at microscales (26). It 
is generally conducted through a replica molding process, 
i.e., a master mold with a desired pattern is first fabricated, 
on top of which the secondary material is cast and 
crosslinked; this secondary material is then detached from 
the master mold to achieve the replication of the pattern in 
the reverse mode. As such, the interconnected microfluidic 
channels inside a bulk material can be readily produced 
to mimic the perfusable vascular structure (27,28). Soft 
lithography is easy to operate, capable of high-resolution 
patterning, and highly reproducible, but is sometimes 
limited by the reliance on the need for the master molds 
with pre-designed primary patterns.

In a prominent example, Zheng and colleagues utilized a 
vascular network generated with soft lithography to study 
angiogenesis and thrombosis (29). In their procedure, a 
polydimethylsiloxane (PDMS) stamp containing a surface 
pattern of interconnected ridges was cast with a bath of 
collagen solution; upon gelation, the PDMS stamp was 
removed to expose the patterned grooves at the bottom of 
the collagen hydrogel, followed by attachment to another 
layer of flat collagen at the bottom to form a closed 
vascular structure within the collagen matrix (Figure 2A). 
Subsequently, endothelial cells were seeded into this hollow 
vascular pattern, leading to the formation of a monolayer of 
endothelium on the interior surface of the microchannels 
(Figure 2A,B).

With this perfusable vascular device, the authors were 
able to further study the interactions of whole blood and 
the endothelium. As expected, under normal conditions, 
the vast majority of blood cells flowed past the endothelial 
surfaces without noticeable adherence, and only a small 
amount of platelets were observed to roll along the 
endothelium during the blood flow (Figure 2C). On the 
contrary, when the vascular chip was primed with phorbol-
12-myristate-13-acetate (PMA), a known secretagogue 
for von Willebrand factor (vWF), the platelets started to 
significantly aggregate and adhere to the endothelial surface 

Figure 1 Thrombosis and vascular injury. (A) Mechanism of 
thrombus formation and development. After the endothelium 
damage, platelets adhere to the endothelial layer via vWF. 
This leads to the activation and finally aggregation of platelets. 
Simultaneously, coagulation cascade results in cleavage of 
fibrinogen to fibrin through thrombin, to eventually form a 
thrombus. (B) Formation of fibrotic thrombus through fibroblast 
migration into the blood clot from the surrounding tissue via the 
damaged endothelium. Collagen type I is then expressed by the 
invading fibroblasts, leading to fibrosis. Adapted with permission 
from Ref. (9), copyright 2016 Royal Society of Chemistry. vWF, 
von Willebrand factor.
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Figure 2 Thrombosis-on-a-chip model generated using soft lithography. (A) Schematics of the soft lithography fabrication procedures of 
the vascular chip: (i) molding the microstructured collagen in top jig; (ii) molding flab collagen slab in bottom jig; (iii) assembling the jigs 
mechanically and seeding cells through the inlet and outlet reservoirs; and (iv) culturing the microvessel network with gravity-driven flow. 
(B) Confocal projection view of endothelialized microfluidic vessels (overall network, left) and orthogonal views of the corner. Scale bars:  
100 μm. (C) Time sequences of whole blood perfusion through a vascular chip, either quiescent (control vessels, i) or (ii) stimulated, at a flow 
rate of 10 μL min-1 at time points of 5, 50, 100, 150, and 250 s after initiation of perfusion. The platelets are in green, labeled for CD41a 
to platelet-specific glycoprotein IIb (integrin αIIb); flow direction is indicated with arrow. Scale bars: 100 μm. (D) Platelets and leucocytes 
adherent in the stimulated vessels after 1 h of blood perfusion. Leukocytes are labeled white with CD45, a leukocyte-specific member of the 
protein tyrosine phosphatase family. Red, CD31; green, CD41a; white, CD45; and blue, nuclei. Scale bar: 50 μm. (E) Platelet adhesion on 
vWF fibers. Arrow, flow direction. Green, vWF; red, CD41a. Adapted from Ref. (29), copyright 2012 National Academy of Sciences.

(Figure 2C). After 1 h of perfusion, leukocytes were also 
shown to attach to the lumen walls with signs of migration 
through the barrier into the surrounding collagen hydrogel 
(Figure 2D). Mechanistic investigation revealed the secretion 
of vWF by the endothelial cells on surfaces, which served to 
bound to platelets in the blood (Figure 2E), indicating that 
the engineered vascular model was biologically functional 
and responsive to externally applied signaling molecules, 
capable of inducing thrombosis formation.

Thrombosis-on-a-chip model generated with 
bioprinting

As aforementioned, while soft lithography is convenient, 
it has limited flexibility in fabrication of vascular patterns 

due to the requirement of master molds. To this end, three-
dimensional (3D) bioprinting has recently emerged as a 
versatile technology to fabricate volumetric tissue constructs 
possessing complex architectures, including those that are 
vascularized (30-36).

Among the various bioprinting systems such as inkjet 
bioprinter, microextrusion bioprinter, laser-assisted 
bioprinter, and stereolithography (32-34), sacrificial 
bioprinting strategies based on extrusion have been most 
widely used for generation of vascularized tissue constructs 
at relatively high resolutions. In a typical procedure, a 
microfibrous pattern is first deposited in an arbitrary 
shape, and cast by the hydrogel matrix that is subsequently 
crosslinked; the initially bioprinted microfibrous network is 
selectively removed from the hydrogel block to induce the 
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formation of an interconnected microvascular network that 
resembles the blood vessels. The use of a bioprinting system 
allows significantly improved flexibility of such a method 
in comparison with soft lithography, as the deposition 
of the sacrificial template can be automated simply by 
altering the digital input patterns for the bioprinters. A 
variety of sacrificial biomaterials have been developed to 
enable extrusion bioprinting of vascularized constructs, 
ranging from carbohydrate lattices that can be removed 
by dissolution by perfusing medium (37), mechanical 
extraction of stiffened agarose microfibers (38-40), as well as 
thermoresponsive materials that liquefy upon temperature 
change, such as Pluronic F127 that transforms from the 
hydrogel state at room temperature to a liquid at <4 ℃ 
(41,42), or gelatin that gels at room temperature or lower 

but becomes a liquid 37 ℃ (43). Similar to soft lithography, 
these sacrificially bioprinted microchannels could also be 
functionalized with a layer of endothelial cells to introduce 
biological functionality.

Using a modified sacrificial bioprinting strategy based 
on Pluronic, we and co-workers recently reported the 
fabrication of a thrombosis-on-a-chip model (9). A Pluronic 
template, containing the vascular pattern and the outside 
frame, was first bioprinted and then dried in air overnight; 
this bioprinted structure was placed on a substrate, filled 
with a gelatin methacryloyl (GelMA) hydrogel pre-polymer, 
and photocrosslinked; eventually, the entire construct was 
placed in a cold buffer bath to rehydrate the Pluronic and 
to dissolve it out (Figure 3A,B). The bioprinting of not 
only the vascular template but also the surrounding frame 

Figure 3 Thrombosis-on-a-chip model generated using bioprinting. (A) Schematic of the bioprinting process: (i,ii) bioprinting of a 
Pluronic template; (iii) dried template is placed on a PDMS support; (iv) the mold is filled with GelMA followed by UV crosslinking; and 
(v) dissolution of the sacrificial channels and frame to produce (vi) the final construct with hollow channels. (B) Photographs showing the 
experimental depiction of the corresponding steps of the sacrificial bioprinting process illustrated in (A). (C) Endothelialization of the 
hollow microchannels inside the GelMA construct for (i) a linear and (ii) bifurcating microchannels; (iii) CD31 (green) and nuclei (blue) 
staining of the confluent layer of HUVECs. (D) Photographs and optical micrographs showing the infusion of human whole blood into the 
endothelialized microchannels and the formed thrombosis-on-a-chip model. (E) Optical micrograph showing hematoxylin & eosin-stained 
transvers sections of (left) a thrombus without HUVECs and (middle) a thrombus with HUVECs, both at 7 days post clotting, and (right) a 
venous thrombus formed in vivo at 7 days. Adapted with permission from Ref. (9), copyright 2016 Royal Society of Chemistry.

A

B

C

D

E



S333Cardiovascular Diagnosis and Therapy, Vol 7, Suppl 3 December 2017

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2017;7(Suppl 3):S329-S335cdt.amegroups.com

followed by desiccation served as the container to hold the 
hydrogel block in place, eliminating the need for additional 
molds. Both straight and branching microchannels could be 
generated using this sacrificial bioprinting method, which 
could be further endothelialized (Figure 3C). The obtained 
microchannels resembling the blood vessels were filled with 
human whole blood induced to clot, leading to formation 
of a biomimetic thrombosis model with aggregated blood 
cells (Figure 3D). By comparing with a human clot, the 
bioengineered thrombosis-on-a-chip model exhibited 
strong similarity when an endothelial barrier was present 
(Figure 3E). It was further demonstrated that, the acute clots 
in these bioprinted thrombosis models could be dissolved 
away by perfusing with tPA, while fibroblasts embedded 
within the surrounding GelMA hydrogel matrix were able 
to migrate into the thrombus in the absence of an intact 
endothelium, depositing collagens that resulted in the aging 
of the clot on the chip.

Conclusions

We have discussed recent advances in methods and 
techniques, primarily based on soft lithography and 3D 
bioprinting, for engineering biomimetic in vitro models 
of thrombosis. These models feature a hydrogel matrix 
mimicking the extracellular matrix of the biological tissue, 
endothelialized microchannels resembling the blood 
vessels, and the ability to flow human whole blood through 
microchannels stimulated with specific agents to induce 
platelet aggregation in situ or to directly infuse blood 
induced to coagulate within the microchannels. These 
thrombosis-on-a-chip models could faithfully reproduce 
this important vascular disorder in vitro, enabling accurate 
investigations into their biology and treatment. Although 
still preliminary, we foresee that further development 
of these models will eventually allow for personalized 
screening of intravascular interventions for treatment of 
thrombosis in a patient-specific manner using cells and 
imaging data derived from individual patients.
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