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The left atrium has an important role in modulating left 
ventricular filling, contributing up to a third of cardiac 
output (1). The left atrium has additionally been identified as 
an important biomarker of cardiovascular disease and adverse 
cardiovascular outcomes (2,3). While previously left atrial 
(LA) size was utilised, the role of LA function as a biomarker 
is increasingly being evaluated (4), both independently and 
also in combination with LA size (5-7). However, LA function 
is complex, comprising of three main components: reservoir 
function in systole when blood fills the left atrium, as a conduit 
in early diastole corresponding to passive left ventricular filling 
and as an active contractile chamber in late diastole (8,9).

Current techniques to evaluate LA function 

There is no single parameter that best defines LA function 
and a variety of parameters have been previously defined 

(4,10). Transmitral peak A wave velocity (11), its velocity time 
integral and atrial fraction (12) are well described measures 
of LA contractile function. The LA ejection force, based 
on Newtonian principles, incorporates peak A velocity and 
was used as a marker of LA function (13). Subsequently, 
tissue Doppler derived A' velocity was utilised as a less load 
dependent measure of LA contractile function (14,15), 
demonstrating good correlation with traditional Doppler 
and LA volumetric measurements. Colour tissue Doppler 
analysis was able to evaluate segmental LA function (15), 
demonstrating temporal changes with improved LA function 
following cardioversion (16). However, using these measures 
mandates the presence of sinus rhythm (SR). The LA function 
index (LAFI) was derived to evaluate LA function even in 
atrial fibrillation (AF) (17). Additionally, volumetric measures 
including the LA ejection fraction (LAEF) and LA expansion 
index (LAEI) have been utilised, both in SR and AF (5,6,18).
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Figure 1 Apical four and two chamber six LA segments. LA, left atrial.

More recently, strain analysis has been utilised for 
evaluation of LA function (19,20). Strain evaluates 
myocardial deformation while strain rate examines the 
rate of change in strain, and can be measured throughout 
the cardiac cycle, thereby enabling the evaluation of LA 
reservoir function (in systole) and conduit and contractile 
function (in diastole) (5). This review will focus on the 
various types of strain analysis for evaluation of LA function, 
alterations in LA strain in physiological and pathologic 
states that alter LA function and finally evaluate its utility as 
a prognostic marker.

Strain and strain rate imaging of the LA

Strain and strain-rate imaging have several advantages 
over conventional echocardiography in evaluation of LA 
function. Firstly, strain imaging is not evaluated relative 
to the transducer position, thus allowing discrimination 
between active and passive myocardial tissue movement 
(21-24). Strain parameters are relatively independent of 
tethering effects and is less load dependent compared to 
traditional parameters of LA function (25,26). Additionally, 
strain and strain rate parameters permit evaluation of 
phasic atrial function throughout the cardiac cycle (27). 

There are as yet no validated strain algorithms that have 
been developed exclusively for evaluation of LA function. 
However, several studies have utilised strain software that 
was developed for the left ventricle, with adjustments to the 
width of the ‘region of interest’ (ROI) to evaluate LA strain 
(28, 29).

LA strain measurements can be obtained by tissue 
Doppler imaging (TDI), two dimensional (2D) speckle 
tracking echocardiography (STE) and velocity vector 
imaging (VVI). For the latter two techniques, longitudinal 
strain and strain rate curves are generated for each of six 
atrial segments, obtained from the apical four and two 
chamber views (Figure 1) (5). Heterogeneous segmental 
deformation of the LA has also been observed, with 
higher values noted in the regions adjacent to the mitral  
annulus (4,5).

In the reservoir phase, as the LA fills and stretches, there 
is positive atrial strain that reaches its peak in systole at 
the end of LA filling, prior to opening of the mitral valve. 
Following this, passive LA emptying ensues with opening 
of the mitral valve resulting in decreased atrial strain with 
negative deflection of the strain curve up to a plateau period 
which is analogous to diastasis. A second deflection in the 
strain curve is then observed corresponding to atrial systole. 
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Figure 2 Peak atrial longitudinal strain (PALS) and peak atrial contraction strain (PACS) (30). Modified from Cameli et al. 

Peak atrial longitudinal strain (PALS) or LA systolic strain 
is measured at the end of the reservoir phase. Peak atrial 
contraction strain (PACS) or late diastolic strain, is measured 
following the P wave and corresponds to active atrial 
contraction (Figure 2) (30). 

LA strain curves have two patterns that differ based 
on the time in the cardiac cycle from which the software 
processing begins i.e., either at the onset of the P wave 
(atrial cycle/diastolic gating) or the onset of the QRS 
complex (ventricular cycle/systolic gating) (4,5). If the strain 
processing begins at onset of QRS, ventricular end diastole 
is the zero reference and peak positive longitudinal strain 
corresponds to atrial reservoir function, strain during early 
diastole reflects atrial conduit function and strain during late 
diastole corresponds to atrial contractile function (Figure 3).  
Conversely, if software processing begins at onset of P wave, 
atrial end diastole becomes the zero reference and the first 
negative peak strain represents the atrial contractile function, 
positive peak strain corresponds to conduit function, and their 
sum (strain total) represents reservoir function (Figure 3).  
Strain rate in ventricular systole (S sr), early diastole (E sr) 
and late diastole (A sr) correspond to reservoir, conduit, and 
booster pump functions in both methods (5,30).

A recent study by Hayashi et al. showed that the degree of 

correlation between LA strain and parameters of LA function 
determined by three-dimensional echocardiography were 
stronger when the onset of P wave was used as the reference 
than when the QRS onset was used (31). Nevertheless, as 
timing of reference point selection has not been uniform in 
studies to date, no standardised method for LA strain analysis 
has yet been proposed.

Reference values for LA strain and strain rate have been 
reported (4). In a multicentre study involving 329 healthy 
subjects, Morris et al. reported LA systolic strain (i.e., PALS) 
to be 45.5%±11.4% and LA strain rate during late diastole 
(i.e., PACS) to be −2.11±0.61 s-1. The lowest expected values 
(using mean −2 SD) was 23.1 % for LA systolic strain and 
−0.91 s-1 for A sr in late diastole (32,33).

LA strain—association with age and gender

Studies have shown a small yet significant relationship 
between age and LA strain and strain rate. Using tissue 
Doppler-derived strain, Boyd et al. showed significant 
reductions in global LA systolic strain and strain rates with 
ageing. A reduction in S sr and E sr was noted from the 6th 
decade with a corresponding compensatory increase in A sr. 
Moreover, these changes in strain rate were observed almost 
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Figure 3 Strain trace based on choice of electrocardiographic gating; electrocardiographic P wave used on the left and QRS complex used 
on the right (5). Modified from Hoit et al. Left panel: P wave (atrial end diastole) used as zero reference point whereby first negative peak 
strain represents the atrial contractile function, positive peak strain corresponds to conduit function, and their sum (strain total) represents 
reservoir function. Right panel: QRS complex (ventricular end diastole) used as zero reference point whereby peak positive longitudinal 
strain corresponds to atrial reservoir function, strain during early diastole reflects atrial conduit function and strain during late diastole 
corresponds to atrial contractile function. LA, left atrial.

a decade prior to similar changes in traditional atrial phasic 
volume parameters (34). 

Using volumetric assessments, Meel et al. demonstrated 
a decreasing LA conduit function with ageing while 
reservoir function remained unchanged and contractile 
function augmented. Of interest however, the authors also 
established a trend of declining LA systolic strain by 2D 
STE in the older age groups, while LA contractile strain 
remained unaffected (35). Similar findings were reported by 
Morris et al. using 2D STE in healthy controls (32). 

Recent work by Yoshida et al. (36) have alluded to a 
significant interaction between gender and LA function, 
an association which had not been demonstrated in 
previous studies utilising volumetric assessments. The 
study which investigated the impact of gender differences 
on the relationship between stroke risk and LA mechanics, 
demonstrated lower values of LA systolic strain amongst 
women in a cohort of 414 subjects with paroxysmal and/
or persistent AF. Female gender was found to have a 
significant interaction with stroke risk and LA function 
but not LA size (36).

Correlation of LA strain with diastolic dysfunction

Although a myriad of risk factors have been shown 
to contribute to diastolic dysfunction, the specific 

pathophysiological mechanisms for the transition from 
impaired diastolic function to a clinical state of symptomatic 
diastolic heart failure (HF) has not been well defined 
(37-39). LA strain has been shown to correlate with the 
degree of diastolic dysfunction. In a study comparing  
329 normal adults to 377 adults with diastolic dysfunction, 
Morris et al. demonstrated that LA function derived both 
volumetrically and by 2D STE strain, was inversely related 
to LV filling pressure (mitral E/E' ratio) and to the degree 
of LV diastolic dysfunction (32). LA systolic strain was 
also found to correlate with invasively determined LV 
end diastolic pressure as well as levels of N-terminal pro-
B-type natriuretic peptide as reported by Kurt et al. (40). 
Using Doppler-derived strain, Guan et al. demonstrated 
significant changes in LA strain rate parameters between 
different grades of LV diastolic dysfunction in subjects with 
preserved LVEF, despite no significant difference in LA 
volume between the groups (41). 

Compared with patients with normal diastolic function, 
patients with mild diastolic dysfunction had significantly 
reduced E sr and S sr but increased A sr. Another study (42) 
demonstrated that LA systolic strain (measured using STE) 
inversely correlated with LV end diastolic pressure. Similar 
to the E/E' ratio, LA systolic strain correlates with LV 
end diastolic pressure in patients with preserved or mildly 
reduced LVEF, whereas in patients with moderate or severe 
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reduction of EF, E/E' correlated poorly and LA systolic 
strain provided a better estimation of LV filling pressures. 
In diastolic dysfunction, LA strain is likely altered secondary 
to increased LV filling pressures, i.e., LA afterload, with 
consequent mechanical stress on the LA leading to reduced 
reservoir function (43,44).

LA strain by 2D STE

STE is a newer echocardiographic technique for strain and 
strain rate analyses that tracks ‘speckles’ or natural acoustic 
markers in the 2D ultrasound image. The geometric shift 
of each speckle position is traced throughout the cardiac 
cycle (4,5,45).

STE strain is increasingly applied in the study of LA 
mechanics. Apical four and two chamber view images of 
the LA are obtained using conventional 2 dimensional 
echocardiography, at relatively high frame rates (60–80 fps).  
The LA endocardium is traced in both four and two 
chamber views and the ROI adjusted to the thinner wall 
of the atrium. In regions of discontinuities of the LA 
wall, such as areas corresponding to pulmonary veins and 
LA appendage, extrapolation of the LA endocardial and 
epicardial surfaces at the junction of these structures are 
performed to obtain the ROI. The ROI is divided into six 
segments and the total of 12 segments (Figure 1) is analysed 
with the software generating the individual segmental 
longitudinal strain curves together with global strain in each 
view (Figure 4) (4,20,30). 

The feasibility and reproducibility of STE for the study 
of LA mechanics have been validated in several studies 
(28,46-49), and can be obtained in ~90% of cases. The 
major limitation is the necessity for adequate 2 dimensional 
image quality and acquisition at a relatively high frame rate 
(4,5). Though its utility is presently still limited to research 
settings, there is rapidly emerging data regarding the role of 
LA strain in various physiological and disease states which 
will be discussed below.

Hypertension 

Hypertension is associated with morphologic and functional 
abnormalities of the LA. An increase in LA size in 
hypertensive patients is a common finding with alterations in 
LA strain using tissue Doppler-derived strain imaging (50).

In a study by Mondillo et al. investigating 2D STE LA 
strain indices in hypertensive patients with normal LA size, 
LA strain was reduced despite normal volumetric measures 

of LA function, suggesting that strain abnormalities precede 
structural LA changes in hypertension (51). These findings 
were confirmed by Sahebjam et al. in a similar study of 
hypertensive patients relative to healthy controls (52). 

2D STE is also useful in determining the effects of 
medications on LA function in patients with hypertension. 
Degirmenci et al. showed that LA reservoir, conduit, 
and booster pump functions improved after treatment 
with renin-angiotensin receptor blockers and beta 
blockers for 12 months in patients with mild to moderate 
hypertension. The improvement of LA systolic strain 
occurred in conjunction with blood pressure lowering, with 
a corresponding decrease in LA volumes. No significant 
difference was found between the angiotensin receptor 
blockers and the beta blocker treatment groups with respect 
to the LA changes suggesting that improvement of LA 
function was primarily dependent on blood pressure control 
rather than the class of antihypertensive agents (53).

Diabetes mellitus 

A common coexistent cardiac risk factor, diabetes mellitus 
is similarly associated with structural and functional 
changes of the left atrium. The prevalence of LV diastolic 
dysfunction is significantly greater in diabetic patients than 
in the general population. (54-57). 

Though relatively less studied than hypertension, 
diabetes is an independent contributor to LA enlargement 
and dysfunction. Earlier studies based on LA phasic 
volume assessment and tissue Doppler derived strain rate 
imaging demonstrated impairment in LA reservoir and 
conduit function in diabetes, occurring in association with 
increased LV mass, abnormal LV geometry and LV diastolic 
dysfunction with an associated increase in LA contractile 
function (58-61). In a recent study comparing 73 type 2 
diabetic patients to age and gender matched normal controls 
Kadappu et al. demonstrated larger indexed LA volumes 
in diabetics, independent of the effect of hypertension 
and diastolic dysfunction. A significant reduction in 2D 
STE LA global strain compared to the normal controls, 
with no significant alteration in LA strain with increasing 
grades of diastolic dysfunction was observed, suggesting 
the independent effect of diabetes on the LA function (62). 
These findings were mirrored by Muranaka et al. in a study 
assessing LV and LA function by strain rate imaging in 
diabetics. Impairment of LA reservoir and conduit function 
by STE strain rate was demonstrated in diabetic patients 
even in the absence of LV hypertrophy, hypertension or 
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Figure 4 2D strain by speckle tracking echocardiography demonstrating segmental and global LA strain from the apical (A) four and (B) two 
chamber views. LA, left atrial.
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diastolic dysfunction (63). 
In a study involving diabetic and hypertensive patients 

with normal LA size, Mondillo et al. demonstrated 
impairment in LA strain that preceded changes in 
volumetric measures of LA function (51). 

Chronic kidney disease (CKD)

LA enlargement has been well described in end stage renal 
disease and maximum LA volume demonstrated to be an 
independent prognostic factor in this population (64).  
The cause for LA changes are multifactorial and have 
traditionally correlated with presence of LV hypertrophy, 
degree of diastolic dysfunction as well as common co-
existing cardiovascular risk factors such as hypertension and 
diabetes mellitus (65-67). 

There is emerging data that CKD is an independent 
factor affecting changes in LA function. In a study 
comparing stage 3 CKD patients to age and risk factor 
matched controls as well as healthy controls, Kadappu et al.  
reported PALS to be reduced in both CKD group and 
hypertensive control group compared to healthy controls, 
with a significant difference among the three groups, 
pointing to an independent and incremental effect of 
CKD on LA function (28). These findings were further 
corroborated in a larger study involving 228 participants 
whereby PALS and ASr were noted to be significantly altered 
in the CKD group, with LA strain being the most sensitive 
parameter of myocardial involvement with alterations 
in LA strain proceeding changes to LA volume (66).  
Similar findings were demonstrated by Ohara et al. in their 
study investigating LA function in CKD patients with 
normal LA size; LA strain was impaired in CKD patients 
despite normal LA size, and in comparison to the control 
group (68).

Ischaemic heart disease

LA strain provides useful information in patients with 
ischaemic heart disease. PALS has been noted to decrease 
with reducing LV systolic and diastolic function in patients 
with myocardial infarction treated with percutaneous 
coronary intervention; interestingly, PALS demonstrated 
improvement in pat ients  who underwent cardiac 
rehabilitation (69-70). Additionally, reduced PALS was 
shown to predict increased risk of new-onset AF after 
coronary artery bypass graft surgery (4,5). 

PALS is also a predictor of cardiovascular events in 

patients who have suffered acute myocardial infarction. 
In a study evaluating 2D STE PALS in 320 patients 
post AMI, Antoni et al. demonstrated that PALS was an 
independent predictor of all-cause mortality, re-infarction 
and HF hospitalisation after adjustment for clinical and 
other echocardiographic parameters (71). The findings 
of this study were however contradicted by Ersbøll  
et al. in a similar study investigating 2D STE LA strain in  
843 post infarct patients. Ersbøll et al. demonstrated 
PALS was associated with the composite outcome for 
HF and death, but not after adjustment for clinical and 
echocardiographic parameters, bringing into question the 
independent prognostic value of LA strain in patients post 
myocardial infarction (72). 

HF 

2D STE LA strain has had an increasing role in the 
management of patients with HF. LA strain provides 
an accurate surrogate estimate of LV filling pressure, 
an important factor in the diagnosis of HF as well as 
for guiding HF therapy. In a study of 36 patients with 
advanced systolic HF (EF <35%) undergoing right heart 
catheterisation, Cameli et al. demonstrated that LA systolic 
strain had the highest diagnostic accuracy, sensitivity and 
specificity in predicting elevated LV filling pressure and 
was the best determinant of pulmonary capillary wedge 
pressure (58). This was corroborated in a further study 
of 80 patients undergoing left heart catheterisation. LA 
systolic strain had a better correlation to invasively obtained 
LV filling pressures compared to Doppler indices, across 
patient groups with varying LV ejection fraction. Mean E/E'  
ratio provided good correlations with LVEDP in patients 
with preserved or mildly reduced LV ejection fraction but 
correlated poorly with patients with moderate to severe 
reductions of LV ejection fraction (42). Similar findings 
were shown by Kurt et al. in 62 patients undergoing cardiac 
catheterisation whereby LA systolic strain was noted to 
correlate strongly with LVEDP and N-terminal pro-B-type 
natriuretic peptide levels (40).

In HF patients with preserved ejection fraction 
(HFpEF), 2D STE LA strain could differentiate between 
patients with diastolic dysfunction and those with clinical 
HFpEF. In 64 patients undergoing simultaneous right 
heart catheterisation and echocardiographic imaging, Kurt  
et al. demonstrated that LA systolic strain was significantly 
lower in patients with HFpEF than in patients who had LV 
diastolic dysfunction without HF. The LA stiffness index, 
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which was calculated as the ratio of LA systolic strain to E/E',  
was noted to be the most accurate index to differentiate 
patients with HFpEF from diastolic dysfunction (39). 

In patients with HF with reduced ejection fraction 
(HFrEF), 2D STE LA strain was significantly lower in 
idiopathic cardiomyopathies when compared with ischemic 
cardiomyopathy (73). In cardiac amyloidosis, Modesto  
et al. highlighted the presence of LA dysfunction as detected 
by LA strain, above and beyond that due to diastolic 
impairment, suggesting an independent effect of amyloidosis 
on the LA (74). In hypertrophic cardiomyopathy, LA strain 
was reduced compared to healthy controls and patients with 
secondary LVH resulting from hypertension (75,76). 

2D STE LA strain has also been shown to be an 
independent predictor of exercise capacity in both HFrEF 
and HFpEF. Kusunose et al. demonstrated that PALS was 
an independent predictor of estimated metabolic equivalents 
in patients with HFpEF (77). These findings were further 
affirmed by D’Andrea et al. in both HFpEF and HFrEF (73). 

2D STE LA strain has also demonstrated prognostic 
value in HF and can additionally be utilised as an indicator 
of treatment response for HF therapies. LA systolic strain 
was an independent predictor of death and need for heart 
transplantation in addition to age, LV ejection fraction 
and brain natriuretic peptide in a study by Helle-Valle  
et al. involving 143 patients with symptomatic HFrEF (78). 
Response to cardiac resynchronisation therapy has been 
associated with improvements in PALS in patients with 
ischaemic and non-ischaemic cardiomyopathies (79-81).

Valvular heart disease 

2D STE LA strain is decreased in patients with mitral 
and aortic valve disease and useful in prediction of clinical 
outcomes. In mitral regurgitation, PALS by STE was shown 
to decrease with increasing severity of mitral regurgitation (82) 
and was an independent predictor of mitral valve surgery 
and post-operative outcomes. The study by Debonnaire  
et al. investigating 121 patients with severe primary 
mitral regurgitation demonstrated PALS to have the 
highest accuracy in identifying patients who proceeded to 
mitral valve surgery amongst all indices of LA function. 
Participants with LA systolic strain of ≤24% showed 
worse survival during follow up regardless of symptom 
status (83). These findings were mirrored by Yang et al. in 
a similar study involving 104 patients with asymptomatic 
severe mitral regurgitation (84). Moreover, Borg et al. 
demonstrated that LA systolic strain was an independent 

predictor of postoperative AF in those undergoing mitral 
valve surgery for severe mitral regurgitation (85).

In mitral stenosis, LA systolic strain is impaired even in 
asymptomatic patients and can predict development of AF 
and cardiovascular events. In 101 patients with rheumatic 
mitral stenosis, Ancona et al. demonstrated reduced LA 
systolic strain, the degree of which correlated with worse 
cardiovascular outcomes during a 3-year follow-up, 
irrespective of LA volume, age and mitral valve area. LA 
systolic strain was also the most powerful predictor of new 
onset AF at 4-year follow-up (86). 

In patients with aortic stenosis (AS), O’Connor et al. 
and Lisi et al. demonstrated that LA systolic strain closely 
correlated with LA reverse remodelling in patients post 
aortic valve replacement (87,88). Similar to mitral valve 
disease, LA systolic strain had predictive value for adverse 
outcomes in patients with AS. In a study by Galli et al. 
involving 128 patients with severe AS, reduced LA systolic 
strain was associated with an increase in all-cause mortality, 
worsening HF and cardiac hospitalization (89). LA systolic 
strain was also a predictor of postoperative AF in patients 
with severe AS undergoing surgery (90).

AF

AF is  the  commonest  c l in ica l  arrhythmia  and i s 
associated with increased morbidity and mortality, with 
thromboembolic stroke being a major associated risk 
(91,92). LA remodelling and dysfunction is associated with 
AF (93). LA strain measurements are more sensitive than 
volumetric measures (5) and recent studies using 2D STE 
have shown an association between reduced LA reservoir 
and contractile function and paroxysmal AF that precedes 
LA enlargement (20,94). Yoon et al. (29) demonstrated that 
reduced LA systolic strain was the strongest independent 
echocardiographic predictor of  progression from 
paroxysmal to persistent AF. Another study demonstrated 
that LA strain was predictive of paroxysmal AF in patients 
with cryptogenic stroke, even in patients with normal LA 
size (95). 

Catheter ablation pulmonary vein isolation can be an 
effective treatment for AF; however AF recurrence is still 
a major issue (96). Known predictors of AF recurrence 
post catheter ablation include LA dilatation, advanced 
age, hypertension and persistent as opposed to paroxysmal 
AF (97,98). Studies in AF patients who have undergone 
catheter ablation with restoration of SR have shown a 
relationship between LA systolic strain and AF recurrence 
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(44,99-102). In particular, this relationship also applies 
when the assessment of the LA function by LA systolic 
strain is performed irrespective of rhythm (i.e., in both AF 
and SR post-procedure) (101). Studies have additionally 
demonstrated differing relationships between regional LA 
strain (in particular LA lateral strain) (100,101) and LA 
global strain (44,99,102) in predicting recurrence of AF. 
Predicting the likelihood of AF recurrence using LA strain 
analysis would be very valuable in candidate selection for 
catheter ablation. 

LA strain and stroke

Understanding the relationship between LA strain and 
ischemic stroke could be of importance, especially for risk-
stratification in AF and decisions regarding anticoagulation. 
Obokata et al. (103) demonstrated that global LA systolic 
strain was independently associated with acute embolism 
in patients with paroxysmal or persistent AF, and provided 
incremental diagnostic value over the CHA2DS2-VASc 
score. In another retrospective case-control study (104), 
reduced LA systolic strain was associated with increased 
risk of stroke and transient ischemic attacks in patients 
with paroxysmal AF and low CHADS2 scores (≤1 prior 
to stroke). In a small retrospective study of 66 patients 
with permanent AF, Shih et al. (105) demonstrated 
that LA systolic strain and peak systolic strain rate 
were independently associated with previous stroke. 
Furthermore, Hsu et al. demonstrated that an increased 
ratio of transmitral E-velocity to LA strain and reduced 
LA strain were associated with cerebrovascular events 
and provided incremental value to a model containing 
CHA2DS2-VASc score and LV function for predicting 
subsequent stroke (106). 

Several studies have also demonstrated that LA strain 
is predictive of a subsequent diagnosis of AF in patients 
with ischemic stroke (95,107,108). These studies support 
the hypothesis that atrial functional remodelling and 
reduced atrial contraction can result in subsequent 
thromboembolism (8). Therefore, LA strain analysis may 
provide an invaluable prognostic tool for AF; albeit larger 
prospective studies in stroke patients are required to 
confirm these early reports. 

LA strain by TDI

TDI depicts myocardial motion (measured as tissue 
velocity) at specific locations in the heart. Integration of 

velocity over time yields displacement or the absolute 
distance moved by that point. 

Tissue-Doppler LA strain and strain rate are measured 
offline from colour tissue Doppler images of the atria 
obtained in the apical four and two chamber views, at high 
frame rates (>100 fps). A narrow sample volume (9 mm × 
1 mm) is selected due to the thin atrial walls, as compared 
with the sample volume used for LV strain measurements 
(9 mm × 9 mm). The sample volume is placed superiorly 
in each of the four LA walls; septal and lateral walls in the 
apical four chamber view and the inferior and anterior walls 
in the apical two chamber view (109). The sample volume 
is then tracked frame by frame, within this position in the 
LA wall, to prevent sampling of blood pool. The superior 
location in the LA walls is selected to avoid interference 
from mitral annular motion. Peak LA systolic strain was 
measured by adjusting the electrocardiogram gating to the 
start of the QRS complex (systolic gating) (Figure 5). Atrial 
strain rate was measured in S sr, E sr and A sr (Figure 6).

From a physiological precept, healthy ageing is 
associated with alterations in LV systolic and diastolic strain, 
with corresponding changes in atrial strain. Doppler LA 
strain parameters demonstrate age related changes earlier 
than corresponding volumetric measurements of phasic LA 
function (34).

Tissue Doppler assessment of atrial strain has been 
utilised in a variety of clinical settings to quantitate atrial 
function, remodelling and changes in phasic atrial function. 
Evaluations have included patients with hypertension 
(19), hypertrophic cardiomyopathy (79,110,111), Fabry  
disease (112), atrial septal defects (113), valvular stenosis 
(114,115) and AF (109,116). 

TDI LA strain also has demonstrated prognostic value. 
Decreased LA systolic strain has been associated with 
increased LV end-diastolic pressure (58,117) and is thus, 
a predictor of diastolic HF (40). LA TDI strain has also 
been shown to be an important predictor of maintenance 
of SR following both cardioversion (118) and ablation for 
AF (119). In the only outcome based study using LA TDI 
strain, Paraskevaidis et al. showed that total TDI atrial 
strain in patients with hypertrophic cardiomyopathy was the 
strongest predictor of 12-month outcomes (110). 

More recently TDI LA strain has been used to 
demonstrate reduced reservoir and conduit phasic function 
with preserved active contractile function in patients with 
metabolic syndrome (120). The use of tissue Doppler 
techniques in this cohort may have been of particular 
importance in the setting of potential suboptimal 2D 



38 Gan et al. LA function: evaluation by strain analysis

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2018;8(1):29-46cdt.amegroups.com

Figure 5 Peak systolic strain measured by ECG gating to the start of the QRS complex (systolic gating).

Figure 6 Atrial strain rate measured in systole (S sr), early (E sr) 
and late diastole (A sr).

image quality.

LA strain by VVI

VVI is a novel echocardiographic method that combines 
speckle tracking and endocardial border detection. Similar 
to 2D STE strain imaging, VVI is angle independent but 
has additional advantages of simpler and faster tracking/
processing times compared to conventional STE with the 
use of a continuously self-updating software and requires 
only a single frame tracing of the endocardial border 
(121,122).

With VVI analysis, 2D images of apical four and two 
chamber views are obtained with recommended frame 
rates between 70–100 Hz. The endocardium of the LA 
is manually traced in the four and two chamber views 
and velocity vectors are generated in cine loop format. 
The ROI is delineated and tracked. The displacement 
of LA endocardial pixels of the ROI and the velocity 
of deformation in every frame with the elongation or 
shortening of myocardium throughout the cardiac cycle, 
are the strain and SR measures which are calculated 
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Figure 7 Velocity vector imaging.

automatically (Figure 7). Special reference settings are 
applied, including valve annulus, chamber borders and 
tissue motion (122,123). 

VVI has been shown to be feasible and less time 
consuming in assessing LA volumes and function. In a study 
by Valocik et al. retrospectively assessing 100 transthoracic 
echocardiograms, LA volumes derived from VVI time 
volume curves had a good correlation with conventional 
LA volume assessment. A moderate level of correlation was 
noted with respect to LAEF. VVI led to a 62% reduction 
in measurement time in comparison to conventional 2D 
assessment (123). These findings were corroborated by 
Motoki et al. in a separate study involving 127 patients with 
AF. Measurement of LA strain and SR by VVI and 2D STE 
was noted to be feasible in a large proportion of patients 

with comparable strain and strain rate measurements using 
the two techniques (124).

LA strain assessed by VVI has shown clinical utility in 
patients with HF. Esmaeilzadeh et al. demonstrated that 
LA strain by VVI was significantly lower in patients with 
HFrEF compared to healthy subjects in a study involving  
35 patients with LVEF <35% in SR. On multivariable 
analysis of diastolic parameters, a significant inverse 
relationship was identified between pulmonary arterial 
pressure and LA strain suggesting that systolic pulmonary 
artery pressure in HFrEF may be related to LA contractile 
dysfunction (125). 

In diabetic patients, LA strain by VVI was useful in 
characterising diastolic function. In a study involving 
121 patients with type 2 diabetes mellitus, Jarnert et al. 
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demonstrated that. LA strain by VVI was impaired in type 
2 diabetes mellitus patients with mild or moderate LV 
diastolic dysfunction compared to those without diastolic 
dysfunction (126). 

LA strain and fibrosis vs. MRI vs. histology

A number of reports have established a link between atrial 
dysfunction and fibrosis especially in the context of AF. 
Several factors have been implicated in the development 
of LA fibrosis (127). LA fibrosis is associated with LA 
functional remodelling. LA fibrosis in the context of AF 
has been extensively evaluated (128,129). While delayed-
enhancement cardiac magnetic resonance imaging (DE-
CMR) is considered the ‘gold standard’, and has been used 
in patients with paroxysmal and persistent AF (130,131), the 
cost and availability of DE-CMR is a limitation. 

Echocardiographic evaluation of LA remodelling (i.e., 
alteration in size and/or function) has been used as a 
surrogate for LA fibrosis. More recently, 2D STE LA strain 
analysis was shown to inversely correlate with the extent of 
fibrosis detected by DE-CMR in patients with persistent 
AF (130); additionally persistent AF patients had increased 
fibrosis as compared with paroxysmal AF, with reduced 
mid septal and mid lateral segmental LA strain. The same 
group also evaluated AF recurrence following catheter 
ablation. AF recurrence was lower in the subgroup with 
decreased structural remodelling, and this subgroup also 
demonstrated an increase in LA strain (132). Cameli and 
colleagues correlated LA strain with histological fibrosis in a 
group of patients with mitral valve disease (133). A negative 
correlation was observed between the extent of fibrosis on 
histology and LA strain (133).

The reversal of LA fibrosis has been demonstrated 
in animal studies with therapeutic agents including 
spironolactone, angiotensin converting enzyme inhibitors 
and angiotensin II receptor blockers (134-136). There are 
no similar reports in human studies. Kokubu and colleagues 
reported an improvement in LA strain in a group of 
hypertensive patients treated with ACEI and ARB, but only 
in the subgroup with normal LA volume (137). Thus, while 
there are limited reports, it appears that LA strain may be 
a surrogate measure of LA fibrosis and may be useful in 
evaluating therapeutic agents that may reverse fibrosis.

Conclusions

LA function is an important emerging entity and carries 

significant clinical and prognostic implications. Assessment 
of LA strain represents a simple, accurate and reproducible 
technique to evaluate LA function. LA strain and strain rate 
parameters are more sensitive than conventional parameters 
of atrial function. Strain parameters demonstrate alterations 
prior to alterations in LA volumes with new data regarding 
its prognostic relevance emerging rapidly. However, what is 
lacking is specific guidelines regarding its measurement (i.e., 
gating on QRS vs. P wave), standardization of methodology 
and development of LA specific software algorithms, that 
is essential for advancement of both future research and 
clinical application.
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