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Introduction

Three-dimensional (3D) printing is a rapidly expanding 
field in medicine. Originally developed in the 1980s, the 
technology has largely been used in the manufacturing 
industry until more recently as clinicians and researchers 
have been applying 3D printing to the medical field 
(1,2). One of the advantages of 3D printing is the use of 
additive manufacturing, where consecutive layering of two-
dimensional (2D) slices are combined together to form a 3D 
object (3). This allows for translation of intricate, complex 
designs using a variety of materials including plastic, metal, 
wax, rubber, and biomaterial (3,4). It also allows models to 
be custom made at a relatively low cost without the need 
for expensive molds or casts (3). The models are derived 
from 3D reconstructed images, printed, and can be used for 
surgical planning, such as an endovascular abdominal aortic 
aneurysm repair (Figure 1). There are variety of current 

and developing uses for the treatment of vascular disease 
including the creation of models for surgical planning (5-7), 
education and training (8,9), and vascular device and tissue 
engineering (10,11).

Principles of 3D printing

3D printing enables rapid prototyping from various 
imaging modalities (12). The technology has much promise 
in an age of personalized medicine for treatment planning, 
particularly in vascular diseases where anatomy can be 
especially complex (13). The basic procedure for medical 
3D printing consists of two steps: (I) reconstructing the 
medical image into a virtual object on CAD software, and 
(II) processing and printing the model or device. After 
these steps, the printed model is ready for surgical use or 
planning.
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Pre-processing medical images with CAD software

While commercial and manufacturing industries have 
widely adopted 3D printing since its invention, integration 
of 3D printing in medicine has been challenging. This 
lag has arisen because in manufacturing, design involves 
planning models and conceiving them on a screen with 
CAD software; conversely, in medicine, most 3D printing 
involves reverse engineering—creating objects which 
already exist physically in the patient (14). Therefore, 
converting data in the form of a stack of computed 
tomography (CT) or magnetic resonance imaging (MRI) 
slices into an STereoLithography (STL) file format readable 
by a CAD software requires pre-processing (15). 

Pre-processing, usually performed by a visualization 
software, extracts anatomical information from the 
combination of image slices (14). Moreover, by segmenting, 
or creating thresholds in the image based upon density, 
users can create volumes of interest and selectively 
reconstruct specific anatomical structures or display them in 
different colors when printed (16). 

Segmentation in these programs often involves manually 
shading 2D anatomical features slice-by-slice to identify 
the correct volume of interest through which the CAD 
software “interpolates” the region (13). For instance, as a 
blood vessel shifts in location on a 2D slice, users shade the 
area known to encompass the relevant structure. Attempts 
at semi-automated or completely automated segmentation 

have been made, but not enough progress has been shown 
for implementation (17). 

Segmentation often creates 3D models that are not 
topologically sound for printing; several tools exist to 
correct for these structural issues, while maintaining the 
accuracy of the model (18). First, by finding connections 
between continuous voxels, topological corrections can 
connect disconnected, topologically non-viable parts to 
enable printing (19). Moreover, local least squares and 
Laplacian smoothing techniques increase feasibility of 
printing by removing unnecessary details to reduce printing 
time and model contiguous anatomical features (20,21). 

After the 3D model has been created in CAD software, a 
3D model file, or STL file, is generated and uploaded to the 
appropriate printer type (13,14).

3D printing medical models and devices

Once CAD software has a virtual object for printing, the 
user must select the type of 3D printing most appropriate 
for use. This consideration depends on the purpose of the 
device or model, therefore several key factors, including 
technique, cost, resolution, and materials, often determine 
which type of 3D printing method is used (2,3,22). The 
main types of 3D printing are (I) stereolithography (SLA); 
(II) selective laser sintering (SLS); (III) inkjet; (IV) fused 
deposition modeling (FDM); (V) sheet lamination (SL); and 
(VI) tissue engineering methods (12).

Figure 1 Patient with abdominal aortic aneurysm. (A) 3D reconstructed computed tomography image of large abdominal aortic aneurysm; (B) 
3D printed model; (C) post-procedural fluoroscopy after endovascular aneurysm repair.
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SLA 
SLA is the most ubiquitous and common type of 3D 
printing, as it was the first type of additive manufacturing 
for 3D printing (3). An SLA apparatus creates 3D objects 
by polymerizing a bath, or “vat” of photosensitive polymer 
resin or hydrogels on a modeling platform with a laser (13).  
The resin crosslinks and forms bonds when exposed to 
specific wavelengths of light, often in the UV range, 
delivered by the laser, which causes the liquid to harden 
layer-by-layer (i.e., additively) (3,12). While the use of 
photosensitive material allows for high resolution and 
relatively quick printing, the materials must have this 
photosensitivity. Thus, the materials used in SLA are more 
limited than other techniques (23). Although the cost is 
decreasing, the occasional need for thermal processing of 
the photosensitive material has often been cited as a barrier 
for low-cost printing (12,22). Nonetheless, SLA has become 
widely accepted as the easiest method for printing surgical 
models quickly and accurately.

SLS
SLS is an alternative to the traditional SLA techniques, 
as SLS does not use photosensitive layers of liquid resin, 
but instead relies upon powder which solidifies into layers 
upon irradiation with a CO2 laser (3,13). Repeated layers 
of hardened powder eventually construct the object over 
time (24). However, since SLS uses powder to construct 
the object, the final product is porous and requires sand-
blasting for processing (12). While the printed device or 
model will have high accuracy and resolution, this porosity 
is often not desirable, and the equipment for the printing 
and subsequent sand-blasting is also expensive and time-
consuming (3,13). However, the number of materials 
available for rapid prototyping through SLS makes it 
attractive in specific circumstances.

Inkjet
While SLA and SLS use photosensitive materials, either 
in the liquid or solid form, inkjet techniques use methods 
similar to 2D desktop inkjet printers (3,13). Since they 
use the same mechanisms as desktop inkjet printers, the 
first 3D inkjet printers were simply commercial printers 
“modified” to print in 3D (12). Like SLS, inkjet printing 
uses powder, but rather than using laser irradiation, this 
modality congeals the powder with drops of binding 
solution, often deposited using piezoelectric phenomena (3).  
While the user can easily manipulate the cartridges for 
the binding solution and powder type, and the price of 

materials is cheaper than previously described methods, 
inkjet printing compromises accuracy and resolution. It 
also requires both powder and a binding solution to create 
layers.

FDM
FDM, as its name suggests, does not use irradiation or 
binding solution to create solid objects; instead, the printing 
process involves a nozzle extruding, or “depositing” a 
semi-solid filament onto the printer’s base, which then 
solidifies with application of heat (3,25). The nozzle has 
few restrictions on its range of movement, which allows 
FDM to create the same shapes as other non-deposited 3D 
printing methods (25). By depositing the material rather 
than solidifying material (e.g., resin) in a base or tray, 
FDM minimizes waste material and thereby reduces cost. 
However, only certain materials are able to be deposited, 
and a major limitation inherent in the deposition technique 
is accuracy (3,25).

SL
SL takes a completely different approach than the 
aforementioned techniques and instead bonds sheets of 
material together to form objects from synthetic polymers 
or paper (13). SL takes a hybrid approach between 
subtractive and additive manufacturing to increase building 
speed. Sheets are added together in layers, but then are cut 
and pasted to make the object. Since the sheets are held 
together in manufacturing, no supports are necessary, unlike 
in SLA and SLS techniques. However, removing the sheets 
that have been cut off, or “subtracted”, can be difficult, 
especially for hollow structures. This tedious process makes 
SL methods non-ideal for surgical models. 

Surgical planning

The evolution of radiographic imaging has allowed 
surgeons to better prepare and plan surgical approaches. 
As cross-sectional imaging has rapidly advanced in the 
last decade, high-resolution 3D images can routinely be 
obtained which help visualize complex vascular anatomy. 
However, even with this improvement in technology, the 
3D image is still limited to viewing on a 2D screen. With 
3D modeling the individual complexities of a patient’s 
anatomy can be seen and felt at every angle (3). 

Models can be made of any area of interest to aid in 
surgical planning. In particular, cases involving complex 
abdominal aortic anatomies have demonstrated the utility 
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of 3D printing. The use of 3D modeling was used to 
successfully plan stent-grafting for an aortic aneurysm with 
sharp neck angulation (5). In another study of endovascular 
abdominal aortic aneurysm repairs, 1 in 5 fenestrated 
endografts were modified after testing their suitability 
in an aortic model, potentially decreasing adverse 
events associated with misaligned fenestrations of aortic  
branches (6). 3D modeling has also shown useful in 
planning aortic arch interventions, such as stenting of 
aortic arch hyperplasia (26). One case-study discussed 
perioperative planning for repair of a calcified, aneurysm 
extending from the ascending to the descending aorta. The 
3D model allowed the team to discuss various therapeutic 
options and anticipate any pitfalls for a complex, high-risk 
procedure (27). However, no large scale clinical trials exist 
evaluating the use of 3D modeling on patient outcomes.

In addition to great vessel pathology, 3D printing has also 
been used in the treatment of other visceral vessel diseases. 
3D modeling was used to plan the optimal combination 
of guide catheter and microcatheter to successfully treat 
a patient with multiple splenic artery aneurysms. The 
team was able to preserve splenic function and minimize 
the need for repeat angiograms (28). 3D printing has also 
been described as an intraoperative reference for robotic 
resection of a celiac trunk aneurysm (29). Modeling other 
visceral vessel aneurysms has been described, including 
left gastric, right epigastric, gastroduodenal and posterior 
superior pancreaticoduodenal aneurysms (30).

Training and education

The use of 3D modeling for vascular simulations can provide 
training and education in either normal or complex anatomy. 
In one study, general surgery residents who prepared for 
endovascular abdominal aneurysm repairs (EVAR) using 
both 3D CT images and a 3D model performed better on 
a perioperative case-scenario questionnaire than residents 
who used only 3D CT images and no model (31). Models 
also provide an ideal format for training. It eliminates risk 
to patients, allows trainees to engage with the procedure 
on their own time, and also allows for practice on rare 
pathologies that experienced surgeons may only encounter 
a limited number of times in their careers (32). It can 
also provide the haptic feedback which may be lacking in 
virtual reality simulations and has been shown to improve 
anatomical knowledge in students (13,33). In addition to 
provider education, 3D models have been demonstrated as a 
useful tool for preoperative patient education (9,34,35).

Engineering of personalized aortic devices

3D printing has also enabled providers to create patient 
specific devices and tissues as a treatment strategy. One 
prominent example, the personalized external aortic 
root support (PEARS), is an alternative to aortic root 
replacement in where a replica of the patient’s aorta is 
created. The 3D model is then used as template onto 
which a medical-grade polymer mesh fabric is fitted which 
follows the exact aortic contours. This device makes an 
ideal external support for the expanding aortic aneurysms of 
Marfan’s disease (10,36). The precision of the mesh allows 
it to be fully incorporated while maintaining aortic valve 
competence (37,38). Treasure et al. reported early outcomes 
with PEARS were better than published results for standard 
of care aortic root replacement operations with no deaths, 
cerebrovascular, aortic or valve-related events 1.4–8.8 years 
following the procedure in 30 patients (39). Expanded use 
of this device is ongoing (37).

Vascular tissue bioprinting

Current research efforts are directed towards developing 
functioning 3D printed vascular tissue. In general, vascular 
tissue has been constructed either using scaffold-based 
or scaffold-free methods (40). Scaffold-based bioprinting 
incorporates cells into hydrogel or decellularized matrices, 
while scaffold-free methods exploit functions such as cell 
sorting and tissue fusion (41). Some success has been 
reported with scaffold-based vascular structures (42), 
however, their clinical utility has been limited by chronic 
inflammation, thrombosis, rejection, and degradation 
(11,43). Using scaffold-free techniques, Itoh et al. described 
tubular structures developed from multicellular spheroids. 
The grafts underwent remodeling and endothelialization 
after implantation into the abdominal aorta of rats (44). 
Using 3D bioprinted mouse embryonic fibroblast Kucukgul 
et al. (45) developed a self-supported, biomimetic human 
aorta. Further research is needed to develop the vascular 
tissue bioprinting for clinical use. Fully functioning 
vascular networks have proven to be difficult in 3D printing 
engineering and is a major milestone in the development of 
3D printed organs (46).

Future considerations

As the technology continues to develop, 3D printing holds 
the potential to revolutionize the future of medicine. Its 



© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2018;8(Suppl 1):S19-S25cdt.amegroups.com

S23Cardiovascular Diagnosis and Therapy, Vol 8, Suppl 1 April 2018

current clinical applications can be expanded through 
streamlining the 3D printing process, reducing costs, 
and increasing access. Although 3D printing is relatively 
inexpensive compared to equivalent manufacturing 
methods, it largely remains confined to university-scale 
hospital systems that can afford the hardware, software, and 
recurring material costs required (47). Lower costs may 
follow increasing demand, making 3D printing resources 
more readily available in smaller communities. In addition, 
further research is needed to establish the cost-effectiveness 
of using 3D models as part of a treatment plan. Currently, 
no large randomized clinical trials exist to evaluate the 
effect of 3D printing on patient outcomes. This data will be 
especially important to meet federal and state regulations 
and when seeking reimbursement from insurers (48). The 
United States Food and Drug Administration (FDA), the 
agency which oversees medical devices, published draft 
guidance in 2016 on the Technical Considerations for 
Additive Manufactured Devices, which can be found on 
their website: http://www.fda.gov.

One largely anticipated future development is the 
bioprinting of complex organs to be used for transplantation 
and research. Despite much promising progress already 
made, more advancement is necessary, in particular due 
to the challenges of printing vascular networks (2). As 
bioprinting continues to develop, there is potential to use 
personalized biomaterial to treat a variety of aortic diseases, 
such as aneurysms, coarctation, and connective tissue 
disorders. In vitro organ models also have the potential to 
be used for pharmaceutical research and drug discovery 
(49,50). Researchers also envision devices which can print 
biomimetic structures on demand to be used  to repair 
damaged structures (51).

Conclusions

3D printing has become a useful tool to many clinicians 
and researchers. A variety of applications currently employ 
3D printing for the treatment of aortic vascular disease, 
including pre-procedural planning, training, and creation 
of personalized aortic grafts. Advances in the accessibility 
of 3D printing, as well as continued research in 3D-printed 
vascular networks, has the potential to revolutionize the 
treatment of aortic diseases.
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