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Background: Statistically derived cardiovascular risk calculators (CVRC) that use conventional risk factors, 
generally underestimate or overestimate the risk of cardiovascular disease (CVD) or stroke events primarily 
due to lack of integration of plaque burden. This study investigates the role of machine learning (ML)-based 
CVD/stroke risk calculators (CVRCML) and compares against statistically derived CVRC (CVRCStat) based 
on (I) conventional factors or (II) combined conventional with plaque burden (integrated factors). 
Methods: The proposed study is divided into 3 parts: (I) statistical calculator: initially, the 10-year 
CVD/stroke risk was computed using 13 types of CVRCStat (without and with plaque burden) and binary 
risk stratification of the patients was performed using the predefined thresholds and risk classes; (II) ML 
calculator: using the same risk factors (without and with plaque burden), as adopted in 13 different CVRCStat, 
the patients were again risk-stratified using CVRCML based on support vector machine (SVM) and finally; 
(III) both types of calculators were evaluated using AUC based on ROC analysis, which was computed using 
combination of predicted class and endpoint equivalent to CVD/stroke events.
Results: An Institutional Review Board approved 202 patients (156 males and 46 females) of Japanese 
ethnicity were recruited for this study with a mean age of 69±11 years. The AUC for 13 different types of 
CVRCStat calculators were: AECRS2.0 (AUC 0.83, P<0.001), QRISK3 (AUC 0.72, P<0.001), WHO (AUC 
0.70, P<0.001), ASCVD (AUC 0.67, P<0.001), FRScardio (AUC 0.67, P<0.01), FRSstroke (AUC 0.64, P<0.001), 
MSRC (AUC 0.63, P=0.03), UKPDS56 (AUC 0.63, P<0.001), NIPPON (AUC 0.63, P<0.001), PROCAM 
(AUC 0.59, P<0.001), RRS (AUC 0.57, P<0.001), UKPDS60 (AUC 0.53, P<0.001), and SCORE (AUC 0.45, 
P<0.001), while the AUC for the CVRCML with integrated risk factors (AUC 0.88, P<0.001), a 42% increase 
in performance. The overall risk-stratification accuracy for the CVRCML with integrated risk factors was 
92.52% which was higher compared all the other CVRCStat.
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Introduction

Cardiovascular disease (CVD) is the leading cause of 
mortalities around the world which has accounted for the 
global deaths of 17.9 million people (1). Out of these 17.9 
million, 85% of the deaths were attributed to myocardial 
infarction and stroke (1). Prevention of CVD/stroke 
events is an important challenge in front of the medical 
community, which is causing a higher global economic 
burden (2,3). Thus, there an increasing demand to provide 
accurate and time-efficient preventive tools that can 
provide a long-term prognosis of CVD/stroke events at 
an affordable cost to the patients. Atherosclerosis is one 
of the dominant causes of CVD/stroke events (4-10). One 
way to prevent the growth of atherosclerosis is to treat the 
risk factors which are responsible for the initiation and 
progression of atherosclerotic plaque. Besides controlling 
the risk factors, treating the arteries by measuring the 
atherosclerotic plaque extent and making the plans for its 
regression is also an established way of reducing the risk of 
CVD (11). 

According to INTERHEART* and INTERSTROKE* 
studies [*as it is taken from the Yusuf et al. and O’Donnell 
et al. (12-14)], conventional cardiovascular risk factors 
(CCVRF) such as diabetes mellitus, hypertension, 
hyperlipidemia, smoking, alcohol consumption, physical 
inactivity, and body mass index are attributed to ~90% risk 
of CVD/stroke events (12-14). Current guidelines also 
suggest the treatment of all these modifiable risk factors 
for CVD prevention (15-19). Most of these guidelines take 
the help of statistically derived conventional cardiovascular 
risk calculators (CVRC) for initiation of CVD/stroke 
treatment plans (e.g., for initiation of statins) (15,17-21).  
Some commonly used statist ically derived CVRC 
(CVRCStat) are the Framingham Risk Score (FRS), the UK 
Prospective Diabetes Score (UKPDS), the Reynold Risk 
Score (RRS), the Systematic Coronary Risk Evaluation 

Chart, the QRISK3 calculator, and the World Health 
Organization (WHO) are the commonly used CVD risk 
prediction models. All such CVRCStat reported a modest 
performance while providing a 10-year risk assessment 
especially in patients suffering from diabetes mellitus (22,23) 
and rheumatoid arthritis (24,25). Furthermore, it has been 
observed that most of CVRCStat provide overestimation or 
underestimation of CVD risk (26,27). 

The reason for such sub-optimal performance of 
CVRCStat lies in their design. These CVRCStat were designed 
using statistical regression-based techniques that consider 
only a limited number of risk factors (28). These regression-
based methods assume a linear relationship between the 
input risk factors and the outcome of interest (for example 
the CVD events) (26,29,30). However, in practice, the risk 
due to CVD depends upon the complex interaction between 
conventional cardiovascular risk factors (CCVRF) (31).  
Furthermore, these risk prediction models assume a limited 
or no interaction between the CCVRF itself, thus, this 
assumption ends-up in providing an oversimplified and 
approximate risk assessment model (26,29,30). Another 
important factor that may lead to the poor performance of 
CVRCStat is the exclusion of image-based phenotypes. The 
CCVRF may note provide the complete information about 
the atherosclerotic plaque components, which, however, 
can easily be captured using imaging modalities (32,33). 
Thus, there is a need to refine the search of risk prediction 
models that can provide more robust risk estimation by 
considering the non-linear interaction between a large 
number of a diverse set of input risk factors (33). Lastly, 
these models for CVRCStat never use cohort knowledge 
in their persistence layer (database layer) or to embed 
intelligence in their designs, which is so important for an 
accurate prediction of 10-year risk (34). Machine learning 
(ML)-has been actively pursued in medical imaging 
recently covering several anatomic areas such as liver cancer 

Conclusions: ML-based CVD/stroke risk calculator provided a higher predictive ability of 10-year CVD/
stroke compared to the 13 different types of statistically derived risk calculators including integrated model 
AECRS 2.0. 
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(35,36), lung cancer (37,38), prostate cancer (39,40) more 
recently in carotid plaque characterization (32-36). These 
techniques are generally the data-driven algorithms, which 
identify the complex interactions among the CCVRF to 
provide accurate CVD risk estimation (26,33). The ML-
based techniques have plenty amount of applications in the 
medical domain including the CVD/stroke risk assessment 
(41-47). However, there were a few attempts were made 
to investigate the performance of ML-based CVD/Stroke 
risk stratification against to the CVRCStat (26,30,48-52). 
In this study, a Support Vector Machine (SVM) algorithm 
was adapted for ML-based CVD/stroke risk calculator 
(CVRCML). The proposed study had two main hypotheses 
for this study: (I) CVRCML can provide a better risk 
stratification compared to CVRCStat and (II) the inclusion 
of carotid ultrasound image-based phenotypes (CUSIP) 
into the CCVRF (so-called integrated systems) can provide 
a better predictive ability compared to the CCVRF alone, 
irrespective of the type of risk calculator (CVRCML or 
CVRCStat).

In order to prove these hypotheses, this study has three 
unique objectives. These are: 

(I)	 To compare the performance of the 12 types of 
CVRCStat (conventional) and CVRCML (conventional);

(II)	 To compare the performance of the CVRCStat (integrated) 

and the CVRCML (integrated); 
(III)	To compare the performance of the CVRCML 

(conventional) and the CVRCML (integrated). 

Definitions of CVRCStat (conventional), CVRCStat (integrated), CVRCML 

(conventional), and CVRCML (integrated)

It should be noted that (I) 12 types of CVRCStat (conventional) 

means statistically derived CVRCStat that used 14 CCVRF. 
These 12 types of CVRCStat (conventional) are: (i) the FRS, 
(ii) the UKPDS56, (iii) the UKPDS60, (iv) the RRS, 
(v) Atherosclerosis CVD (ASCVD) calculator, (vi) the 
NIPPON risk chart, (vii) the SCORE risk chart, (viii) the 
QRISK3, (ix) the WHO risk chart, (x) the PROCAM, (xi) 
FRS (Stroke), and (xii) my_stroke risk calculator (MSRC). 
(II) CVRCStat (integrated) means CVRCStat that used integrated 
risk factors, which were the combination of 14 CCVRF 
and 5 CUSIP. AtheroEdge Composite Risk Score version 
1 (AECRS 1.0) (53-55) was the recently developed type of 
CVRCStat (integrated). In this study, we extended the AECRS 
1.0 to AECRS 2.0 by further adding the status of chronic 
kidney disease (CKD). This will allow the physicians to 
perform the CVD/stroke risk stratification of patients 
suffering from CKD. In this study, AECRS 2.0 will be 
referred as CVRCStat (integrated). (III) CVRCML (conventional) means 
CVRCML that used 14 CCVRF, and (IV) CVRCML (integrated) 

means CVRCML that used integrated risk factors. Hereafter, 
throughout this study, the above definitions will be 
followed. The definition various 14 CCVRF and 5 CUSIP 
are provided in the “Method” section of this article. 

Figure 1 shows the overall architecture of the proposed 
system that compares the CVD/stroke risk stratification 
performed using the ML-based approach against the 
risk stratification performed using 13 different types of 
statistically derived CVRC (12 types of CVRCStat (conventional) 

and CVRCStat (integrated)]. In this study, a combination of 
glycated hemoglobin (HbA1c) and maximum carotid 
intima-media thickness has been used as the event-
equivalence gold standard (EEGS). Description of such type 
of combinational EEGS has been given in the “Discussion” 
section of this study. 

Figure 1 The overall architecture of the proposed system that compares the CVD/stroke risk stratification performed using the CVRCML 
and the 13 types of statistically derived CVRCStat. CVRCML, ML-based cardiovascular risk calculator; CVRCStat, 13 types of different sta-
tistically derived cardiovascular risk calculators; CVD, cardiovascular disease; CUSIP, carotid ultrasound image-based phenotypes; EEGS, 
event-equivalence gold standard; AUC, area under the curve.
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Methods 

Study participants 

This retrospective study recruited a Japanese ethnicity 
cohort of 202 patients between July 2009 and December 
2010. All the patients were approved by the institutional 
review board of the Ohashi Medical Center, Toho 
University Japan, and informed consent was obtained from 
all the study participants. The proposed study is unique in 
its concept compared to all our previous studies that used 
a similar Japanese cohort (53-60). In total, 404 CUS scans 
(2 CUS scans × 202 patients) were collected from both the 
left and right common carotid arteries of 202 patients, out 
of which nine scans were excluded from this study due to 
the poor visualization. Thus, a total of 395 CUS scans were 
used in this study. All the CUS scans were retrospectively 
analyzed by two experts who had 15 years of experience in 
the field of radiology. 

Carotid ultrasound image acquisition

The ultrasound image of the common carotid artery (CCA) 
was obtained by using a B-mode ultrasound scanner (Aplio 
XG, Xario, Aplio XV, Toshiba Inc., Tokyo, Japan) equipped 
with 7.5 MHz linear arrays of the transducer. In order to 
capture the ultrasound image and to measure the image-
based phenotypes, a standardized protocol of the American 
Society of Echocardiography (ASE) was followed (61). 
Initially, the patients were examined in a supine position 
with their head tilted backward. At first, the carotid artery 
of the patients was identified by the transverse scan and 
then, once identified; the probe was rotated by 90º to 
capture the longitudinal image of walls of the carotid artery. 
The complete protocol for image acquisition was discussed 
in detail in our previous studies (53-60). The average image 
resolution was 0.0529 mm-per-pixel. 

Conventional cardiovascular risk factors

In this study, 14 CCVRF including demographics and 
blood biomarkers were collected for each patient. These 14 
CCVRF are (I) age, (II) gender, (III) systolic blood pressure, 
(IV) diastolic blood pressure, (V) status of hypertension, 
(VI) glycated hemoglobin (HbA1c), (VII) low-density 
lipoprotein cholesterol (LDL-C), (VIII) high-density 
lipoprotein cholesterol (HDL-C), (IX) total cholesterol 
(TC), (X) triglyceride (TG), (XI) a ratio of total cholesterol 
and high-density lipoprotein cholesterol (TC/HDL), (XII) 

smoking status, (XIII) family history of CVD in first-degree 
relative, and (XIV) estimated glomerular filtration rate 
(eGFR). The baseline characteristics of these conventional 
cardiovascular risk factors have been presented in the 
“Baseline characteristics” section. 

Current image phenotype measurements and 10-year 
CUSIP prediction 

Current CUSIP measurements
Besides the CCVRF, this study also measures five 
CUSIP such as (I) average cIMT (cIMTavecurr) (62), (II) 
maximum cIMT (cIMTmaxcurr) (62), (III) minimum cIMT 
(cIMTmincurr) (62), (IV) variability in cIMT (cIMTVcurr) 
(63,64), and (V) carotid total plaque area (cTPAcurr) 
(56,60,62,65-67). The subscript “curr” indicates the 
measurement of the corresponding CUSIP at the baseline. 
Two operators (experienced and novice) each having 
15 years of experience in radiology measured all these 
five CUSIP from the 395 CUS scans using automated 
software (AtheroEdge,  AtheroPointTM,  Rosevi l le , 
California, USA) (62,63,66,68,69). This software works 
in three stages: (I) automatic detection of the region-of-
interest, (II) identification of far wall of the CCA followed 
by a delineation of the lumen-intima (LI) and media-
adventitia (MA) interfaces, and (III) measurement of 
current CUSIP throughout the length of CUS scan. Such 
type of measurement is as the full-length measurement 
(62,63,66,68-70). Note that our cIMT measurements 
consider both basic cIMT and plaque burden if any.

The cIMTavecurr was then measured as the mean polyline 
distance between the 100 connected set of points taken on 
LI and MA interfaces (71,72). Polyline distance metric was 
used to measure the perpendicular distance between the 
vertex on the LI interface and the corresponding polyline 
segment on the ML interfaces. Since the plaque growth in 
bidirectional [so-called Glagov’s Phenomenon (73)], the 
distance was also measured between the vertex on the MA 
interface and the corresponding polyline segment on the 
LI interface (71,72). All the distances were then averaged 
together to obtain the cIMTavecurr. Similarly, cIMTmaxcurr 
and cIMTmincurr were computed as the maximum and 
minimum distance, respectively, between LI and MA 
borders. The cIMTVcurr is a recently developed marker 
of variations cIMT (63,64). The procedure for measuring 
cIMTVcurr has been discussed in our recent study (63,64). 
In this study, we automatically measured the carotid 
plaque area as the sum of all pixels encapsulated within the 

l 


923Cardiovascular Diagnosis and Therapy, Vol 10, No 4 August 2020

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(4):919-938 | http://dx.doi.org/10.21037/cdt.2020.01.07

envelope of LI and MA interfaces that spanned all along 
the length of the CUS scan (56,60). Note that since this 
plaque follows the morphology of the atherosclerotic plaque 
variation, it was also termed as morphological total plaque 
area (mTPA) (60) or cTPAcurr (56,60). It must be noted that 
the cTPAcurr is comprised of the focal thickening region 
which is more than 50% of the surrounding IMT (61,74,75) 
or the region where cIMTmax >1.5 mm (61,74-78). 

10-year CUSIP measurements
The f ive types of  10-year CUSIP (cIMTave 10-year, 
cIMTmax10-year, cIMTmin10-year, cIMTV10-year, and cTPA10-

year) are predicted using the standardized annual progression 
rates of cIMT and carotid plaque area (53,54,58,79) when 
applied on the original five types of image-based risk factors. 
The subscript ‘10-year’ indicates the 10-year prediction 
of the phenotype. These five types of 10-year CUSIP are 
computed by integrating the five types of current CUSIP 
(cIMTavecurr, cIMTmaxcurr, cIMTmincurr, cIMTVcurr, and 
cITPAcurr) with the 11 CCVRF (age, ethnicity, gender, 
carotid artery type, HbA1c, LDL-C, total cholesterol (TC), 
SBP, smoking, BMI, and estimated glomerular filtration 
rate or eGFR). Given the annual progression rates of cIMT 
due to all 11 CCVRF, an overall increase in cIMT from the 
current value, in 10-years, was computed. In the current 
study, the eGFR blood biomarker was used for the 10-year 
CVD/stroke risk prediction.

Statistically derived 10-year CVD/stroke risk calculators

In this study, the 10-year CVD/stroke risk was computed 
using 13 types of CVRCStat. These 13 types of CVRCStat 
are: (I) FRS (80), (II) UKPDS56 (81), (III) UKPDS60 (82), 
(IV) RRS (83), (V) Pooled Cohort Risk Score (PCRS) (15), 
(VI) NIPPON risk chart (84), (VII) SCORE risk chart 
(85), (VIII) QRISK3 (86), (IX) World Health Organization 
(WHO) risk chart (87,88), (X) PROCAM (89), (XI) FRS 
(Stroke) (90), (XII) MSRC (91), and (XIII) AECRS2.0. Out 
of 13, the first 12 types of CVRCStat (conventional) are purely 
based on the 14 CCVRF and they do not consider image-
based biomarkers of CVD/stroke (for example cIMT 
and cTPA) into their risk estimation model. Recently, 
Khanna et al. (54,55) made a first-ever attempt to bridge 
this gap between CCVRF and image-based phenotypes 
by developing an integrated 10-year risk calculator called 
AECRS1.0. Khanna et al. (53) further evaluated the 
performance of AECRS1.0 against the 10 types of CVRCStat 

(conventional) and reported a higher predictive ability (AUC 

0.927, P<0.001) of the AECRS1.0 compared to other  
10 types of CVRCStat (conventional). 

In our proposed study, the AECRS1.0 was extended 
by adding an eGFR into the risk prediction model (so-
called AECRS2.0). Earlier studies have reported a strong 
link between CVD/stroke and CKD (92,93). Hence, 
the inclusion of eGFR in the risk prediction model of 
AECRS2.0 provided an additional benefit to the physicians, 
while evaluating the 10-year CVD/stroke risk in patients 
suffering from CKD. The AECRS2.0 is considered as the 
13th type of CVRCStat. Since the AECRS2.0 considers the 
integrated risk factors (CCVRF + CUSIP), we refer to it 
as CVRCStat (integrated). Although a set of input risk factors 
used for the development of all these 13 types of CVRCStat  
(12 types of CVRCStat (conventional) and one type of CVRCStat 

(integrated)] is different, a common thread links all these 
CVRCStat under one category. This common thread is 
the use of statistics or the statistical methods for the 
development of this CVRCStat. In our proposed study we 
are comparing the CVD/stroke risk stratification of patients 
performed using 13 different types of CVRCStat and the 
automated CVRCML. In short, this study compared the ML-
based method vs. the statistical-based methods of CVD/
stroke risk stratification. 

Machine learning-based risk stratification

The generalized architecture of the ML-based risk 
stratification system is shown in Figure 2. The overall 
system architecture is divided into three parts: (I) offline 
system (or training model), (II) online system (testing 
model), and (III) performance evaluation. At first, the 
database was partitioned using a 10-fold cross-validation 
protocol (so-called K10). The details about the working 
of the K10 protocol have already been discussed in our 
previous studies (47,94-96).

The off l ine ML-based system then extracts  14 
conventional features (gender, age, HbA1c, LDL, HDL, 
TC, TG, LR, HT, SBP, DBP, smoking FH, and eGFR) 
from the training database. It should be noted that in order 
to investigate the effect of current CUSIP on the 10-year 
risk stratification of patients, a dotted plug-and-play block 
of CUSIP has been shown in Figure 2. The training features 
along with EEGS will then be used to train the SVM-
based ML classifier. Once the SVM-based ML classifier 
is trained, the offline training coefficients are then used 
to transform the online test features into the high-risk or 
low-risk category for the patients using the online SVM 

l 


924 Jamthikar et al. Statistical vs. machine learning-based CVD/stroke risk calculators

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(4):919-938 | http://dx.doi.org/10.21037/cdt.2020.01.07

Figure 2 The generalized architecture of machine learning-based CVD/stroke risk stratification. CUSIP, carotid ultrasound image-based 
phenotypes; EEGS, event-equivalence gold standard; AUC, area under the curve.
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classifier. Such an online ML system can then be utilized 
in routine preventive CVD/stroke prognosis systems 
without the requirement of EEGS. The performance of 
the proposed ML-based risk stratification system can be 
evaluated using the area-under-the-curve (AUC) metric, 
which is most commonly employed in medical studies  
(97-99).

Experimental protocol 

The hypothesis of the proposed study is based on three 

types of experiments shown in Figure 3. 

Experiment 1: 12 types of CVRCStat against CVRCML 

utilizing 14 types of CCVRF
In this experiment (Figure 3A), the performance of the ML-
based calculator [CVRCML (conventional)] was compared against 
the 12 types of CVRCStat (conventional) using 14 CCVRF. Here, 
we hypothesize that, given the same 14 CCVRF, ML-based 
calculator [CVRCML (conventional)] provides a better CVD/stroke 
risk stratification compared to the 12 types of statistically 
derived conventional calculators [CVRCStat (conventional)]. 
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Experiment 2: CVRCStat (integrated) vs. CVRCML (integrated) with 
integrated risk factors
In this experiment (Figure 3B), the performance of ML-
based calculator [CVRCML (integrated)] was compared against 
the CVRCStat (integrated) using integrated risk factors (14 
CCVRF + 5 CUSIP). Here we hypothesize that, given the 
same integrated risk factors, ML-based calculator [CVRCML 

(integrated)] provides a better CVD/stroke risk stratification 
compared to the statistically derived CVRC Stat (integrated). Note 
that as explained in the “Introduction” section, CVRCStat 

(integrated) means the AECRS2.0 calculator.

Experiment 3: CVRCML (conventional) with 14 CCVRF vs. 
CVRCML (integrated) with 19 integrated risk factors
In this experiment (Figure 3C), we hypothesize that ML-
based calculator with integrated risk factors CVRCML (integrated) 
can provide a better CVD/stroke risk compared to the 
ML-based calculator with 14 CCVRF [CVRCML (conventional)]. 
This experiment showed the higher predictive ability of the 
integrated risk factors compared to the CCVRF alone. 

Statistical analysis

All types of statistical analyses were performed using 
SPSS23.0 and MATLAB2017b. The baseline characteristics 
shown in Table 1 are expressed in mean ± standard 
deviation for continuous variable and as a percentage for 
the categorical variable. Two sample students’ t-test and 
chi-square tests were used for continuous variable and 
categorical variables, respectively. The receiver operating 
characteristics (ROC) curve was used to compare the 
performance of CVD/stroke risk stratification performed 
using the CVRCML and the 13 types of CVRCStat [12 types 
of CVRCStat (conventional) and one CVRCStat (integrated)]. Area-
under-the-curve (AUC) was computed for all the 13 
types of CVRCStat and the ML-based system. In order to 
obtain the ROC curve and to compute the AUC value, a 
combination of HbA1c and the cIMTmaxcurr was used as 

a response variable. Such type of response variable, which 
is also called an event-equivalence gold standard (EEGS), 
has already been studied in our previous publications 
(33,53,55,58,59,70,79). This is because this EEGS is 
associated with the atherosclerosis process and mimics the 
characteristics of the true endpoint such as CVD/stroke 
events (70,79). Although AUC was used as a primary 
performance evaluation (PE) metric, additional PE metrics 
like sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and accuracy were also 
computed using the same EEGS. The level of statistical 
significance was tested for P<0.05.

Results

Baseline characteristics 

The baseline characteristics of the study participants 
are shown in Table 1. A cohort of 202 Japanese ethnicity 
patients was recruited in this study with a mean age of 
69±11years (range, 29–88 years). Out of 202 patients, 156 
(77.23%) were males and 46 (22.77%) were females. The 
average value of HbA1c was 6.28±1.11% (range, 4.80–13%), 
LDL-C was 100.75±31.48 mg/dL (range, 24–193 mg/dL),  
HDL-C was 50.49±14.97 mg/dL (range, 18–115 mg/dL), 
TC was 174.33±36.73 mg/dL (range, 61–255 mg/dL), TG 
was 117.10±56.69 mg/dL (range, 32–255 mg/dL), and 
eGFR was 45.06±20.92 mL/min/1.73 m2 (range, 3–110 
mL/min/1.73 m2). Out of 202 patients, 49 (24.26%) were 
suffering from type 2 diabetes mellitus, 162 (80.20%) were 
suffering from chronic kidney disease, 147 (72.77%) were 
hypertensive, 81 (40.10%) were smokers, and 24 (11.88%) 
patients had a family history of coronary heart disease in 
the first degree relatives. The criteria for type 2 diabetes 
mellitus was HbA1c ≥6.5% or treatment for hyperglycemia 
(100), criteria for hypertension was SBP ≥140 mmHg 
or DBP ≥90 mmHg or treatment with antihypertensive 
medications (101), and the criteria for chronic kidney 

Figure 3 The three types of experimental protocols followed in this proposed study.

Experiment 1	 Experiment 2	 Experiment 3

14 CCVRF	 14 CCVRF + 5 CUSIP14 CCVRF + 5 CUSIP

CVRCStat (conventional) CVRCML (integrated)CVRCStat (integrated)CVRCML (conventional) CVRCML (conventional)CVRCML (integrated)

14 CCVRF
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disease was EGFR <60 mL/min/1.73 m2 (102). As shown 
in Table 1, all the patients were further classified into two 
risk categories using an event equivalence gold standard (a 
combination of HbA1c ≥6.5% and cIMTmax ≥1.5 mm).  
The risk of category-based baseline characteristics is 
presented in Table 1. 

10-year CVD/stroke risk stratification: 12 types of 
CVRCStat (conventional) vs. CVRCML (conventional)

The ROC curves are shown in Figure 4A compared to 
the performance of the 12 types of CVRCStat (conventional) and 
CVRCML (conventional) using the 14 types of CCVRF. The CVD/
stroke risk stratification performed using CVRCML (conventional) 

reported the higher AUC value (AUC 0.70, P=0.11) 
compared to the mean AUC value (AUC 0.62, P<0.05) 
computed from 12 types of CVRCStat (conventional), indicating an 
overall improvement by ~13%. From Figure 4A, it is clear 
that the CVRCML (conventional) provides higher predictive power 
and a better or comparable risk stratification compared to 
the 12 types of CVRCStat (conventional). 

10-year CVD/stroke risk stratification: CVRCStat (integrated) vs. 
CVRCML (integrated)

The ROC curves are shown in Figure 4B compared to 
the performance of the CVRCStat (integrated) against CVRCML 

(integrated) using the integrated risk factors (14 CCVRF + 5 
CUSIP). The CVD/stroke risk stratification performed 
using CVRCML (integrated) reported the higher AUC value (AUC 
0.88, P<0.001) compared to the AUC of CVRCStat (integrated) 
(AUC 0.83, P<0.001), indicating an overall improvement 
by ~6%. It should be noted that the CVRCStat (integrated) 

with integrated risk factors is nothing but the AECRS2.0 
calculator. Figure 4B further validated our hypothesis of 
better risk stratification using CVRCML (integrated) compared to 
the CVRCStat (integrated). 

Comparison between CVRCML (conventional) and CVRCML 

(integrated): effect of image-phenotypes

Figure 5 explicitly compares the performance of two types of 
ML-based CVRC: (I) CVRCML (conventional) and (II) CVRCML 

Table 1 Baseline characteristics of the patients divided into low-risk and high-risk classes

Parameters Overall Low-risk# High-risk# P

Total (n) 202 22 (10.89%) 180 (89.11%) –

Male, n (%) 156 (77.23%) 16 (10.26%) 140 (89.74%) 0.596

Age (years) 69±11 70.77±9.21 68.74±11.15 0.414

HbA1c (%)† 6.28±1.11 7.56±0.94 6.12±1.03 <0.0001

LDL-C (mg/dL) 100.75±31.48 97.50±31.49 101.14±31.55 0.610

HDL-C (mg/dL) 50.49±14.97 48.27±14.34 50.76±15.06 0.464

TC (mg/dL) 174.33±36.73 168.32±34.13 175.07±37.05 0.417

TG (mg/dL) 174.33±36.73 168.32±34.13 175.07±37.05 0.425

TC/HDL 3.65±1.01 3.74±1.19 3.64±0.99 0.658

SBP (mmHg) 134.55±8.92 136.36±7.90 134.33±9.04 0.315

DBP (mmHg) 87.28±4.46 88.18±3.95 87.17±4.52 0.315

HT, n (%) 147 (72.77%) 18 (12.24%) 129 (87.76%) 0.315

Smoking, n (%) 81 (40.10%) 9 (11.11%) 72 (88.89%) 0.935

eGFR (mL/min/1.73 m2) 45.06±20.92 44.14±22.51 45.18±20.78 0.826

FH, n (%) 24 (11.88%) 3 (12.50%) 21 (87.50%) 0.789
†, significant confounding factors; #, a combination of HbA1c and cIMTmax was used for risk stratification. HbA1c, glycated hemoglobin; 
LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride; SBP, 
systolic blood pressure; DBP, diastolic blood pressure; HT, hypertension; eGFR, estimated glomerular filtration rate; FH, family history.
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Figure 4 Comparing the performance of ML-based risk calculator and the statistically derived risk factors for (A) conventional risk factors 
and (B) integrated risk factors. (A) Given the 14 CCVRF, the performance of CVRCML (conventional) was compared against the 12 types of 
CVRCStat (conventional). (B) Given the integrated risk factors, the performance of CVRCML (integrated) was compared against the CVRCStat (integrated) 

(AECRS2.0). The black arrow in Figure 4A indicates the dotted black colored, receiver operating characteristics curve of the CVRCML (conventional) 
with 14 CCVRF. CVRCML, ML-based cardiovascular risk calculator; CVRCStat, statistically derived cardiovascular risk calculator; FRS, 
Framingham Risk Score; UKPDS56, United Kingdom Prospective Diabetes Study 56; RRS, Reynold Risk Score; ASCVD, atherosclerosis 
CVD calculator by ACC/AHA; SCORE, Systematic Coronary Risk Evaluation chart; WHO, World Health Organization chart; FRS (Stroke), 
Framingham Stroke Risk Calculator; MSRC, My_Stroke Risk Calculator; AECRS2.0, AtheroEdge Composite Risk Score version 2.
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(integrated). The inclusion of integrated risk factors into the 
ML-based risk calculator has resulted in a higher AUC 
value (AUC 0.88, P<0.001) compared to the ML-based risk 
calculator with conventional risk factors alone (AUC 0.70, 
P=0.11), indicating an overall improvement of ~26%. The 
improvement in AUC value is in line with a recent study 
presented by our group (79). This experiment showed that 
the integrated risk factors have higher predictive ability, 
not only in statistically derived risk calculators but also with 
the ML-based risk calculators. The reason for the higher 
predictive ability of the integrated risk factors is due to 
the integration of CUSIP with the CCVRF. The CUSIP 
truly reflect the carotid atherosclerotic plaque burden of 
the patients and thus, provide better risk estimation of the 
patients. 

Sensitivity analysis and performance evaluation 

In this study, the 10-year CVD/stroke risk was computed 
using 13 types of CVRCStat which were either derived using 
proportional hazard or regression-based methods (15,80-
84,86,89,91,103), it is important to investigate the sensitivity 
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of 10-year risk if the coefficients are varied. In our study, 
we have varied the coefficients of these risk calculators by 
±2% and recorded the variation in AUC values. It should be 
noted that all 13 types of CVRCStat showed a variation of less 
than 5% in the overall AUC value. The average sensitivity, 
specificity, PPV, NPV, and accuracy for the 10-fold cross-
validation (I) for the 12 types of CVRCStat (conventional) were 
34%, 80.47%, 14.72%, 93.38%, and 76.74%, respectively, 
(II) for the CVRCML (conventional) were 23.86%, 93.01%, 
23.08%, 93.29%, and 87.43%, respectively, (III) for the 
CVRCStat (integrated) were 69.89%, 75.60%, 20.10%, 96.62%, 
and 75.14%, respectively, and (IV) for the CVRCML (integrated) 
were 10.60%, 99.72%, 76.59%, 92.70%, and 92.52%, 
respectively. It should be noted sensitivity and PPV for 
all the CVRC is less than the specificity and NPV. This is 
because of the unbalanced nature of the database with only 
~8% of samples were categorized into high-risk class. Due 
to the lower sensitivity values, it can be interpreted that the 
predictive ability of all the CVRC to correctly identify low-
risk patients is more than the high-risk patients. The similar 
kind of observations of lower sensitivity values compared 
to septicity values was previously reported in multiple 
studies (26,51,104). Another observation from these PE 

metrics is that the overall accuracy for CVRCML (integrated) is 
highest amongst all the other CVRC (CVRCStat (conventional) 
or CVRCStat (integrated) or CVRCML (conventional)]. This has again 
validated our hypothesis of higher predictive ability of the 
integrated risk calculators compared to the CCVRF alone. 

Discussion

Claims and summary

There were two hypotheses for this study: (I) the ML-based 
CVD/stroke risk calculator (CVRCML) can provide a better 
CVD/stroke risk stratification compared to statistically 
derived risk calculators (CVRCStat) and (II) the inclusion of 
CUSIP into the CCVRF can provide a higher predictive 
ability compared to the CCVRF alone, irrespective of the 
type of risk calculator (CVRCML or CVRCStat). The results 
are shown in Figure 4A,B, confirmed the first hypothesis 
of this proposed study. Given the 14 CCVRF (Figure 4A), 
CVRCML (conventional) provided a higher AUC value (AUC 
0.70, P=0.11) compared to mean AUC of all the 12 types of 
CVRCStat (conventional), with an overall improvement of ~13%. 
Similarly, given the integrated risk factors (Figure 4B),  
CVRCML (integrated) provided a higher AUC value (AUC 0.88, 
P<0.001) compared to the AUC value of CVRCStat (integrated) 

(AUC 0.83, P<0.001), with an overall improvement of 
~6%. The reason for this improved performance in ML-
based risk calculators is their ability to consider a non-
linear and complex relationship between the risk factors, 
which is, however, ignored by the conventional CVRCStat 

(conventional) (28,33). The results shown in Figure 5, confirmed 
the second hypothesis of this proposed study. The ML-
based CVD/stroke risk calculator with integrated risk 
factors provided a higher AUC value (AUC 0.88, P<0.001) 
compared to an ML-based risk calculator with CCVRF 
(AUC 0.70, P=0.11), demonstrating an overall improvement 
of ~26%. This is because integrated risk factors combine 
the 5 CUSIP that provides additional information about 
the morphological variations in atherosclerotic plaque, 
which is, however, not well-captured by the CCVRF, alone 
(32,33,53,54,57-59,79). Such type of comparison between 
CVRCML with two different sets of input risk factors has 
been recently studied by our group (79). In conclusion, 
there is an improvement in risk stratification with CVRCML 

(integrated) (AUC 0.88, P<0.001) compared to all the CVRCStat 

(conventional) (AUC 0.62, P<0.05) with an improvement in an 
AUC value of ~42%. The improvement in CVD/stroke risk 
stratification is depicted in Figure 6. The overall sensitivity, 

Figure 6 Incremental risk stratification performance from 
(I) CVRCStat(Conventional), (II) CVRCStat(Integrated) to 
CVRCML(Integrated), showing an improvement by ~42% 
between conventional statistical calculators and SVM-based 
calculator with integrated risk factors. The black arrow 
indicates the ROC curve of the SVM-based ML calculator with 
integrated risk factors. 
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specificity, PPV, NPV, and accuracy for the CVRCML (integrated) 

were 10.60%, 99.72%, 76.59%, 92.70%, and 92.52%, 
respectively. 

Benchmarking

Table 2 compares eight studies that compare the ML-
based risk stratification against statistical calculator-
based CVD/stroke risk assessment. As shown in Table 2, 
there are 12 attributes from column C1 to column C12 
for each of the 8 studies (row R1 to row R8). Out of the 
eight studies, only three studies (row R4, row R7, and row 
R8) consider a combination of CCVRF and the CUSIP 
as input phenotypes. Two studies out of these three have 
used the CUS-based image phenotypes. The SVM is the 
most commonly used ML algorithm. It should be noted 
that, among all the eight studies, only the proposed study 
(row R8) compares the ML-based risk stratification results 
against the 13 types of statistically derived CVRC. The 
remaining seven studies (row R1 to row R7) either use FRS 
or ASCVD or UKPDS risk calculator for the comparison. 
The proposed study uses the integrated risk factors as 
the input to the ML-based algorithm. The inclusion of 
integrated risk factors is the main cause of an increase in 
the AUC value from 0.93 to 0.99, much stronger to other 
studies. 

Use of event-equivalence gold standard for the risk 
stratification

Cerebrovascular and cardiovascular events are generally 
considered as the primary endpoints or gold standards for 
the CVD/stroke risk assessment and these are expensive 
and time-consuming (107-109). In order to provide an 
affordable CVD/stroke risk assessment solution to the 
physicians, low-cost preventive surrogate biomarkers need 
to be explored and refined (79). Surrogate biomarkers 
mimic the characteristics of the primary endpoints and 
thus can be considered as alternative gold standards. 
Furthermore, surrogate biomarkers (I) exhibit a link with 
the primary endpoints, (II) are clinically relevant, and 
(III) reproducible (110). Since such surrogate biomarkers 
provide equivalence to the primary gold standards, they are 
termed as EEGS (70,79). This EEGS needs to be evaluated 
using a small sample size, with lower-cost, and for short 
duration (107,108). The Food and Drug Administration of 
the USA has defined some of the commonly used surrogate 
biomarkers of CVD/stroke (111). Mancini et al. (112) 

also presented a study that reported a list of surrogate 
biomarkers of CVD. Since the patients are diabetic and 
have a moderate-to-high CVD risk profile, we have selected 
a combination of HbA1c and cIMTmax as the EEGS. Both 
the HbA1c and cIMTmax have a strong association with 
CVD/stroke events. Such types of EEGS were already been 
tested and evaluated in recent studies (53,54,58,59,79). 

Therapeutic implications of risk stratification

Risk stratification assists the physicians while making 
the prognostic decision about the prevention of CVD/
stroke events. The value of screening using AECRS2.0 
or ML-based calculators can be more effective when 
computing 10-year risk, unlike the current risk as one can 
compute the contribution of individual risk factors and 
their joint associations which influences the overall CVD/
stroke risk. For example, if the patients are suffering from 
diabetes, hyperlipidemia, hypertension, or CKD, then 
an appropriate combination of medications need to be 
prescribed for preventing the onset of CVD/stroke events. 
This is purely based on the contribution of individual 
risk category in which the patients belong. This is the 
point where the CVRC comes into the picture. These 
CVRC estimate the 10-year risk of CVD/stroke of the 
patients and further categorize them into appropriate risk 
profiles using predefined thresholds. Certain guidelines 
also take the assistance of these CVRC to recommend the 
initiation of statin therapy. The recent guidelines for the 
assessment of cardiovascular risk by the American College 
of Cardiology (ACC) and American Heart Association 
(AHA) recommended the use of low-to-moderate intensity 
statins if the 10-year risk computed using atherosclerotic 
CVD (ASCVD) calculator is ≥7.5% (15,113). The National 
Institute for Health and Care Excellence (NICE) guidelines 
recommended the use of 20 mg Atorvastatin if the 10-year  
risk computed using the QRISK2 calculator is ≥10% 
(20,21,113). Canadian guidelines recommended the statin 
initiation if the FRS is ≥10% (113-115). Since the CVRCML 
provides a better risk assessment of the patients compared 
to the statistically derived CVRCStat, they can accurately 
determine the statin eligibility of the patients (48,116). The 
ML-based risk stratification further prevents the excessive 
or unnecessary statins recommended by the CVRCStat 
to patients (48). This has been recently observed by the 
study presented by Kakadiaris et al. (48) who reported the 
use of statins to 46% (AUC 0.76) of the study population 
using the ACC/AHA calculator, while the SVM-based 
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CVRCML recommended the statins to only 11.1% of their 
study population (AUC 0.92). Thus, compared to the 
statistically derived CVRC, the ML-based risk calculators 
can be employed for routine CVD/stroke risk assessment in 
clinical settings (116). 

From the baseline characteristics, it is clear that the 
selected Japanese cohort belongs to the low-to-moderate 
risk category, with 49 patients (24.26%) was suffering from 
type 2 diabetes mellitus, 162 (80.20%) were suffering from 
chronic kidney disease, 147 (72.77%) were hypertensive. As 
discussed earlier, NICE (20,21), Canadian (115), and the 
recent ACC/AHA guidelines (15,16) favor the use of low-
to-moderate intensity of statins for high-risk patients. This 
is also applicable for the patients stratified into the high-
risk category using the ML-based CVD risk calculator. In 
cohorts with similar baseline characteristics, a treatment 
plan can further be modified based on the presence of 
risk factors like type 2 diabetes mellitus, hypertensive, 
dyslipidemia, and chronic kidney disease. For example 
besides statins therapy, high-risk patients suffering from 
type 2 diabetes mellitus can be treated with Metformin, 
Sulfonylureas (117,118). Similarly, high-risk patients 
suffering from hypertension can be treated angiotensin-
converting enzyme (AEC), Angiotensin II receptor  
blockers (119), Renin-Angiotensin-Aldosterone System 
(RAAS) Blockade (120). Initial lipid-lowering medications 
like Atorvastatin, Simvastatin, and Pitavastatin can be used 
for controlling hyperlipidemia (121-124). However, the 
decision of an appropriate choice of medications is strictly 
based on the risk category of patients and the judgment 
made by physicians. 

A note on sample size

In general, the selected data should not be identical. In our 
proposed study, samples were taken from both the left and 
right carotid artery of the same person. Although both left 
and right carotid arteries follow a similar genetic makeup 
and functionality of supplying oxygen-rich blood to the 
brain tissues, they work independently in two different 
pathways. Furthermore, due to the multi-focal and random 
nature of the atherosclerotic disease, the deposition of the 
plaque can be different in both the left and right carotid 
arteries. Thus, initially, total samples of 404 (202 patients 
× 2 CUS scans) non-identical samples were selected to 
perform various investigations in this study. Due to the 
poor image quality, nine CUS scans were omitted from this 

study and thus a total of 395 ultrasound B-mode carotid 
scans were finally selected for further statistical analysis. 
To investigate the validity of the selected sample size (i.e., 
395 CUS scans), a power analysis was performed with 
confidence level of 95%, the margin of error (MoE) of 5%, 

and data proportion ( p ) of 0.5. The power analysis results in 
the desired sample size of 384. This means the selected sample 
size 395 samples is ~3% higher than the required sample size 
of 384. This validated the claim that the sample size of 395 
was enough to perform this study. The detailed discussion on 
power analysis provided in the Supplementary files. 

Strength, limitations, and future scope

Although we reported a robust and superior performance 
of the SVM-based CVRCML to risk stratify the patients, 
we intend to improvise the study in the following areas: (I) 
the proposed study needs to be validated in the database 
with varying ethnicities. This will help the physicians to 
understand the effect of ethnicity on the ML-based risk 
stratification of the patients. Except for QRISK3, nearly 
all the 13 types of CVRCStat were developed for specific 
types of ethnic groups. Thus, it would be interesting to 
know the behavior of the ML-based system and CVRCStat 
on the diverse ethnic cohorts. Besides ethnicity, it is also 
important to consider inflammatory markers such as 
erythrocyte sedimentation rate and the high-sensitivity 
C-reactive protein into the risk prediction algorithm (125-
130). This is because these inflammatory markers have a 
strong association with CVD/stroke (125-130). Besides 
these intended improvisations, the proposed study is novel 
in its concept and perhaps the first study that compares 
the ML-based risk stratification with 13 types of CVRCStat. 
An influential effect of integrated risk factors has also 
been investigated in this study. Due to the inclusion of 
CUS scans and limited (but most common) number of risk 
factors, the proposed ML-based can be deployed in routine 
preventive CVD/stroke risk stratification applications at 
low-cost (79). The proposed study is a pilot investigation of 
the ML system in an environment of 13 types of CVRCStat. 
Further validation of this study can be tried to upgrade the 
current system having more robustness and independent 
of ethnicity. This retrospective pilot study can also be 
tested on a longitudinal dataset that actual cardiovascular 
or cerebrovascular events instead of EEGS. Lastly, 
hybrid classifiers can be built for better training design 
(35,131,132).
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Conclusions

This study is a first-ever attempt for comparing the ML-
based risk calculator against the 13 types of statistical 
CVRCs. The study hypothesized that machine learning 
in has better learning ability due to its ability to adjust 
the nonlinearity in risk factors and further, morphological 
plaque-based inclusions are representations of risk 
factors unlike the blood biomarkers alone. Based on 
these hypotheses, this study showed fulfillment of three 
objectives: ML-based calculators are more powerful 
than: (I) statistical calculators without integrated factors 
(~13% improvement) and (II) with integrated risk factors 
(6% improvement) such as AtheroEdge (AtheroPoint, 
Roseville, CA, USA) composite risk calculator, and 
(III) ML-based conventional risk calculators (26% 
improvement), respectively. Furthermore, the ML-based 
integrated calculator showed higher predictive power 
(42% improvement) compared to the mean predictive 
power of the 12 types of the conventional risk calculator. 
The overall risk-stratification accuracy for the ML-based 
integrated risk calculator was 92.52% which was higher 
than all other statistical calculators. Even though the 
system was designed on a particular ethnic group, it is 
generalized enough to be extended to other ethnicities, 
classification paradigms, and other event equivalent gold 
standards. 
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Power analysis

The primary aim of the power analysis is to determine a sample size which is essential to prove the hypothesis of the study. In 
this study, we hypothesized that (I) ML-based calculator can provide a better risk stratification compared to the statically 
derived conventional risk calculators and (II) inclusion of integrated risk factors into the risk prediction model can further 
improve the risk stratification ability, irrespective of the type of CVD risk calculator (statistical or ML-based). This study was 
designed for patients with Japanese ethnicity, thus, the population in power analysis refers to the samples derived from the 
Japanese patients (202 patients or i.e., 395 CUS scans) who need to be risk-stratified. The reason for considering the 395 
CUS scans as samples have been discussed in the “A note on Sample Size” section. In order to perform the power analysis, we 
considered the 95% CI, 5% of the margin of error (MoE), and 0.5 as data proportion ( p ). Assuming a normally distributed 
sample set, z-score (Z*) of 1.96 was obtained using standard z-table for a confidence level of 95%. The MoE ensures that the 
study results should not exceed the tolerance band of ±5% of the true population. The desired sample size (n) can be 

computed using, 
 

2
2

p(1 p)= (z )
MoE

n
  −

∗ ×      
 (133). The resultant sample size with a 95% confidence level and 5% of MoE was ~384. 

Thus recruited sample size (395) was ~3% higher compared to the desired sample size of 384.
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