
© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(6):1954-1978 | http://dx.doi.org/10.21037/cdt-20-414

Introduction

Cardiac computed tomography (CCT) has undergone 
an exponential growth during the last two decades, 
from the first multi-detector CT scanners up to the 
latest machines characterized by significantly higher 
contrast, temporal and spatial resolution. CCT role in the 
cardiovascular field is unchallenged in specific settings, 

such as measuring coronary artery calcium score (CACS) 
in the intermediate-risk asymptomatic subjects (1),  
CT coronary angiography (CTCA) in symptomatic 
patients with low-to-intermediate pretest probability 
of coronary artery disease (CAD) (2-5) or in patients 
with acute chest pain and low [0 to 2] Thrombolysis 
in  Myocardia l  Infarct ion  (TIMI)  r i sk  score  (6 ) ,  
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and CTCA for pre-procedural planning of structural heart 
disease (7). In particular, in the setting of ischemic heart 
disease, CTCA has shown high sensitivity and very high 
negative predictive value (≥95%) for significant CAD 
(8,9). CTCA also carries an important prognostic value, 
being the only technique able to measure atheroma burden 
along the entire length of the coronary arteries (10-14) and 
assess its composition (15). The large multi-center SCOT-
HEART (16) and PROMISE (17) trials have supported a 
role for CTCA in diagnosis of significant CAD in stable 
patients, due to a significantly lower rates of mortality 
from CAD and nonfatal myocardial infarction in the 
CTCA arm as compared to standard care (16) or functional  
testing (17). Furthermore, in the 5-year follow-up of 
the SCOT-HEART, CTCA, in addition to standard 
care in patients with stable chest pain, resulted in lower 
cardiovascular death without an increase in coronary 
angiography (CA) or revascularization (18). In consideration 
of this strong evidence, latest European guidelines for the 
diagnosis and management of chronic coronary syndromes 
recommend CTCA as first tool to rule out CAD in patients 
in whom ischemic disease cannot be excluded by clinical 
assessment alone (class I LoE B) (19). 

Despite CTCA being useful to detect coronary lumen 
stenoses, its main limitation relies on the impossibility 
to assess their functional significance, especially in the 
intermediate range (40–80%), a consequence of its, at 
best, moderate positive predictive value (about 50%) (20). 
In contrast, other non-invasive techniques such as stress 
echocardiography, stress single-photon emission computed 
tomography (SPECT), stress cardiac magnetic resonance 
imaging (MRI) and positron emission tomography (PET) 
are better suited to evaluate myocardial perfusion and/
or ischemia, but provide limited information regarding 
anatomy (21-23). Thus, none of these techniques is able to 
provide a comprehensive anatomical-functional assessment 
of a coronary stenosis-inducing plaque within the same 
study. Of note, current practice guidelines support the 
clinical benefit of ischemia-guided selective revascularization 
based on non-invasive and invasive functional evaluation, 
which reduces the risk of major acute cardiovascular events 
including myocardial infarction and cardiovascular death 
(19,24).

In the last decade, rapid technological improvements of 
CCT technology resulting in reduction of the scan time, 
motion artefacts and radiation dose exposure, while yielding 
higher spatial and temporal resolution (25-27), have widened 
CCT field of application, from anatomical detection of CAD 

to physiological assessment of myocardial ischemia. The first 
human report of stress myocardial CCT perfusion (CCTP) 
by Kurata et al. was published in 2005 with a 16-slice CT 
scanner and using adenosine triphosphate stress (28). 
Currently, feasibility of CCTP imaging with modern multi-
detector row (≥64 slices) CT systems at rest and during 
pharmacologic stress has been demonstrated by clinical 
studies and recent multicenter trials (29-40). Moreover, by 
applying principle of computational fluid dynamics (CFD) 
algorithms, a non-invasive approximation of fractional 
flow reserve (FFR) from resting CTCA dataset (FFRCTA) 
may be derived to assess lesion-specific ischemia and guide 
revascularization (33). 

The purpose of this narrative review is to describe the 
principles, clinical applications, and current state of the art 
of these new CCT technologies, comparing them with FFR 
and non-invasive techniques.

Myocardial ischemia

Pathophysiology of myocardial ischemia

The term myocardial ischemia refers to an imbalance 
between myocardial oxygen demand and supply. Myocardial 
oxygen consumption (MVO2) is determined by fixed 
(myocardial mass) and modifiable (heart rate, systemic 
blood pressure, wall stress in terms of pre- and post-load 
and inotropic status) parameters. Heart rate is the main 
MVO2 influencing factor, as an increase in contraction 
velocity needs an increase of oxygen delivery. Wall stress 
is influenced by pre-load, which is the diastolic blood 
volume linked to venous return, and post-load, which is 
the tension that myocardial muscle needs to develop for 
starting and maintaining systolic ejection. The latter can 
be approximated with systemic arterial pressure, which 
represents the second determinant of MVO2 in the order 
of importance. In clinical practice a good approximation 
of MVO2 can be obtained by calculating the so-called 
“double-product” (systolic pressure x heart rate). Inotropic 
status refers to the strength of myocardial contraction and 
has a more complex relation to MVO2 because of adaptive 
mechanisms and neurohormonal state; according to Frank-
Starling law, within physiological limits, an increase in 
diastolic volume (pre-load) is associated with an increase in 
the force of contraction (41).

Myocardial oxygen delivery depends upon oxygen blood 
concentration and coronary blood flow. Oxygen carriage 
by the blood can be disrupted by a fall in haemoglobin 
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(anemia) or by a reduced oxygen binding capacity. In basal 
conditions, O2 extraction by myocytes is very high (around 
70%); thus, the only mechanism to increase O2 delivery is 
a proportional augmentation in blood supply. In normal 
haemodynamic conditions, coronary auto-regulation (the 
ability of coronary arteries to keep blood flow constant 
over a wide reduction in aortic pressure) allows to maintain 
normal regional perfusion if determinants of myocardial 
oxygen consumption do not change (42). This is due 
to vasodilation in response to intrinsic factors (local 
metabolites, endothelial factors and neural tone) or extrinsic 
stimulation (i.e., adenosine). 

The ability to increase flow above resting values is 
termed coronary flow reserve (CFR). When pressure 
falls beyond the lower limit of auto-regulation, coronary 
resistance vessels are maximally vasodilated due to intrinsic 
stimuli, and flow becomes pressure-dependent, resulting in 
the onset of sub-endocardial ischemia (42,43).

Causes of myocardial ischemia

The main cause of myocardial ischemia is coronary 
atherosclerosis, which leads to artery wall thickening and 
atheroma accumulation in epicardial vessels with reduction 
in its lumen diameter. Due to coronary autoregulation, 
myocardial perfusion at rest is generally normal until the 
luminal diameter narrowing exceeds 85–90%. However, 
stenosis >50% in condition of increased O2 requirement, i.e., 
physical exertion, can induce a reduction in CFR, leading 
to tissue ischemia (23,44). This physiological phenomenon 
is the basis of the stress tests commonly used to diagnose 
myocardial ischemia. Other possible causes of ischemia 
are microvascular disease (which escape the resolution 
of angiographic techniques) and vasospastic angina; they 
are typically associated with either no stenoses or mild-
to-moderate stenoses that are deemed functionally non-
relevant (19). 

Although ischemia is often indicative of a coronary artery 
stenosis, this cause-effect relationship is not perfect. In fact, 
some severe stenotic lesions do not produce significant 
ischemia, whereas other mild/moderate stenosis may cause 
both ischemia and cardiac events (19).

This poor correlation has been reassessed in a sub-study 
of the FAME (Fractional Flow Reserve Versus Angiography 
in Multivessel Evaluation) trial, which assessed 1,329 lesions 
by FFR in 509 patients with multivessel CAD. In stenoses 
categorized as 50–70% by visual angiographic assessment, 
35% of the cases were functionally significant (FFR ≤0.80)  

and 65% were not (FFR >0.80) .  Among stenoses 
categorized as 71–90%, 80% were functionally significant 
(FFR ≤0.80) and 20% were not (FFR >0.80). In the category 
of subtotal stenoses (91–99%), only 4% of the cases were 
not significant (FFR was >0.8), and the remaining 96% were 
functionally significant stenoses (FFR ≤0.80) (45).

Ischemia detection

Non-invasive imaging is essential in the diagnosis and 
management of ischemic heart disease from its earliest 
manifestations of endothelial dysfunction to myocardial 
infarction (46). The preferred method to induce ischemia is 
physical exercise, albeit pharmacological stress agents can 
be used with similar (but by no means identical) accuracy. 
Drugs frequently employed are adenosine, dipyridamole, 
dobutamine or regadenoson. Adenosine provides a 
nonselective activation of four distinct subtypes (A1, A2A, 
A2B, and A3) receptors. Compared to dipyridamole, 
adenosine has a more rapid onset of action and a shorter 
half-life (around 30 s); therefore, most side effects resolve 
in a few seconds after discontinuation of the adenosine 
infusion. Side effects could be AV block, peripheral 
vasodilation, and bronchospasm, but the most common are 
flushing, chest pain, dyspnea, dizziness, or nausea.

Dipyridamole inhibits cellular uptake of adenosine, 
indirectly leading to coronary arteriolar vasodilation. Due 
to its longer half-life of approximately 30 minutes, patients 
given this drug may require administration of aminophylline 
for reversal of persistent symptoms (33,47). 

The synthetic catecholamine dobutamine is primarily a 
β1-adrenergic receptors agonist, with mild effect on α1- and 
β2-receptors. At low doses (≤10 µg/kg/min), dobutamine 
improves myocardial contractility and induces coronary 
vasodilation; at higher doses (20–40 µg/kg/min), it causes 
systemic vasodilation and exerts a positive chronotrope 
effect (48). Dobutamine is used for stress echocardiography 
or stress MRI to detect myocardial ischemia by identifying 
regional wall motion abnormalities (RWMA), with accuracy 
and sensitivity similar to dipyridamole-stress imaging (48). 

Finally, regadenoson, an A2A selective agonist has been 
recently introduced as a vasodilator. It has a safer side 
effect profile in comparison to adenosine and dipyridamole, 
especially for patients with asthma or severe chronic 
obstructive pulmonary disease. Its use is mainly limited by 
cost and it is also not widely available. Regadenoson has 
been shown to be accurate for the detection of obstructive 
CAD in nuclear perfusion imaging, stress echocardiography, 
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and, more recently, stress CCTP studies (49,50).

Haemodynamic significance of coronary 
stenosis: evaluation in the catheterization 
laboratory

Numerous invasive physiological indices of ischemia have 
been developed in the last two decades, with the aim of 
overcoming the obvious limitations of CA (in effect, a 
bidimensional “luminogram”) in guiding percutaneous 
coronary intervention (PCI) (51).

The pathophysiological assumption is that, during 
maximal hyperaemia, when arteriolar regulation is blunted, 
the flow across a stenosis exclusively hinges on the pressure 
gradient. In this scenario, the pressure drop from the 
upstream to the downstream portion of the vessel linearly 
approximates blood flow reduction attributable to the 
stenosis, unveiling its ischemic potential (52). 

FFR was hence defined as the ratio between the pressure 
measured distally from a given stenosis (Pd) and that 
achieved in the proximal part of the vessel (Pa) under 
maximal hyperaemia, with the latter obtained through 
a transient pharmacological stimulus (e.g., intravenous 
adenosine) (Figure 1). Of note, being a ratio of two 
pressures, FFR is a dimensionless number.

The accepted FFR value to detect haemodynamically 
relevant stenoses has been initially set to 0.75 (e.g., a 25% 
reduction in the maximum achievable flow induced by the 
stenosis), under which revascularization was recommended 
in the initial physiology-guided PCI trials (52). However, 
the so-called “grey zone” ranging from 0.75–0.80 has 
been subsequently included in the FFR values prompting 
revascularization (52), mainly due to the appreciation that 
FFR values distribution is effectively a spectrum, with no 
clear cut-off. 

Randomized clinical trials (RCTs) supported the 
superiority of FFR compared to standard CA in guiding 
PCI of angiographically intermediate lesions of both stable 
patients (53) and non-infarct related arteries of acute coronary 
syndromes (54). The use of FFR was shown to modify 
the treatment strategy (medical therapy, PCI or coronary 
bypass graft) in one out of four patients (55). Yet, real-life 
data point out a linear relationship between FFR values and 
cardiovascular events (56). On the other hand, concerns 
have arisen on the reliability of FFR in certain clinical 
settings (e.g., aortic stenosis or chronic total occlusion) (57)  
and the safety and tolerability of vasodilators (58).  
Moreover, it is a rather expensive procedure (around  
1,000 USD) (59). These factors have prompted the search 
for further non-hyperaemia dependent or “resting” indices 
of ischemia.

During the cardiac cycle, microvascular resistance sways, 
mirroring the alternation between systolic squeezing and 
diastolic relaxation and causing a succession of compression 
and suction waves, which propagate from the proximal 
(aortic) and distal (microcirculatory) parts of the vessel. 
Wave-intensity analysis allows the identification of a specific 
time-frame, occurring during diastole, in which no further 
waves are generated. In this “wave-free period” (WFP) 
microvascular resistance drops and becomes constant (as 
after maximal pharmacological vasodilation), and the distal 
to proximal pressure ratio across a stenosis provides an 
instantaneous wave-free ratio (iFR), potentially enabling the 
assessment of ischemia at rest and tightly correlating with 
FFR (60). In fact, according to two recent large-scale RCTs, 
iFR was non-inferior compared to FFR, showing moreover 
a reduction of patient’s discomfort and procedure length 
(61,62). Both these studies used an iFR cut-off at 0.89, 
which matches with an FFR ischemic cut-point of 0.80 (62) 
(Figure 2).

Figure 1 Invasive fractional flow reserve (FFR) in the catheter laboratory to guide revascularization. Concomitant measurement of aortic 
pressure (Pa) with a guide catheter and distal coronary pressure (Pd) with the pressure guidewire across a coronary stenosis performed 
during maximal hyperaemia.
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More recently, further attempts have been made in 
search of quicker, safer and equally performing invasive 
indices. For instance, unlike iFR, the resting full-cycle ratio 
(RFR) measures the lowest distal to proximal pressure ratio 
(Pd/Pa) during the entire coronary cycle (63), whereas the 
diastolic pressure ratio (dPR) is the average diastolic (not 
restricted to the WFP) Pd/Pa (64). Both of them showed a 
high agreement with iFR and FFR and were correlated with 
the risk of vessel-oriented outcomes (65).

Finally, advances in CFD have laid the foundation for 
angiography-based indices. In a nutshell, these are based 
on a three-dimensional reconstruction of the coronary tree 
and calculated by specific software using CFD algorithms. 
Among them, quantitative flow ratio (QFR) derives from 
single-vessel 3D-recontructions and utilizes TIMI frame 
count as a surrogate of blood flow (66), whereas coronary 
angiography-derived FFR (FFRangio) is based on a 
three-vessel reconstruction and subsequent estimation of 
resistance and flow through scaling-laws (67). 

Cardiac CT perfusion: technical prerequisites 
and imaging protocols

The first attempts of myocardial perfusion analysis by 
CCT date back to the late 1970’s and early 1980’s, with 
experimental animal studies in infarct imaging which 
demonstrated the potential of the early generation head 
CT scanners to delineate differences in contrast media 
attenuation between normal and infarcted myocardium 
of various ages (68,69). During the last decade, important 
technical developments have rediscovered multi-slice 
CCT for cardiac perfusion imaging, transforming CCT 
from purely anatomical analysis of coronary stenosis and 
atherosclerotic plaques to functional myocardial perfusion 
analysis. Ongoing advances in scanner technology 
include higher temporal resolution (up to 66 ms with 
third generation dual-source CT scanner), higher spatial 
resolution (due to increase in detector sensitivity and 
efficiency), improved scan speed, wider detectors array 
(with a z-axis coverage as high as 16 cm with the 320-slice 

Figure 2 An 87-year-old female with multiple cardiovascular risk factors (obesity, arterial hypertension, past smoking, chronic obstructive 
pulmonary disease) presented with atypical chest pain and exertional dyspnea. 3D maximum intensity projection (MIP, A) and volume 
rendering technique (VRT, B) coronary CT angiography reconstructions show a calcified eccentric plaque causing a sub-critical stenosis 
(approximately 60%) at the middle segment of the right coronary artery (RCA). Invasive coronary angiography (C) confirms the coronary 
stenosis (arrow). (D) The instantaneous wave-free ratio (iFR) result demonstrates a measurement of 0.96, which is above its cut-off value of 
0.89. Thus, the stenosis is classified as not hemodynamically relevant, and consequently would not benefit from revascularization.
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CT system), and improved image quality due to advanced 
iterative reconstruction algorithms (23). Currently, a 64 
slices CT scanner is considered the minimum technology 
requirement that meets the basic needs for CCTP  
imaging (23).

CCTP is performed in a similar way to other imaging 
perfusion techniques, such as stress SPECT or MRI, 
by means of rest and stress imaging acquisitions during 
continuous monitoring of heart rate, blood pressure, and 
ECG. A comprehensive CCTP protocol typically involves: 
(I) a rest scan, which is used to evaluate both coronary 
stenosis and myocardial perfusion at rest, (II) a stress scan 
during administration of intravenous vasodilator drugs 
(e.g., adenosine, dipyridamole or regadenoson) to assess 
inducible myocardial perfusion defects, (III) an optional 
late-enhancement scan recommended in selected cases 
performed approximately 5–10 minutes after the last contrast 
injection, which is used to asses myocardial viability (34).  
A stress-first or rest-first protocols have been reported, with 
its own advantages and disadvantages (Table 1).

Two main techniques for pharmacological stress CCTP 
imaging have been developed: the static and the dynamic 
CCTP scan acquisitions. 

Static cardiac CT perfusion imaging

The static CCTP acquisition, using single-energy or dual- 

and multi-energy techniques, relies on the acquisition of 
a single imaging dataset during the first-pass of contrast 
media thorough the myocardium providing a snapshot 
of myocardial enhancement (iodine distribution) at one 
stationary time point (23). Therefore, the timing of the 
scan acquisition needs to be carefully optimized in relation 
to the injection protocol, in order to acquire the images 
at the highest contrast-to-noise ratio difference between 
the normal and ischemic myocardium (23). Interpretation 
of static CCTP imaging is based on qualitative visual 
analysis of differences in contrast attenuation within the 
myocardium. Similar to nuclear imaging, “reversible” 
subendocardial and transmural perfusion defects are 
consistent with inducible myocardial ischemia, whereas 
“fixed” hypo-attenuated defects seen at both rest and stress 
phases suggest scar tissue, i.e., a myocardial infarct (34). 
The presence of other signs of myocardial necrosis/fibrosis 
(myocardial thinning; calcifications; lipomatous metaplasia; 
aneurysmal/pseudoaneurysmal dilation; mural thrombus; or 
wall motion abnormalities) on rest imaging further confirms 
prior infarct (34). Finally, automated software applications 
providing 3D modelling and 17-segment bull’s-eye plot of 
the left ventricular perfusion are available (23) (Figure 3).

Dual- or multi-energy CT consists in image acquisition at 
different energy levels with several technical approaches by 
various vendors, which include dual X-ray sources working 
at two different energy level (70–80–90/140–150 kVp),  

Table 1 Major advantages and limitations of stress/rest and rest/stress protocols for myocardial perfusion imaging

Protocol Advantages Limitations

Rest/stress More suitable in patients at low-to-intermediate pre-test probability 
of obstructive CAD

Risk of cross-contamination of contrast in the stress 
phase—less sensitivity for the detection of inducible 
myocardial perfusion defects

A “normal” coronary rest scan with absence of obstructive CAD 
does not require subsequent stress scan—“rest only” protocol with 
reductions in the radiation and contrast medium doses

Beta-blocker administrated before the stress 
acquisition may lead to underestimation of myocardial 
ischemia

High sensitivity for the detection of myocardial necrosis

Stress/rest More suitable in patients with high pre-test probability of obstructive 
CAD, extensive calcifications, previous revascularization (multiple 
stents) or known multi-vessel CAD

Risk of imaging quality degradation of rest phase 
caused by persistent high heart rate response to long 
half-life vasodilator stress agents

High sensitivity for the detection of ischemia without the risk of 
cross-contamination of contrast from the rest phase

Less sensitivity for the detection of fixed perfusion 
defect (infarction) in the rest phase because of relative 
hyper-enhancement of scar

Absence of interference of beta-blockers or nitrates administered 
for coronary anatomy evaluation

The stress scan is performed without the knowledge of 
the presence of obstructive CAD

CAD, coronary artery disease.
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two sequential scans (not used for cardiac imaging), rapid 
switching (less than 1 ms) between the low- and high-
energy of X-ray tube potential, and multilayer detector. 
Dual- or multi-energy CCTP enables differentiation by 
analyzing material-dependent photo-electric effect and 
Compton scattering processes (35,70). Dual- or multi-
energy CCTP imaging may offer some advantages over 
single-energy CCTP by identification of iodine voxels 
within the myocardium, providing an estimate of contrast 
distribution across the myocardium at one point in time. 
Dual- or multi-energy CCTP allows accurate iodine 
quantification and distribution, which has a direct relation 
to myocardial blood flow (MBF), and thus provides a semi-
quantitative marker of myocardial perfusion (35,71). Dual- 
or multi-energy datasets are post-processed using dedicated 

vendor-specific softwares which generate color-coded maps 
(iodine material density images) highlighting myocardial 
perfusion defects or late-enhancement of iodinated areas.

Dynamic cardiac CT perfusion imaging

Unlike static CCTP scan, dynamic CCTP imaging allows 
the acquisition of several imaging dataset at multiple time-
points following contrast injections during a 20–30 seconds  
inspiratory breath-hold. Currently, there are two CT 
scanner techniques that enable dynamic CCTP, the 
prospective ECG-gated dynamic acquisition mode with 
a large coverage CT scanner along the z-axis (256- or 
320-detector-row CT scanners) or, in the case of narrow 
detectors, the ECG-triggered axial shuttle mode technique 

Figure 3 Static CT myocardial perfusion imaging. A 67-year-old male patient presented with typical chest pain and exertional dyspnea. 
Curved multiplanar (A) and 3D volume rendering technique (VRT, B) coronary CT angiography reconstructions show a mixed 
atherosclerotic plaque with positive remodeling causing a critical stenosis (>70% luminal narrowing) at the proximal segment of the right 
coronary artery (RCA) (arrows). A 17-segment polar plot (C) and volume rendering reconstruction with overimposed myocardial blood flow 
map and coronary tree (D), acquired with a prospectively ECG triggered high-pitch spiral technique at stress during the first pass, arterial 
phase, showed the presence of extensive perfusion defects of the inferior and inferolateral walls, color-coded in blue/green.
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implemented with the second- and third-generation dual-
source CT scanners. 

A high flow rate of injection of contrast media (at least  
5 mL/s) is indicated to ensure a compact bolus and 
accurately defines arterial and myocardial peak enhancement 
for modelling. The multi-phasic dataset is used to generate 
time-attenuation curves (TACs) for each voxel of left 
ventricular myocardium and the reference arterial input 
function (AIF, derived from the left ventricle or the thoracic 
aorta). Using a dedicated parametric deconvolution based 
on 2-compartment model of intra- and extravascular space 
to fit the TACs, dynamic CCTP imaging enables absolute 
quantification of myocardial perfusion haemodynamic 
parameters such as MBF (mL/100 mL/min), MBF ratio, 
and myocardial blood volume (MBV, mL/100 mL) 
according to the formulas: MBF = MaxSlope(TissueTAC)/
Maximum(AIF) ;  MBV =  Maximum(TissueTAC)/
Maximum(AIF) (23,33). Furthermore, semi-quantitative 
parameters such as the peak enhancement, time to peak 
(TTP), up-slope, tissue transit time (TTT), and area under 
the curve (AUC) are derived (in a similar manner than 
for semi-quantitative dynamic MRI perfusion imaging). 
Finally, by comparing MBF during stress and rest phases, an 
assessment of absolute CFR may be obtained (72). 

Similar to visual dynamic MRI, time-resolved CCTP 
acquisition may be evaluated for relative areas of hypo-
perfusion over time (34). Further post-processing analysis 
of dynamic CCTP images are based on fully automatic 
and semiautomatic method with generation of color-coded 
polar maps and overlay images for each perfusion parameter 
(73,74) (Figure 4).

Major differences between the static and the dynamic 
CCTP imaging are reported in Table 2.

Accuracy of cardiac CT perfusion

At present, various single-center experiences and first multi-
center trials have evaluated the diagnostic performance 
of CCTP using invasive FFR, MRI, SPECT or even 
PET imaging as the reference standard (Tables 3,4). 
The advantage of CCTP imaging is an improvement in 
detecting the haemodynamic significance of CAD, adding 
incremental predictive value to CTCA-based coronary 
stenosis evaluation. The CORE320 trial, a prospective 
multicenter multinational diagnostic study including a total 
of 381 participants, demonstrated that combining stress 
CCTP imaging to anatomical evaluation of luminal stenosis 
substantially increased the overall diagnostic accuracy 

and specificity to identify flow-limiting stenosis, defined 
as ≥50% stenosis by CA and causing perfusion defect by 
SPECT (37,39). This improvement has been demonstrated 
in patients with and without known CAD, at both patient 
and vessel levels (37,39).

Furthermore, the overall performance of CCTP imaging 
in the diagnosis of anatomic CAD (stenosis ≥50% at CA as 
determined with quantitative methods) was higher than that 
of SPECT, and was driven in part by a higher sensitivity for 
left main and multivessel disease (38).

More recently, a two-center prospective sub-study 
of the CORE320 trial demonstrated that the diagnostic 
performance of CCTP with whole-heart coverage and 
single-beat acquisition was comparable to that of dynamic 
myocardial MRI perfusion imaging (98).

Similar to the CORE320 trial, the regadenoson cross-
over study, a randomized, multivendor, multicenter study 
including 110 patients comparing the accuracy of CCTP 
for the detection of myocardial ischemia against SPECT, 
demonstrated that regadenoson CCTP was non-inferior 
to SPECT for detecting reversible perfusion defect with 
an agreement rate of 0.87. By adding regadenoson CCTP 
imaging to CTCA evaluation, diagnostic accuracy improved 
from 69% to 85% with high sensitivity and specificity of 
90% and 84%, respectively, which was mainly explained by 
a reduction in false positive rate (40).

Moreover, stress CCTP has been shown to improve the 
diagnostic performance of CTCA even in patients with high 
pre-test probability of CAD (99), heavily calcified coronary 
arteries or prior coronary revascularization (100,101).

Of note, according to a recent pooled analysis on a per-
patient basis, dual-energy and dynamic quantitative CCTP 
tends to have a slightly higher sensitivity than static CCTP 
imaging (36). This may be related to a higher detection 
of subtle perfusion defects. Finally, semi-quantitative 
parameters such as the transmural perfusion ratio (TPR), 
determined as the ratio of the subendocardial to the mean 
subepicardial contrast attenuation, and myocardial reserve 
index (difference in attenuation between the stress and rest 
phases) have been proposed for static myocardial CCTP. 
They, however, have demonstrated lower diagnostic 
accuracy than standard visual qualitative analysis (75,79).

Recent meta-analyses have shown an additional value 
of functional CCTP over anatomic CTCA alone for the 
assessment of haemodynamically significant CAD. Takx  
et al. demonstrated that, at the patient level, stress CCTP was 
similar to stress MRI and PET, and better than SPECT and 
echocardiography for the detection of myocardial ischemia 
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Figure 4 Stress dynamic CT myocardial perfusion imaging. A 63-year-old diabetic male patient with multiple cardiovascular risk factors 
presented with atypical chest pain. Curved multiplanar (A) and 3D volume rendering technique (VRT, B) coronary CT angiography 
reconstructions show a mixed atherosclerotic plaque causing a critical stenosis (>70% luminal narrowing) at the middle segment of the left 
anterior descending artery (LAD) (arrows). (C) Three-dimensional color-coded short-axis CT perfusion map images at stress show perfusion 
defects in the territory of the LAD (antero-septal wall, anterior and antero-lateral wall) (arrowheads) with reduction of the myocardial blood 
flow (MBF, upper image) and myocardial blood volume (MBV, lower image). (D) The corresponding tissue time-attenuation curves (TACs) 
of the myocardium from several consecutive acquisitions throughout the cardiac cycle at the anterior wall (orange line), inferior wall (yellow 
line), and entire left ventricular myocardium (white line). Note the kinetics of the wash-in and wash-out of contrast media of the severely 
ischemic myocardium (orange line), with decreased wash-in and a reduced peak enhancement of the TAC. The corresponding value of 
the hemodynamic parameters derived from the TACs, demonstrates a significant reduction of MBF and MBV in the territory of the LAD, 
consistent with inducible ischemia. In the LAD territory, MBF was 62.02±6.82 mL/100 mL/min and MBV was 10.21±0.95 mL/100 mL; in 
the remote myocardium (inferior wall) MBF was 105.86±8.57 mL/100 mL/min and MBV was 17.97±1.29 mL/100 mL.

defined by FFR (102). In another larger metanalysis including 
5,330 patients, Celeng et al. demonstrated that both CCTP 
imaging and FFRCTA yielded higher diagnostic performance 
than CTCA in detecting haemodynamically significant CAD, 
with FFR as a reference (103). High to excellent sensitivity 
for both CCTP and FFRCTA and high specificity, especially 
for CCTP, have been demonstrated (103).

Dynamic CCTP has been initially validated in animal 
studies, showing a good correlation between quantitative 
dynamic-CT MBF values and invasive measurements of 
coronary blood flow, FFR, histopathology, and fluorescent 
microsphere (Table 4).

In recent clinical study, CT myocardial attenuation 
density was correlated with 15O-water PET MBF, the 

Myocardial blood flow (ml/100 mL/min)

Myocardial blood volume (ml/100 mL)
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Table 2 Major differences of static and dynamic myocardial perfusion imaging

Static CCTP Dynamic CCTP

State-of-the art CT scanner technology Required** Required

Breath-hold time Shorter (<10 s) Longer (~20–30 seconds)

Radiation dose Lower Higher

Optimal acquisition time Crucial Less crucial

Evaluation of myocardial wall motion abnormalities Yes* No

Quantification of myocardial iodine concentration (mg/mL) Yes** No

Simultaneous coronary and myocardial perfusion evaluation Yes No

Analysis of myocardial perfusion Qualitative/semi-quantitative** Qualitative/semi-quantitative/quantitative 
(MBF and MBV)

Quantification of absolute CFR No Yes

Detection of diffuse ischemia in multivessel CAD No Yes

Evaluation of microvascular disease No Yes

Susceptibility to artefacts Lower Higher

Post-processing time Shorter Longer

*, with retrospective ECG-gated acquisition; **, with the dual- or multi-energy myocardial perfusion acquisition. CCTP, cardiac computed 
tomography perfusion; CAD, coronary artery disease; MBF, myocardial blood flow; MBV, myocardial blood volume; CFR, coronary flow 
reserve. 

established clinical standard for MBF quantification (104).  
Several studies demonstrated improved diagnostic 
performance using indexed MBF normalized against remote 
myocardium, i.e., the ratio between the absolute MBF of 
ischemic coronary territories and segmental values of the 
remote myocardium (74,97,105-107).

Recently, a meta-analysis including a total of 482 patients 
demonstrated high diagnostic performance of dynamic 
CCTP to diagnose myocardial ischemia compared with 
clinically established reference standard (MRI, SPECT, 
PET perfusion and FFR). The pooled sensitivity and 
specificity of MBF were 83% and 90% at segment level and 
93% and 83% (compared to 91% and 49% by CTCA) at 
patient level, respectively (108). 

Prognostic value of cardiac CT perfusion

Initial evidence pointing to improved prognostic value 
and better risk stratification for CCTP has been recently 
reported. Combining CTCA and CCTP was shown 
to confidently predict all-cause mortality, myocardial 
infarction, or coronary revascularization over a 2-year 
period (109). Moreover, stress dynamic CCTP provides 

a predictive value that is incremental over clinical risk 
factors for major adverse cardiac events (MACE) and for 
the detection of coronary stenosis at CTCA (110-113). van 
Assen et al. (113) showed that quantification of index MBF 
(the ratio between territory and global MBF) was a better 
independent predictor of MACE, as compared to CTCA 
and FFRCTA. 

Radiation burden of cardiac CT perfusion

Currently, it is possible to achieve a low-dose radiation 
exposure in clinical practice with the latest dose-reduction 
strategies of modern CT scanner, e.g., prospective ECG-
triggered sequential scanning, wider anatomical coverage 
up to 320-slice, high pitch spiral acquisition, dose 
modulation, automated tube voltage selection, iterative 
image reconstruction software, and noise reduction filters. 
The effective radiation dose for a static single-phase CCTP 
scan generally is less than 5 mSv, which can be lower than 
the dose from CA (27,29,114) and approaches the average 
background radiation exposure in the United States of  
3 mSv/y (27). Furthermore, an ultra-low dose protocol 
with an effective radiation dose as low as less than 1 mSv 
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has been recently reported using prospectively ECG-
triggered turbo high pitch spiral acquisition, which allows 
the acquisition of the entire heart within a single heartbeat 
in approximately one quarter of second (115).

A major concern is the higher radiation burden inherent 
to the dynamic CCTP protocols, which require a time-
resolved acquisition of multiple phases. According to a 
recent meta-analysis, dynamic CCTP is associated with a 
median ionizing radiation of 9.45 mSv (range, 5.3–10.5 mSv)  
for a single scan, which is nonetheless comparable with that 
of traditional nuclear imaging techniques (108).

To overcome such limitations, the use of a low 
tube voltage protocol (80-kV/370-mA) instead of a 
conventional protocol (100-kV/300-mAs) enables 40% 
dose reduction without affecting image quality and MBF 
quantification (116). Moreover, other methods such as 
half-scan acquisition, new first-pass analysis using only two 
first-pass scans, tube current modulation, and statistical 
iterative reconstruction technique could substantially 
reduce effective radiation dose (23).

CTCA-derived FFR (FFRCTA)

Overview of FFRCTA technology

Due to the non-invasive nature of CTCA, the application of 
CFD algorithms on CTCA-derived 3D arterial models has 
received wide clinical interest. According to this approach, 
haemodynamic factors such as flow and pressure are not 
known a priori, thus parameter models regarding the cardiac 
output, the resistance of the coronary microcirculation and 
the pressure of the systemic circulation are coupled with the 
flow domain of the aortic root and the epicardial arteries, 
where the governing equations of flow dynamics are solved 
and can consequently provide FFRCTA calculations. 

There are four approaches to non-invasive, in-silico 
CTCA-derived FFR estimation: (I) full-order modeling of 
haemodynamics; (II) reduced-order/steady-state modeling; 
(III) hybrid models; and (IV) deep machine learning 
algorithms, including both commercially available solutions 
and technologies still in development phase (117,118). All 
these techniques are based on a patient-specific anatomic 
coronary artery 3D model, obtained via a preliminary 
semiautomated process of segmentation and contouring. 
The full-order approaches require a complete model of 
the entire coronary tree, and an additional physiology 
model of the coronary microcirculation fluid dynamics 
(derived from patient-specific boundary conditions), 

from which a coronary blood flow model is derived. This 
process is computationally demanding, requiring off-
site supercomputers in core laboratories. For this reason, 
simpler models have been introduced, that are either 
segment-specific and/or rely on a generalized (non-patient-
specific) haemodynamic models. This allows near real time 
FFR estimation using workstations at the point of care, but 
lacks accuracy in small segments, near side branches and in 
eccentric lesions (119).

To date ,  the only commercia l ly  avai lable  FFR 
computation from CTCA solution known as FFRCT is 
available as a web-based service marketed by HeartFlow, 
Inc. (Redwood City, California, USA). According to the 
National Institute for Health and Care Excellence (NICE) 
guidance on the subject (120), HeartFlow provides an end-
to-end service that includes anonymization at the source 
and human intervention (Figures 5,6).

Some standalone computational methodology has been 
proposed for non-invasive calculation of FFR (119,121-124). 
SmartFFR is based on a transient blood flow simulation and 
the calculation of the pressure-flow curve between the distal 
and proximal region of the coronary artery. The novelty of 
SmartFFR lies in the fact that it can be effectively applied 
on arterial bifurcations and it can be calculated in just a few 
minutes, without the need of clinical tests besides a good 
quality CTCA. There is both a cloud-based platform and a 
standalone version (119,121,122) (Figures 6,7).

The specific value of systems that can be added to a 
normal server or laptop concerns direct management by 
a single operator during the evaluation process of the CT 
images. Another important advantage is rapid analysis, 
necessitating no more than a few minutes (121).

The main limitation for all existing 3D methodologies 
is that, if an error is generated, this can be propagated 
along the entire workflow of the reconstruction process, 
significantly altering the calculated blood flow simulation 
results (125).

Diagnostic accuracy of FFRCTA

Three major multi-center studies (DISCOVER-FLOW, 
DeFACTO and HeartFlow NXT) have  provided 
clinical validation of FFRCTA, directly comparing their 
computational results to the measured invasive FFR values, 
and producing promising results that can be applied in 
clinical settings (126-128).

The DISCOVER-FLOW study exhibited a good 
correlation between FFRCTA and standard FFR (r=0.68) 
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with respective diagnostic accuracy, sensitivity, specificity, 
positive predictive value and negative predictive value for 
predicting hemodynamically significant stenoses (FFR ≤0.8) 
being 84%, 88%, 82%, 74% and 92%, respectively (126).

Furthermore, when compared to cases of ≥50% stenosis 
detected solely by CTCA, FFRCTA showed superior 
discrimination (AUC: 0.90 vs. 0.75, P=0.001). In the 
DeFACTO study, stable CAD patients underwent CTCA, 
FFRCTA and CA with FFR measurement (127). The per 
patient diagnostic accuracy, sensitivity, specificity, positive 
predictive value and negative predictive value for predicting 
an FFR ≤0.8 were 73%, 90%, 54%, 67%, and 84%, 
respectively. Good correlation was also found between 
the two methods (r=0.68). The most recent HeartFlow 
NXT, further validated FFRCTA, using updated proprietary 
software which included refined mathematical models, 
further increasing automation, image quality assessment, 
and image segmentation (128). Diagnostic accuracy, 
sensitivity, specificity, positive predictive value and negative 
predictive value for predicting an FFR ≤0.8 were 81%, 
86%, 79%, 65%, and 93%, respectively on a per-patient 
basis and 86%, 84%, 86%, 61%, and 95%, respectively, 
on a per-vessel basis. Finally, a good correlation was found 
between FFRCTA and FFR (r=0.82) (128). The PLATFORM 
study focused on the clinical outcomes of FFR by CTCA-
guided diagnostic strategies compared to the standard care 
in CAD-suspected patients, providing insight on the clinical 

utilization of FFRCTA (129). Following the findings of the 
PLATFORM trial, the PROMISE study concluded that if 
CA is performed only in patients with FFRCTA ≤0.8, the rate 
of finding unobstructed coronaries at CA could decrease 
by 44% and, at the same time, the rate of CA leading to 
appropriate revascularization would increase by 24% (130).

Sensit ivity and specif icity of these techniques, 
however, have been shown to vary in different cohorts, 
due to differences in sample sizes and study population 
characteristics (Table 5).

In a recent meta-analysis including 908 vessels in 5 
studies, FFRCTA showed an overall per-vessel diagnostic 
accuracy of 82% against invasive FFR (134). However, high 
variability of the diagnostic accuracy of FFRCTA has been 
observed across the entire spectrum of the disease. Regarding 
vessels with FFRCTA >0.90, the vast majority (97.9%) met 
the guideline FFR criterion for deferral (FFR >0.80),  
whereas for vessels with FFRCTA <0.60, 86.4% met the FFR 
criterion (FFR ≤0.8) for PCI. Regarding the FFRCTA values 
laying in between the thresholds, there was less certainty on 
whether invasive FFR would actually meet the criteria for 
stenosis deferral or revascularization (134).

Finally, FFRCTA exhibits an acceptable accuracy for the 
detection of haemodynamically relevant lesions without an 
additional radiation exposure (127), and being associated 
with equivalent clinical outcomes, similar quality-of-life 
and lower costs, when compared with usual care over 1-year 

Figure 5 Case example of HeartFlow—FFRCT. (A) 3D volume rendering technique (VRT) coronary CT angiography reconstruction shows 
critical stenoses (>70% luminal narrowing) of the left anterior descending artery (LAD) at the diagonal bifurcation and of the 2nd obtuse 
marginal branch (OM), arrowheads. (B) Computation of FFRCT demonstrates that LAD and OM stenoses are hemodynamically significant 
with FFRCT value of 0.43 and 0.75, respectively. (C) Invasive coronary angiography confirms the critical LAD and OM stenoses (arrowheads). 
Note the close correspondence between FFRCT and invasively-measured FFR values. 

A B C

0.81

0.43

0.75
FFR=0.45

FFR=0.75

A
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follow-up (129). 

Real-world role of cardiac CT perfusion and 
FFRCTA: limits and perspectives 

Compared to other non-invasive functional imaging 
techniques, both static and dynamic CCTP offer the unique 
advantage to assess myocardial perfusion defects together 
with coronary anatomy in the same examination. Perfusion 
defects are matched with patient-specific coronary artery 
tree reconstruction, taking into account individual vessel 
anatomy, coronary artery distribution, presence, extent 
and type of coronary atherosclerotic plaques, and with 
specific identification of coronary stenoses. Therefore, the 
main strength of CT-based functional methods is a fully 
integrated anatomical/functional analysis at individual level. 
The knowledge of atherosclerotic plaque characteristics and 
plaque burden when assessing myocardial perfusion adds 
clinical value. In fact, it has been demonstrated that specific 
plaque features (e.g., positive remodeling, low attenuation, 
spotty calcification, as well as low-density noncalcified 
plaque volume), which are also associated with the risk of 
future coronary syndromes, reflect an intrinsic propensity to 

ischemia independent of stenosis severity when compared to 
FFR (15,135-137). Although not fully elucidated, the main 
mechanisms underlying the interactions between multiple 
plaque characteristics and lesion-specific ischemia include 
endothelial dysfunction, vascular inflammation, and altered 
shear stress patterns, which cause a shift in the balance 
of endothelial vasodilators and vasoconstrictors, thereby 
promoting ischemia during physiological stress (138).

Iodinated contrast materials used for CT express 
a pharmacodynamics similar to gadolinium-based 
extracellular media used for MRI. However, dynamic CCTP 
is not affected by the non-linear relationship between 
the measured myocardial signal intensity and myocardial 
contrast concentration, which may challenge accurate 
quantification of MBF in gadolinium MRI perfusion 
imaging (23). Other advantages of stress CCTP compared 
to MRI is the possibility to safely scan patients with active 
implanted medical devices, its wider availability, lower cost 
and quicker acquisition time. Furthermore, CCTP allows 
for a physiological noncorrupted 12-lead ECG monitoring 
during stress imaging, which is challenging in MRI.

CCTP offers several advantages in respect to nuclear 
imaging SPECT due to its higher temporal (up to 66 ms) 

Figure 6 Workflow differences between the HeartFlow—FFRCT and the SMARTool—SmartFFR analyses.

Generation of a report including 3D images of the
coronary anatomy and calculated functional information,
including the estimated FFR-CT values, sent back to the

clinician within 48 hours

FFRCT

Anonymized CTCA study data (DICOM file) securely sent 
from the local PACS to HeartFlow's US central processing 

centre

CTCA study data (DICOM series) are loaded to the
SMARTool platform

Detailed SmartFFR distribution for each branch in relation
to the user-defined points of interest

Semi-automated 3D reconstruction of the arterial tree
with minimal user-intervention (the user only defines the

start and end points of the reconstruction) and
hemodynamic flow model providing a hemodynamic

assessment of the arterial tree along with useful
quantitative data regarding the arterial geometry

Interactively guided 3D semiautomated
anatomy model of the coronary tree and

hemodynamic flow model constructed by a
case analyst employed by the company

Fast overall hemodynamic assessment of the arterial tree
requiring less than ten minutes for the entire process (i.e.,
from the data upload until the final results demonstration)

Revision of the process and diagnosis, mainly focusing on
areas of stenosis by an experienced analyst

SmartFFR
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Figure 7 Case example of SMARTool—SmartFFR. (A) Representative non-invasive CT volume rendering with 3D reconstruction of the 
left coronary artery and calculated SmartFFR values. Calculation is achieved in few minutes fully automatically. (B) Distribution of shear 
stress on the endothelial membrane of the reconstructed coronary arteries. Regions of increased stenosis present high endothelial shear 
stress (ESS) values expressed in Pascal (Pa), while regions of low ESS are more prone for disease development and progression. (C) Blood 
flow velocity (ms-1) streamlines after blood flow modelling. At the regions of bifurcation or stenoses (magnification box), recirculation zones 
are observed which are responsible for disease progression.

Table 5 Actual diagnostic performance of computational FFRCTA when compared with invasive FFR in detecting physiologically significant 

lesions that need revascularization (cut-off ≤0.80)

Studies
Sample size 

[patients, vessels]
Pearson correlation 

coefficient
Agreement (Bias ± SD: 
virtual index vs. FFR)

Overall diagnostic 
accuracy

AUC

DISCOVER-FLOW* [2011] (126) 103 [159] 0.68 0.02±0.116 84% (per vessel) 0.90

DeFACTO* [2012] (127) 252 [407] 0.63 0.06 73% (per vessel) 0.81

HeartFlow NXT* [2014] (128) 251 [484] 0.82 0.02±0.074 86% (per vessel) 0.93

Kim et al. [2014] (131) 44 0.60 0.006 77% –

Renker et al. [2014] (132) 53 0.66 – – 0.92

Coenen et al. [2015] (133) 106 [189] 0.59 −0.04±0.13 74.6% 0.83

Kruk et al. [2016] (123) 90 [96] 0.67 −0.01±0.095 74% (per vessel) 0.83

Ko et al. [2017] (124) 42 [78] 0.57 −0.065±0.137 83.9% (per vessel) 0.88

*, multicenter studies. FFR, fractional flow reserve; FFRCTA, fractional flow reserve form computed tomography angiography; AUC, area 
under the ROC curve; SD, standard deviation.
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and spatial resolution (≤0.3 mm), allowing detection of 
even small subendocardial area of ischemic or necrotic 
myocardium (23).

Despite these potential advantages, a significant 
drawback for both static and dynamic CCTP imaging is 
a low contrast-to-noise ratio (CNR) and the possibility of 
imaging artifacts linked to beam-hardening, partial volume 
effects, cardiac motion, and breathing. However, several 
dedicated reconstruction and motion correction algorithms 
are available (23,34). 

Quantitative dynamic CCTP may offer some important 
advantages compared to static CCTP and SPECT in 
assessing balanced ischemia in the context of diffuse 
coronary atherosclerosis or multivessel obstructive CAD 
with global left ventricular impairment of MBF and CFR. 
Another clinical scenario worthy of quantitative CCTP 
is the evaluation of myocardial ischemia in patients with 
microvascular dysfunction and absence of obstructive CAD, 
where reduced hyperaemic MBF can be demonstrated, 
similar to PET imaging. Moreover, quantitative evaluation 
of MBF and MBV by dynamic CCTP may evaluate the 
functional importance of collateral circulation in coronary 
chronic total occlusions.

It should be noted, however, that differences in the 
optimal cut-off value of impaired MBF for detecting 
myocardial ischemia by dynamic CCTP have been 
reported, related to study design, scanner technology, 
acquisition protocol, post-processing elaboration, standard 
of reference applied, and, last but not least, individual 
coronary risk profile (23,33,36). Moreover, underestimation 
of absolute MBF and CFR values derived from dynamic 
CCTP imaging has been demonstrated, although in the 
documented range by PET studies (23,33,72). Sub-optimal 
temporal sampling frequencies of dynamic CCTP of the 
intracapillary first pass of contrast during hyperaemia and 
low extraction of iodine into the normal myocardium may 
partly explain these differences. Individual difference in 
vasodilator response and the known vasodilatory effect of 
iodinated contrast agents may be other possible explanations 
(72,74).

Of note, the more significant advantage of FFRCTA over 
static and dynamic CCTP imaging is that only one scan at 
rest is required for evaluation of both coronary anatomy 
and lesion-specific ischemia, with no additional contrast or 
medications, whereas a stepwise approach with combination 
of the rest and stress phases is obligatory for the CCTP 
imaging. 

Major limitations of FFRCTA are the off-site and rather 

time-consuming core-laboratory analysis using a super-
computer and the high computational costs of about £700 
for a single test (120). Moreover, the large variation in study 
outcomes is also another point of concern. Finally, heavy 
calcifications, arrhythmia and tachycardia may affect both 
CTCA and FFRCTA image quality. In one study based on 116 
patients with acute chest pain, 48 (41.4%) CTCA datasets 
were not included for FFRCTA analysis due to motion 
artifacts, severe calcium blooming artifacts or excessive 
image noise (139). In another clinical study conducted in 
real clinical setting, FFRCTA was measured in 43 out of 48 
patients (89.6%) and the technical reasons were the image 
artifacts, transmission error and severe calcifications (140). 
The same reasons of unsuccessful FFRCTA calculation was 
found in another study (92% inclusion of patients—187 
out of 204) (141). Thus, the main conclusion about 
FFRCTA feasibility is that it is strongly affected by image 
artifacts such as coronary motion or misalignment artifacts, 
transmission and registration errors, and finally blooming 
artifacts caused by severe calcifications. These factors may 
limit the applicability of non-invasive calculation of FFR 
in low-to-intermediate risk population than in high-risk 
patients with severe calcifications.

Conclusions

Both qualitative and quantitative CCTP imaging and 
FFRCTA have widened the clinical usefulness of CCT by 
improving its specificity and positive predictive value 
for evaluating the functional significance of coronary 
stenoses, with a concomitant reduction in false positives 
and unnecessary angiograms. Considerable variation 
in techniques and reference standards for CCTP to 
diagnose myocardial ischemia has emerged. Larger 
studies are necessary to standardize imaging protocols and 
interpretation, and to validate adequate databases of normal 
values of dynamic perfusion data, including separate metrics 
for men and women, similarly to nuclear imaging.

Finally, FFRCTA has gathered a very large validation 
dataset and could potentially alter clinical practice by 
providing a non-invasive approach to the functional 
assessment of coronary stenoses. FFRCTA might be used 
to screen patients with suspected obstructive CAD and 
to provide time and contrast-sparing information to the 
interventional cardiologist, allowing focused and simplified 
PCI in appropriate patients. 

CCTP and FFRCTA will continue to receive attention 
from the cardiovascular research community in the near 
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future, evolving from experimental imaging modalities to 
a core technology for clinical decision making of patients 
with suspected or known CAD.
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