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Introduction

While the pathobiology of pulmonary arterial hypertension 
(PAH) is complex and incompletely understood, common 
features of all  presentations include a substantial 
increase in pulmonary vascular resistance (PVR) due to 
pulmonary vascular remodeling and a concomitant right 
ventricular (RV) remodeling (1). Notably, among these 
two manifestations, RV dysfunction (RVD) and RV failure 
are the major determinants of morbidity and mortality in 

patients with PAH, in part due to therapeutic advances in 
improving PVR (2,3). While RV function can significantly 
be affected by both preload (volume, pressure) and afterload 
(pressure) conditions in PAH (4), recent evidence suggests 
that RV dysfunction may occur independent of the loading 
conditions in PAH. Despite many therapeutic advances in 
left heart failure, comparatively less is understood regarding 
the pathobiology of RV dysfunction (5,6).

Studies investigating RV dysfunction in the setting 
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of PAH have characterized both adaptive/hypertrophic 
responses to pressure afterload as well as maladaptive 
responses such as dilation and pump dysfunction that 
ultimately lead to clinical heart failure (7). Major factors 
that have been implicated in maladaptive remodeling of 
the RV include increased pressure afterload, myocardial 
hypoxia, and metabolic dysfunction.

A combination of genetic predisposition and initiating/
driving factors such as inflammation, drugs, infections, 
and sex hormones ultimately results in adverse pulmonary 
vascular and cardiac remodeling (8-12). This combination 
of factors ultimately initiates and perpetuates the vicious 
cycle of RV failure through increased pressure afterload, 
myocardial hypoxia, and metabolic dysfunction (Figure 1).

The focus of this review is on the molecular mechanisms 
that may contribute to maladaptive remodeling in the 
RV. Although many pathways are currently under study 
in the pathogenesis of RV failure (13-15), this review will 
specifically focus on select molecular events and pathways 
that are supported by strong pre-clinical and human 
(clinical) data that have resulted in, or will lead to, clinical 
trials in PAH patients.

Dysfunctional coronary artery and capillary 
formation/angiogenesis

Micro- and macro-vascular malperfusion/ischemia

Coronary blood flow and adequate tissue perfusion is 
thought to be an important component of the myocardium’s 
response to increased workload and hypertrophy in PAH 
(16-21). Emerging evidence suggests the involvement of 
macro- and micro-vascular ischemia in the development 
of RV failure (Figure 2). The combination of increased 
RV mass, increased RV workload, and coronary flow 
impairment causes a significant supply-demand discrepancy 
(19-21), ultimately leading to maladaptive RV remodeling. 
Malperfusion/ischemia, and concurrent metabolic changes 
(outlined later in this review), in the cardiomyocyte are 
thought to give rise to what is referred to as hibernating 
myocardium (22). A detailed discussion of the phenotype 
of hibernating myocytes is beyond the scope of this review, 
but nicely reviewed elsewhere (22). Notably, mechanisms 
underlying hibernating myocardium have predominantly 
been studied in the left ventricle, and considerably less is 
understood about the pathophysiology of hibernation in 
the RV. This review will focus on the mechanisms by which 
coronary macro- and micro-vasculature are altered to 

ultimately lead to RV failure.
The normotensive RV is perfused during both systole and 

diastole, and in most instances via the right coronary artery 
(RCA) arising from the right coronary cusp of the aortic 
root (23). With systemic or suprasystemic RV pressure, the 
RV myocardium is only perfused during diastole, making 
the blood supply more dependent on lower heart rates and 
filling time. Moreover, increased RV end-diastolic pressure 
(RVEDP) and a thick RV myocardium decrease coronary 
perfusion pressure and flow to the RV myocardium. As 
demonstrated by non-invasive myocardial perfusion reserve 
measurement through adenosine challenge, in severe or 
advanced PAH, there is decreased perfusion reserve in the 
RV (24). This was more directly demonstrated in a human 
MRI-based study by van Wolferen et al. that showed both 
systolic and diastolic flow in the RCA of normal controls, 
but diastole-predominant flow in the RCA of patients with 
PAH with an overall decrease in total blood flow to the  
RV (23). Histologically, post-mortem human and animal 
model studies have shown increased thickness of epicardial 
arteries in PAH (25). While layer-specific (e.g., intima, 
media, or adventitia) changes were not delineated, increased 
α-SMA staining, IL-6 mRNA, DNA damage, and pro-
inflammatory epigenetic modifier BRD4 were found in 
arteries from PAH patients, suggesting inflammation and 
smooth muscle hyperplasia as important contributors to 
coronary remodeling (25).

The role of microvascular ischemia in RV failure

In addition to the large epicardial arterial changes noted 
above, studies have suggested prominent microvascular 
changes in the RV in PAH, similar to established studies of 
microvascular rarefaction and dysfunction in left ventricular 
(LV) failure (16-18,26,27). Indeed, using traditional two-
dimensional sections, several studies identified vascular 
rarefaction in models of RV failure (28-34). In contrast, 
models of compensated RV hypertrophy [chronic hypoxia, 
mild pulmonary artery banding (PAB)] demonstrated 
maintained or increased angiogenesis (28,29,35,36), 
suggesting a mechanistic link between microvascular 
density/function and RV failure development. While it 
is not clear whether microvascular dysfunction is merely 
a marker of or a contributor to RV failure, experimental 
approaches to improve RV vascularization through 
therapies such as delivery of miR-126 in an experimental 
model of PH have demonstrated increased RV vascularity/
function without changes in the pulmonary vasculature, 



1524 Agrawal et al. Molecular mechanisms of RV dysfunction

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(5):1522-1540 | http://dx.doi.org/10.21037/cdt-20-404

Figure 1 The vicious cycle of RV failure in PAH. In the setting of underlying genetic predispositions, initiating or modifying factors such 
as drugs, inflammation, infection, and/or sex hormones begin the vicious cycle of RV failure either through direct action upon the RV (via 
altered metabolism or transcriptional regulation), or secondarily through increased PVR and RV ischemia. RV, right ventricular; PAH, 
pulmonary arterial hypertension; PVR, pulmonary vascular resistance; RVSP, right ventricular systolic pressure.

Figure 2 Schematic diagram of mechanisms underlying dysfunctional angiogenesis in the progression from adaptive RV hypertrophy to 
maladaptive RV failure in PAH. RV, right ventricular; PAH, pulmonary arterial hypertension.
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suggesting a more causal role for microvascular dysfunction 
in the pathogenesis of RV failure (28). However, the 
translation of these pre-clinical findings to humans remains 
an area of ongoing investigation. A recent study of post-
mortem human RV from female PAH patients employed 

a stereological approach to measuring vascularity and 
reported an increase in total vascular length in PAH (37) 
without signs of hypoxia or ischemia [contradicting previous 
investigations (38,39)]. Given the multiple discrepancies 
between these studies (method of measurement of 
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vascularity, appropriate determination of RV adaptation 
vs. failure in the human samples, possible sex-based effect, 
patient age, etc.), further work is necessary to clarify these 
findings.

Molecular mediators of angiogenesis in RV failure

The pathways and processes regulating angiogenesis are 
complex and many. Factors such as sex, age, severity of PH, 
disease stage, and other inter-related processes (metabolic 
dysfunction, inflammation) complicate and confound clear 
study of angiogenic mechanisms in the RV of PAH patients. 
However, growing evidence from both experimental models 
and human samples suggests dysregulation of angiogenesis 
in RV failure. Experimentally, studies have suggested a 
genetic component to RV adaptation in PH based on 
differing degrees of RV adaptation to the same afterload in 
two different strains of rat (Fischer vs. Sprague Dawley) (33).  
Epigenetically, Reddy et al. identified microRNAs uniquely 
associated with RV failure that mediate increased vascular 
tone (miR-143/145), enhanced apoptosis (miR-34), 
and decreased endothelial cell proliferation (miR-379,  
miR-503) (40). Chouvarine et al. identified transpulmonary 
changes in microRNAs, one of which has been implicated 
in vascular smooth muscle proliferation (miR-331-3p) (41).  
Beyond epigenetic changes, inter- and intra-cellular 
signaling through transcription factors, growth factors, 
hormones, peptides, and immune cells have also been 
implicated as mediators of angiogenesis in the RV. These 
pathways are extensively reviewed elsewhere (42). Of these 
pathways, the most extensively studied parameters are those 
of the vascular endothelial growth factor (VEGF) pathway. 
In general, VEGF signaling is increased or maintained 
in adaptive RV hypertrophy (30,32,35), whereas VEGF 
signaling or receptor expression are downregulated in 
advanced RV failure (29-33,43). The previously mentioned 
decrease in miR-126 noted by Potus et al. (28) was associated 
with increased sprouty-related EVH1 domain-containing 
protein 1 (SPRED-1) which resulted in decreased activation 
of RAF and MAPK and inhibition of the VEGF pathway. 
Other pathways and modifiers found to be downregulated 
or impaired in experimental PH with maladaptive RV 
remodeling and failure include hypoxia-inducible factor 
(HIF) 1α (29,43), apelin (30), angiopoietin 1 (30), insulin 
growth factor 1 (30), and stromal derived factor 1 (43). 
The study of failing Fischer rat RVs revealed a decrease 
in expression of several angiogenic genes such as Angpt1 
and Vegfc (33). On the other hand, the HIF inhibitor p53 

was found to be upregulated in one model (43). A recent 
study reported a surprising role of regulatory T cells in 
increasing vasoprotective mediators in human microvascular 
cardiac endothelial cells (44). Studies specifically studying 
RV dysfunction in the setting of experimentally induced 
PAH through treatment with hypoxia and Sugen-mediated 
VEGF inhibition identified unique alterations in a number 
of genes related to angiogenesis in the RV of mice with RV 
failure, but not controls (34). Finally, emerging mediators 
of angiogenesis in the RV in PAH include molecules with 
potent angiostatic properties such as endostatin that are 
upregulated in plasma from PAH patients, but have not 
directly been studied in the RV (45).

Ultimately, it is not clear whether directly modifying 
angiogenesis in the RV may be beneficial  or not. 
Several therapeutic strategies have been associated with 
increased RV vascularization or increased expression 
of pro-angiogenic mediators. These therapies include 
carvedilol (46), 17β-estradiol (47,48), genistein (49), 
dehydroepiandrosterone (50), exercise training (which 
increases RV capillarization in stable but not progressive 
PH) (51), protandim (29), prostacyclin (52), cardiotrophin 
1 (53), PPARγ agonists (34), and miR-126 mimic (28). 
With the exception of miR-126 mimic, which restored RV 
vascularization and function without affecting pulmonary 
vasculature, all other therapies have been tested in 
experimental models of PH where direct effects on RV 
cannot be separated from reduced afterload due to effects 
on pulmonary vasculature. Further studies are needed to 
further delineate the role and regulation of angiogenesis in 
RV failure (54).

Sex hormones and their effect on RV function

Cardiomyocytes and other cells found in the heart (e.g., 
endothelial cells and fibroblasts) contain receptors for all 
major sex hormones (reviewed previously) (55,56). They 
also exhibit the machinery required for local sex hormone 
production and metabolism (48,57,58). It therefore is not 
surprising that sex steroids have emerged as important 
modifiers of RV structure and function in PAH. This 
section will review the currently available knowledge of 
the interplay between sex steroids and RV adaptation in 
preclinical and clinical studies (Figure 3).

Although PAH has long been known to be a female-
predominant disease, studies have identified that females 
with PAH exhibit better survival than male counterparts 
(59-63). Females with PAH also exhibit improved RV 
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Figure 3 Sex hormone synthesis pathways with known effects of intermediates upon pulmonary vascular and RV cardiomyocyte remodeling. 
RV, right ventricular.
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function, even after adjustment for age, body weight, and 
LV function (64-66). Better RV function in females has been 
shown to account for a significant component of the survival 
advantage that has been noted in previous epidemiologic 
studies (63). Notably, these findings have also now been 
verified in other groups of patients with non-PAH types of 
PH (e.g., Group 2 and 3 PH) (67-69).

Several lines of evidence indicate that sex hormones 
may, in part, account for the sex-specific differences noted 
in RV function. In healthy individuals without PAH in the 
MESA-RV cohort, post-menopausal hormone therapy 
users exhibited higher RV ejection fraction (RVEF) than 
non-users (70). In hormone therapy users, plasma levels of 
17β-estradiol (E2) correlated with higher RVEF and lower 
RV end-diastolic volumes. Other studies of the MESA-
RV cohort have found that higher DHEA plasma levels 
are associated with lower RVEF, higher RV stroke volume, 
and larger RV mass/volume (70). Finally, studies have 
demonstrated that single nucleotide variants that modulate 
the function of estrogen metabolism such as cytochrome 
P450 1B1 (CYP1B1) and androgen receptor (AR) are 
associated with changes in RV structure/function in normal 
patients, suggesting a direct role for sex-hormone mediated 
modification of RV size/function (71).

The roles of estrogen and DHEA in modifying RV 
function have been replicated indirectly in a cohort of PAH 

patients as well. Females younger than age 45 exhibited 
higher cardiac index than male counterparts (66). However, 
this difference dissipated after 45 years of age, suggesting 
that sex hormones are a potential modifier of RV adaptation 
in PAH. Additionally, in post-menopausal women with 
PAH, lower DHEA levels were associated with increased 
RV dilation and worse function by echocardiogram (72). 
Given the dual roles of sex hormones upon myocardial and 
pulmonary vascular function, though, these studies cannot 
distinguish whether the observed associations were due to 
primary effects on the RV as opposed to indirect changes as 
a result of modulation of RV afterload.

Several studies have now investigated the therapeutic 
potential of modulating the sex hormone axis (Figure 3) in 
regulating RV function in models of PAH. Interestingly, 
while estrogen E2 or its metabolites are thought to promote 
adverse pulmonary vascular remodeling (73), E2 has been 
shown to exhibit RV-protective effects in vivo. Through 
hormone depletion and repletion studies in a rat model 
of Sugen/hypoxia, Frump et al. demonstrated that E2 
attenuates RV hypertrophy, improves cardiac index, and 
enhances exercise capacity (48). The presence of E2 results 
in decreased RV apoptotic signaling, pro-inflammatory 
cytokine expression, oxidative stress, and mitochondrial 
dysfunction (48). Additionally, E2 attenuated decreases in 
pro-angiogenic and pro-contractile expression of apelin, 
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suggesting a role for E2 in angiogenesis (48). Importantly, 
protective effects of E2 were noted in ovariectomized 
female rats as well as in male rats. In a follow-up study in 
SuHx rats, E2 attenuated RV dysfunction induced by a bout 
of acute strenuous exercise; these effects were accompanied 
by increased eNOS activation and enhanced autophagic flux 
in the RV (74). This study also demonstrated anti-fibrotic 
effects of E2. Anti-fibrotic effects were also observed in the 
SuHx-PH mouse model (75), even though it should be noted 
that this model only exhibits mild RV dysfunction (54).  
The same group of investigators also reported beneficial 
effects on mitochondrial function in the RV with E2 
treatment (76). A study performed in the monocrotaline rat 
model suggested pro-angiogenic effects of E2 (47). While 
that study suggested estrogen receptor β as a mediator of 
protective E2 effects in the RV, the previously mentioned 
study in SuHx-PH rats (48) implicated estrogen receptor 
α as a mediator of E2 protection. The reasons for this 
discrepancy are unclear, but may include differences 
between models, sex-specific effects or off-target effects 
of pharmacological inhibitors and activators. In addition, 
E2 also affects mechanical properties of the pulmonary 
vasculature which in turn could affect RV structure and 
performance. In particular, E2 can increase both proximal 
as well as distal PA compliance, and, at least when given 
exogenously, also attenuate PA remodeling (75,77,78). 
It is currently unknown if E2’s RV-protective effects are 
mediated by direct effects on RV-specific cell types or by 
more indirect effects resulting from reducing RV afterload. 
Studies employing PAB and investigating E2 signaling in 
RV-specific cell types (cardiomyocytes, endothelial cells and 
fibroblasts) will address this knowledge gap.

In addition to estrogen, testosterone and DHEA 
signaling have also been studied in the RV. While 
testosterone was associated with worse RV function and 
fibrosis in a pulmonary banding model (79), DHEA was 
found to attenuate RV capillary rarefaction, apoptosis, 
fibrosis, and oxidative stress in Sugen/hypoxia treated rats. 
This was at least partially mediated by reducing expression/
activity of Rho kinases, STAT3, and NFATc3 (50). Direct 
study of cardiomyocytes in vitro has demonstrated that 
DHEA reduces endothelin-1 induced hypertrophy and 
natriuretic peptide expression (80). With aldosterone 
or corticosteroid stimulation, DHEA decreases T-type 
calcium channel expression and exhibits anti-hypertrophic/
chronotropic effects (81). Unlike E2, however, DHEA 
has not been associated with adverse pulmonary vascular 
remodeling, making this an attractive target for hormone-

based therapies for RV failure.
While no clinical studies to date have directly used 

hormone-based therapies to improve RV failure in PAH, 
there is a growing interest in these pathways given pre-
clinical benefit from E2 and DHEA. In particular, there 
are two trials currently investigating the effect of estrogen 
inhibit ion on PAH development (NCT03229499, 
NCT03528902), based on the known association between 
E2 levels and adverse pulmonary vascular remodeling 
(72,73,82). Given concerns regarding potential direct 
detrimental effects on RV function (83), and despite 
relatively neutral effects upon the RV in pilot studies (84,85), 
both ongoing trials are closely monitoring RV function in 
their participants. Ultimately, due to E2’s pleiotropic effects, 
more specific or downstream approaches may be necessary 
to maximize the benefits and limit the harms of modulating 
estrogen therapies in PAH. Therapy with DHEA may be 
a more straightforward target based on its beneficial effect 
upon RV function in the absence of detrimental effects 
upon pulmonary vasculature. A study investigating DHEA 
supplementation in PAH is currently ongoing and will assess 
RV function and structure by cardiac MRI (NCT03648385).

Metabolic derangements in RV hypertrophy, 
dilation and failure

Cellular metabolism comprises a ubiquitous set of pathways 
that continually maintain cellular homeostasis through 
modulation of energy production, synthesis of components, 
breakdown of waste, and ultimately cell survival. These 
pathways are particularly relevant in high energy utilizing 
tissues such as the heart. Despite the known differences 
in embryologic origin, baseline expression, and loading 
conditions of the right and left ventricle (5,7,86,87), the 
majority of studies investigating RV metabolism are based 
on metabolic investigations in the LV (88). Under basal 
conditions, the RV generates ATP primarily from fatty 
acids (~70%) with a smaller percentage from uncoupled 
glycolysis or lactate utilization (89). However, in various 
situations, the myocardium is able to generate ATP from 
any of a number of sources including fatty acids, glucose, 
lactate, ketones, and amino acids, demonstrating metabolic 
plasticity (90-93). Stresses such as increased load on the RV 
or ischemia can drive changes in the uptake, generation, 
transport, storage and utilization of preferred substrate for 
energy generation (5).

Studies of pulmonary vascular endothelial cells from 
patients with PAH have identified metabolic shifts in PAH 
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that mirror metabolic changes in malignancy (7). In PAH, 
these metabolic shifts in carrdiovascular cells include an 
increased preference for aerobic glycolysis (known as the 
Warburg effect) (94), impaired mitochondrial respiration 
due to decreased fatty acid oxidation (95,96), and increased 
utilization of glutamine in the Krebs cycle for biosynthesis 
and proliferation (97). The mechanisms by which each of 
these pathways affects myocardial function, and potential 
avenues for therapeutic intervention, are discussed below 
(Figure 4).

Mitochondrial dysfunction in the RV in PAH

Mitochondria  are the intracel lular  s i te  for many 
important metabolic pathways including oxidative 
phosphorylation, Krebs cycle, β oxidation of fatty acids, 
calcium handling, free radical handling, and heme 
synthesis. It is thus not surprising that mitochondrial 
dysfunction is thought to play a central role in PAH-
related metabolic reprogramming (98,99). Mitochondrial 
morphology is intimately connected with the overall 
metabolic state of a cell (100). This is particularly true 
in a high energy utilizing cell such as the cardiomyocyte 
where mitochondria account for nearly 90% of the ATP 
generation and 30% of the overall cell mass (101).

Mitochondrial dysfunction has been shown to play a 
central role in the progression of left heart failure (102). 

However, preclinical studies of RV failure in the setting 
of PAH have also demonstrated a decrease in intact 
mitochondria (31,34,103,104). Legchenko et al. (34), showed 
that Sugen/hypoxia exposed rats developed RV hypertrophy 
and dilation 6 weeks after the end of hypoxia. By applying 
comprehensive electron microscopy studies, Legchenko 
et al. demonstrated increased variability in mitochondrial 
size, mitochondrial disarray, decreased mean mitochondrial 
diameter, and an increased number of autophagosomes near 
mitochondria, all suggesting dysregulation of mitochondrial 
morphology and function (mito dynamics) (34).

Importantly, the detrimental structural changes and 
dysfunction of mitochondria are associated with decreased 
expression of metabolic master regulators such as  
PPARγ (105), PPARγ coactivator (PGC1α) (103), and 
PPARα (103). These three metabolic master regulators have 
key functions in myocardial function, particularly in the 
setting of RV pressure overload associated with PAH. In 
particular, targeted deletion of PPARγ in cardiomyocytes 
in mice, in the absence of PAH, led to biventricular systolic 
dysfunction, suggesting a direct role for modulating 
cardiomyopathy even in the absence of an increased RV 
afterload (34).

The PPARγ agonist pioglitazone reverses pulmonary 
arterial hypertension and prevents right heart failure in 
the SuHx rat model via fatty acid oxidation and induction 
of key genes such as CPT1b and FABP4 (34). The major 

Figure 4 Summary of metabolic derangements identified in RV cardiomyocytes in PAH. Solid arrows denote pathways increased in PAH, 
and dashed arrows represent pathways decreased in PAH. RV, right ventricular; PAH, pulmonary arterial hypertension.
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transcriptional epigenetic pathogenic findings of this study 
in SuHx rats could be recapitulated in human end-stage 
PAH (34): (I) in the pressure-overloaded failing RV (miR-
197 and miR-146b up-regulated; CPT1B and FABP4 
downregulated), (II) in peripheral pulmonary arteries (miR-
146b up-regulated, miR-133b down-regulated), and (III) in 
plexiform vasculopathy (miR-133b up-regulated, miR-146b 
down-regulated) (34).

The mechanisms that lead to decreased mitochondrial 
mass are incompletely understood, but have been thought 
to be related to imbalances in mitochondrial fission/fusion 
and mitophagy (99,106,107). Mitochondria are dynamic 
organelles that organize in networks to coordinate cell-
wide metabolic function (98). As such, mitochondria 
exist in a constant state of flux. They undergo fission and 
fusion as they adapt to the needs of the cell, with surplus 
or mitochondria undergoing mitophagy to maintain the 
mitochondrial network integrity. Dynamin-like GTPases 
knowns as mitofusins (MFN1 and MFN2) mediate fusion 
of mitochondria. Conversely, dynamin-related proteins 
(Drp1) complexes with mitochondrial fission protein 1 
(Fis1) on the outer membrane of mitochondria to regulate 
fission. Studies of human pulmonary artery (PA) smooth 
muscle cells from patients with PAH have demonstrated 
increased fragmentation of mitochondria and increased 
mRNA expression of fissiogenic molecules (Drp1, Fis1). 
The presence of activated Drp1 has also been demonstrated 
in the pulmonary vasculature in fixed tissue sections of 
patients with PAH (108). Pre-clinical models of PAH using 
monocrotaline induced vascular damage have also confirmed 
increased expression of Drp1 in the right ventricle of rats 
with PAH (108).

Glycolytic pathways and pyruvate

While the RV normally preferentially metabolizes 
free fatty acids to generate ATP through oxidative  
phosphorylation (89), ischemia and pressure afterload 
on the RV result in a shift from fatty acid oxidation 
towards increased reliance on glucose for ATP generation 
(109,110). Specifically, glucose utilization largely 
shifts towards the glycolytic pathway and away from 
the Krebs cycle (111). This shift occurs despite the 
adequate availability of oxygen to undergo oxidative 
phosphorylation, a phenomenon known as the Warburg 
effect, and ultimately decreases the efficiency of ATP 
generation by reducing utilization of mitochondrial 
oxidative metabolic pathways. Both pre-clinical and 

clinical studies have demonstrated the importance of 
pyruvate dehydrogenase kinase (PDK) in mediating the 
shift towards aerobic glycolysis in PAH (112,113). PDK is 
a key inhibitor of pyruvate dehydrogenase, and therefore 
an inhibitor of glucose oxidation. Studies have shown 
a marked increase in the expression of PDK isoforms 
in patients with PAH, with the predominant cardiac 
isoforms consisting of PDK2 and PDK4. Preferential 
switch towards glycolysis is associated with decreased 
RV contractility. In pre-clinical models, pharmacologic 
inhibition of PDK results in improved RV contractility 
(Figure 5) (112). Recently, in a clinical study of patients 
with PAH without clinical improvement on standard 
therapies, pharmacologic inhibition of PDK with a small 
molecular inhibitor, dichloroacetate (DCA), resulted in 
decreases in mean PA pressure, decrease in PVR, and 
increase in cardiac output (CO). Interestingly, response to 
DCA was stratified by the presence or absence of common 
genetic variants in two genes known to alter baseline PDK 
activity independently, sirtuin 3 and uncoupled protein 
2. Beyond altering PDK activity, recent studies have also 
shown that sirtuin 3 may itself be a master regulator of 
metabolism in PAH, suggesting that a subset of patients 
with PAH may be more likely to derive benefit from 
metabolic therapies (97,114). However, considering both 
the subset of patients more likely to respond to therapy as 
well as identification of potential severe neurotoxicity as a 
result of PDK inhibition by DCA (115,116), the ultimate 
translatability of PDK inhibition may require precision 
medicine approaches to define the subset of patients most 
likely to benefit and least likely to experience side effects.

Dysfunctional fatty acid metabolism and lipotoxicity

Previous studies have also consistently found that the RV 
of patients with PAH demonstrates significant decreases 
in fatty acid oxidation compared to patients without PAH 
(5,7). Other studies have demonstrated an increase in lipid 
accumulation in the RV myocardium of patients with PAH 
(12,95). While the mechanisms underlying this observation 
are incompletely understood, multiple mechanisms have 
been identified that contribute both to decreased fatty acid 
oxidation and cytoplasmic lipid accumulation. Impairment 
of fatty acid oxidation, concomitant with increased fatty 
acid uptake, enable the production of toxic intermediates 
such as ceramide, palmitate, and medium and long chain 
fatty acids (12,91,96,117). The above intermediates most 
likely lead to lipotoxic cardiomyopathy, for example, via 
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excessive development of reactive oxygen species and cell  
apoptosis (118).

Derangements in fatty acid oxidation and toxic lipid 
accumulation are thought to occur as a result of multiple 
mechanisms. The first is an increase in the uptake of fatty 
acids into the myocardium. Fatty acid binding proteins and 
CD36 are thought to be the primary receptors responsible 
for transporting fatty acids into the cytoplasm of cells, with 
CD36 being responsible for ~60% of fatty acid uptake 
(119,120). Pre-clinical studies in a model of BMPR2 
mutation related PAH have demonstrated an increase in the 
expression of CD36 in the RV of mice that develop PAH (12). 
Additionally, increased circulating levels of heart-specific fatty 
acid binding protein have been found to be an independent 
predictor of adverse outcomes in patients with chronic 
thromboembolic pulmonary hypertension (PH) (121).

The second mechanism thought to contribute to this 
accumulation of lipids in cardiomyocytes is the finding 
that the RV in PAH is characterized by a decrease in 
mitochondrial utilization of fatty acids compared to healthy 
controls (5,95,122). This phenomenon, while incompletely 
understood, is postulated to be regulated transcriptionally 
and metabolically. Transcriptional regulation occurs 
through the noted downregulation of key modulators and 
inducers of mitochondrial fatty acid oxidation, PPARγ and 
PGC1α (103). Metabolic regulation has been proposed 
to occur through the Randle Cycle (5,123), a metabolic 
process in which glucose and fatty acids counter-regulate 
each other by directly competing as substrates for ATP 
generation within a given cell. While previous studies have 
suggested that a further shift away from fatty acid oxidation 
towards glucose oxidation through the Randle cycle will 
reduce oxygen consumption by ~12% per ATP molecule 
generated (5), recent studies suggest that a shift from fatty 
acid to glucose oxidation ultimately results in less efficient 
ATP production and ultimately promotes hibernation 
of myocardium (34). The mechanical complications of 
hibernating myocardium have been reviewed elsewhere (22). 
A recent study by Chouvarine et al. has also demonstrated 
accumulation of dicarboxylic acids and acylcarnitines 
trans-RV gradients, suggesting a block in β-fatty acid 
oxidation (41). The identified trans-RV and transpulmonary 
metabolite gradients also correlate with hemodynamics, 
further supporting a functional consequence of the 
identified metabolic changes 

Thus, there are currently alternative approaches 
aimed directly at addressing the deficit in fatty acid 
oxidation with a goal of normalizing the RV metabolic 

pattern. One approach has involved the use of therapies 
aimed at activating PPARγ, a key modulator of fatty acid 
oxidation. Pre-clinical trials investigating the efficacy 
of PPARγ agonists have demonstrated that increasing 
fatty acid oxidation can prevent the development of 
RV failure in a model of endothelial injury and hypoxia 
mediated PAH and RV failure (Figure 5) (34). Another 
approach that is currently undergoing pre-clinical and 
clinical investigation is the use of metformin to reverse 
deficits in fatty acid oxidation (Figure 5). Multiple pre-
clinical models of both PAH and PH due to heart 
failure have demonstrated a potential beneficial role for 
metformin in both decreases in RV lipid accumulation 
as well as reversal of pulmonary vascular remodeling 
(96,124,125). Clinical trials are currently ongoing that 
will be directly assess the potential benefit of metformin 
on both clinical outcomes and RV function (NCT 
01884051 and NCT03617458). Metformin’s function is 
thought to be pleiotropic, but thought to involve at least 
the activation of AMP kinase (and downstream decrease 
in fatty acid synthesis and increase in insulin sensitivity) 
as well as non-AMPK mediated inhibition of adenylyl 
cyclase to ultimately promote decreased gluconeogenesis 
and increased glycolytic activity (96,126,127). Finally, 
although limited to a single center, a clinical study in a 
select population of patients with β-thalassemia and PH 
demonstrated that oral administration of L-carnitine 
s ignif icantly reduced pulmonary pressures (128).  
While the mechanisms underlying this phenomenon are 
not clear, L-carnitine serves as a shuttle for long-chain fatty 
acids to be transported to the mitochondria to undergo 
β oxidation, again suggesting that restoring fatty acid 
oxidation may be valuable.

Insulin resistance and dyslipidemia in PAH-related RV 
dysfunction

Although insulin resistance is known to be a primary 
contributor systemic arteriovascular disease, studies have 
also shown a higher than expected prevalence of insulin 
resistance in patients with PAH (129-134). The known 
alterations in glucose and fatty acid oxidation ultimately 
contribute to mitochondrial dysfunction, a key driver of 
insulin resistance in multiple cell types (135). In addition 
to stimulating increased glucose uptake and fatty acid 
oxidation, insulin plays an important role of modulating 
lipid homeostasis by modulating lipolysis and free fatty 
acid delivery between adipose and liver tissues (136). While 
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insulin resistance has been shown to be a contributor to 
pathologic pulmonary vascular remodeling in multiple 
pre-clinical models of PAH (129,130,133,134,137), recent 
studies have also demonstrated a key role for insulin in 
altering RV function in humans as well. In vitro, recent 
studies have demonstrated a causal role for BMPR2 in 
maintaining insulin signaling and glucose homeostasis in 
cardiomyocyte-like cells (138). Studies in human RV and 
LV also suggest that the RV may be more prone to changes 
in insulin-related signaling. RNA sequencing analysis of 
healthy human RV and LV demonstrated an increase in 
transcripts associated with insulin signaling in the RV (139). 
Additionally, patients with diabetes but without PAH (and 
therefore no significant afterload) consistently demonstrate 
decreases in indices of RV function non-invasively  
(140-142). Finally, the presence of metabolic syndrome, 
and not obesity alone, is associated with a load-dependent 

decrease in RV function, suggesting a loss of contractile 
reserve in the setting of insulin resistance (143). Most 
recently, Mey et al. have utilized a hyperglycemic clamp 
in patients with PAH and controls to demonstrate 
global alterations in glucose homeostasis with a reduced 
response of insulin response to hyperglycemia (144). More 
importantly, their work suggested compartmental changes 
in insulin sensitivity, with increased insulin sensitivity in 
the skeletal muscle despite a decreased insulin response to 
hyperglycemia. While their study cannot directly comment 
on myocardial insulin sensitivity, their study corroborates 
previous studies confirming an important and direct role for 
insulin signaling in the pathogenesis of PAH (129,131,144).

Glutaminolysis

It is known that both the pulmonary endothelium and right 
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ventricle shift towards increased utilization of glutamine 
in patients with PAH (97). Glutamine is transported into 
the cell and converted into α-ketoglutarate by glutamate 
dehydrogenase. α-ketoglutarate is then fed into the Krebs 
cycle where its byproducts contribute to synthesis of amino 
acids, purines, pyrimidines, fatty acids, and sterols. While 
these byproducts are thought to contribute to increased 
cell growth and proliferation in cancer cells (145), its role 
in post-mitotic tissues such as the RV are less understood. 
In the pre-clinical model of monocrotaline-induced PAH 
and RV failure in rats, increased utilization of glutamine as 
well as increased expression of glutamine transporters was 
identified in the RV of rodents that developed PAH (31).  
Immunostains of post-mortem RV from patients with 
PAH also suggested an increase in sarcolemmal glutamine 
transporter expression, suggesting that glutaminolysis 
may be an important therapeutic target in RV failure due 
to PAH. Given the paucity of studies investigating this 
mechanism of altered metabolism in the RV, however, future 
studies are necessary to better elucidate the pathogenic role 
of glutaminolysis in RV failure.

Limitations and future approaches to 
understanding of molecular mechanisms 
underlying human RV failure

Pathophysiologic mechanisms contributing to RV failure 
in the setting of PAH have largely relied on pre-clinical 
studies in which careful manipulation, both genetic and 
therapeutic, are possible to tease out potential mechanisms. 
As reviewed by Stenmark et al., though, no current animal 
model of PAH perfectly recapitulates all features of the 
human disease (146). Additionally, this special issue also 
extensively discusses the strengths and weaknesses of 
various animal models of RV failure elsewhere (147). The 
study of RV failure in human subjects at the molecular 
level is inherently limited by the availability and quality of 
tissues available from patients, often post-mortem or at end 
stage. Additionally, modalities of study are often limited 
by methods of tissue preservation that have been applied 
such as formalin fixation and paraffin embedding. While 
modalities such as cardiac MRI have significant improved 
resolution in the measurement of RV size and function (63),  
specific studies of molecular pathways or targets are 
inherently limited in current non-invasive assessments of 
the RV in PAH. The role of imaging in RV failure and 
overall prognosis in PH is discussed elsewhere in this special 
issue (148-150).

Induced pluripotent stem (iPS) cells as an alternative to 
human tissue

While many previous studies have utilized isolated 
endothelial or PA smooth muscle cells for detailed in vitro 
studies, similar approaches are limited for study of the 
myocardium. In particular, cardiomyocytes are generally 
post-mitotic cells with very few studies successfully isolating 
and studying the myocytes themselves from human  
patients (8). The seminal finding by Takahashi and 
Yamanaka in 2006 that transfection of a defined set of 
transcription factors can convert differentiated cells into 
embryonic-like stem cells [induced pluripotent stem (iPS) 
cells] paved the way for tissue specific generation of various 
cell types from patient samples through transcription 
factor mediated generation of iPS cells. Previous groups 
have utilized this approach to begin to study the effect 
of known PAH-causing mutations in the BMPR2 gene 
upon endothelial and smooth muscle function (151-153). 
With significant advances in methods for generation of 
iPS derived cardiomyocytes (154), the pathogenesis of RV 
cardiomyopathy in the setting of either known mutations 
associated with PAH (i.e., BMPR2) or known patient 
populations who develop RV failure out of proportion to 
the degree of PH (i.e., systemic sclerosis) can be studied. 
With studies now demonstrating functional and molecular 
analyses in both single cells and engineered heart tissue 
constructs (155-157), as well as other studies beginning to 
identify protocols to specifically differentiate RV vs. LV 
cardiomyocytes (158), the use of iPS derived cardiomyocyte 
may shed light on to primary pathologic changes that 
occur in the myocardium in patients with PAH without the 
confounding variable of afterload (40,154,159).

Lessons learned from non-PAH related RV failure

While the current review has focused on mechanisms 
underlying RV failure in PAH, most patients with RV 
dysfunction suffer from PH due to other causes. Given 
the larger number of these group PH patients, directed 
study of these populations may provide further insight into 
the pathogenesis of RV failure in PAH as well. Indeed, at 
least a subset of patients with PH due to left heart disease 
(PH-LHD) display shared genetic architecture with PAH 
patients (160). Additionally, it is now recognized that a 
subset of patients with hemodynamics consistent with 
PAH at rest actually have occult diastolic dysfunction 
and resulting PH-LHD upon provocative challenge with 
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saline (161,162). Taken together there may, in fact, be 
some mechanistic overlap in the pathogenesis of RV failure 
among various groups of PH.

Similar to PAH, animal models of PH-LHD have also 
identified RV dysfunction as an early manifestation of 
disease (163). Exploiting common genetic variability among 
available mouse strains to identify genetically similar mice 
that were susceptible and resistant to high fat diet induced 
PH-LHD (164), a clearance receptor for natriuretic 
peptides (NPRC) was found to be the most differentially 
expressed gene in the RV of mice that developed PH-LHD. 
Natriuretic peptide levels also correlated with development 
of RV failure and PAH in a Sugen hypoxia model, and 
decreased in response to pioglitazone treatment (34). 
Finally, clinical studies have also demonstrated increased 
PVR in both pre-clinical and clinical models inversely 
correlated with levels of natriuretic peptides (165-168), 
altogether suggesting that natriuretic peptides and related 
pathways may be potential therapeutic targets in RV failure 
in PAH. Future studies are necessary to directly test this 
hypothesis, however.

Conclusions

RV failure continues to be the primary cause of morbidity 
and mortality in patients with PAH. In part due to 
fundamental differences between the LV and RV, and in 
part due to limitations in access to and ability to study 
human RV directly, the pathogenesis of maladaptive RV 
remodeling and resulting heart failure is incompletely 
understood. However, based on the breadth of pre-clinical 
and clinical studies to date, dysfunctional angiogenesis, sex 
hormone related biology, and fundamental shifts in cellular 
metabolism appear to play primary roles in the transition 
from adaptive to maladaptive remodeling of the RV. As pre-
clinical studies continue to unravel the causal pathways that 
contribute to RV dysfunction in the setting of PAH, we look 
forward to future studies directly assessing the contributions 
of these pathways to RV failure in humans through both 
mechanistic and therapeutic studies.
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