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Introduction

Cardiac metabolism and function are intrinsically linked. 
High-energy phosphates occupy a central and obligate 
position in cardiac metabolism, coupling oxygen and 
substrate fuel delivery to the myocardium with contractile 
work. This insight underlies the widespread use of stress 
echocardiography to document inducible wall motion 
deficits and interpret these as ischaemia: the ischaemic 
cascade begins with a metabolic perturbation, climbs 
through diastolic dysfunction, inducible regional wall 
motion abnormality, and culminates in electrocardiographic 
changes and symptoms. However, inducible ischaemia is 
not the only metabolic problem that may or may not be 
phenotyped in the heart with impaired contractile reserve. 
Other deficits in high-energy phosphate metabolism (not 
secondary to supply-demand mismatch of oxygen and 

substrate fuels) can be documented, and are of particular 
interest when found in the context of structural heart 
disease. 

This review introduces the scope of deficits in high-
energy phosphate metabolism that may be observed in the 
myocardium, how to assess for them, and how they might 
be interpreted. 

The significance of high-energy phosphates in 
myocardial work and energy homeostasis

A high-energy phosphate molecule carries a phosphoryl 
bond (~P) with a large energy of hydrolysis. Reactions 
that add water and split off the phosphoryl group release 
inorganic phosphate (Pi) and lots of energy (J/mol). These 
exergonic reactions (negative free energy, or delta G) 
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are coupled in living cells to molecular motors which 
require energy to do work. The most important molecular 
motors in the heart include sarcolemmal Na+-K+-ATPase, 
sarcoplasmic reticulum Ca2+-ATPase, and myosin-ATPase. 
Each carries a thermodynamic requirement for a work cycle 
to proceed spontaneously (i.e., the sum of the negative 
delta G of ~P hydrolysis and the positive delta G of the 
work-performing enzyme must be less than zero). Without 
~P availability, the cell cannot do work or maintain ionic 
homeostasis as ~P hydrolysis is obligate for both. This is 
also referred to as contractile coupling: 

Cardioventilatory coupling → Oxygen delivery → ~P → 
Sarcomere shortening → External work. 

The predominant high-energy phosphate is ATP, which 
has two ~P bonds. ATP hydrolysis results in ADP + Pi. 
While ADP could be hydrolysed to AMP, and AMP to 
adenosine, in practice cells try to avoid this as adenosine 
is lost easily from cells by diffusion and ATP is resource-
intensive to synthesise de novo (requiring nine ATPs) (1). 
Cells also try to maintain very high [ATP]/[ADP][AMP] 
ratios (phosphorylation potentials) near work-performing 
enzymes. A first reason for this is that the free energy of 
ATP hydrolysis is proportional to the [ATP]/[ADP][Pi] 
ratio.

[ ] [ ][ ]{ }0
ATP ATPG ΔG ln / iRT ATP ADP P∆ = −  [1]

A second reason is that high cytosolic [ADP] antagonises 
myosin-actin cross-bridge cycling, and raises the left 
ventricular end-diastolic pressure-volume slope (2,3). 
Third, [AMP] is a marker of metabolic stress, and directly 
activates AMP-activated protein kinase (AMPK). AMPK is 
an evolutionarily-conserved enzyme that acts as a sensor of 
metabolic stress and responds by activating ATP-supplying 
catabolic pathways and suppressing ATP-requiring 
anabolic pathways (4,5). Fourth, Pi is a direct stimulant 
of glycogenolysis and anaerobic glycolysis (at the level of 
phosphofructokinase). Glycogen is the only carbohydrate 
store in cardiomyocytes and is metabolically costly to 
synthesise and to maintain (attracting much more water 
mass than lipid per unit energy stored). 

In practice therefore, several mechanisms have evolved 
to maintain high-energy phosphate metabolic (i.e., 
energetic) homeostasis – high [ATP]/[ADP][AMP] ratios 
and low [Pi] in the cytosol. Conversely, metabolic stressors, 
whether they be exercise, ischaemia, pressure-overload, or 
glucose-deprivation, may or may not perturb this energetic 
signature depending on their severity, duration and the 
existing metabolic reserve. 

The first defence against metabolic stressors a high-
energy phosphate-donor (phosphagen) system, which in 
vertebrate muscle is the creatine kinase (CK) system (6). 
CK buffers ATP concentrations in cells during fluctuations 
in energy demand. The CK system comprises a phosphate 
donor (phosphocreatine, PCr), a phosphate acceptor (free 
creatine, Cr), and a catalytic enzyme (CK). 

2 2MgADP +PCr H MgATP creatine− − + −+ +
 [2]

The phosphagen PCr was the first recognised high-energy 
phosphate (7), and is enriched in cardiac muscle leading to 
a PCr/ATP ratio of around 2:1 at baseline. The reversible 
transfer of ~P from PCr to ADP (‘phosphotransfer’), 
established in 1935 (8), effectively triples the ~P reserve that 
the cardiomyocyte will willingly expend before requiring 
more ATP resynthesis (from fuel and oxygen) or the 
hydrolysis of ADP or AMP. CK enzymes are also enriched 
in muscle. CK isoenzymes may be cytosolic, where they exist 
primarily as homodimers (CK-MM is the predominant form 
in adult hearts, with CK-MB and -BB much less common), 
or mitochondrial, where they exist primarily as octamers 
(mitochondrial-CK). Cytosolic isoenzymes primarily catalyse 
the forward, or ATP-producing direction of the equilibrium 
reaction, while mitochondrial isoenzymes catalyse the PCr-
producing direction. 

A second line of defence is adenylate kinase, which 
catalyses the equilibrium 2ADP ↔ ATP + AMP. This is of 
minor importance in the healthy heart, where it accounts 
for around 10% of total phosphotransfer (9), but becomes 
more important in ischaemia, where it  effectively allows 
a second ~P to be used from ATP, and in animal heart 
failure models, where it can take on more of total cellular 
phosphotransfer to compensate for any reduction in total 
CK activity. 

Third and fourth lines of defence have already been 
mentioned: AMPK activation and activation of anaerobic 
carbohydrate catabolism. 

A less immediate form of defence is cytoarchitectural 
remodelling to reduce the diffusion time for ATP and 
ADP between mitochondria and myofibrils. ATP may be 
delivered to (and ADP removed from) sites of use by simple 
diffusion (10) and facilitated diffusion (the CK system) (11). 
Although there is disagreement over the relative importance 
of these processes in cardiac muscle (12), a reduction in 
diffusion distances between mitochondria and myofibrils 
has been observed in M-CK/mitochondrial-CK double 
knockout mouse myocardium (13). The promotion of “direct 
channelling” of adenine nucleotides between organelles 



627Cardiovascular Diagnosis and Therapy, Vol 10, No 3 June 2020

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(3):625-635 | http://dx.doi.org/10.21037/cdt-20-275

in the setting of reduced CK activity may underlie the 
preservation of cardiac function under moderate workloads 
in these hearts [reviewed (14)].  

In summary, ATP occupies a central and obligate position 
in cardioventilatory coupling to external work. Changes in 
ATP homeostasis should be interpreted in the context of 
the prevailing metabolic stress and may indicate problems 
with metabolic reserve. Observed deficits in high-energy 
phosphate metabolism may include any or all of: reductions 
in [ATP][PCr]/[ADP][Cr], total CK activity, and rises in [Pi] 
and [AMP].

Techniques for interrogating myocardial high-
energy phosphate metabolism

From 1927-77, biochemical analysis of rapidly flash-frozen 
myocardial biopsies was the only method to interrogate 
energetic homeostasis. This remains the gold standard for 
assessing total CK activity, total creatine concentration 
(PCr + Cr), and total adenine nucleotides (ATP + ADP +  
AMP). However, the lability of PCr and ATP means that 
PCr, ADP, and Pi cannot be reliably quantified using 
techniques inherently destructive of the tissue under study 
[ATP comprises ~85% of total adenine nucleotides (2)]. 

31Phosphorus (31P)-magnetic resonance spectroscopy 
(MRS) is a powerful and non-invasive technique to assess 
cellular energetics and is complementary to biochemical 
analysis. All magnetic resonance techniques include two 
fundamental steps: firstly excitation of the nuclei of interest 

using radiofrequency (RF) energy, and secondly the 
recording of induced current in the receiver coils of the 
scanner after the RF energy is switched off. The amplitude 
of the signal received is proportional to the number of 
nuclei within the interrogated volume of tissue. In MRS, 
the signal induced in the receiver coils by the relaxing and 
dephasing nuclei, or ‘free induction decay’, is simplified by 
transforming it to the frequency domain (Figure 1). 

A 31P spectrum is created by plotting signal amplitude 
against ‘chemical shift’ (δ), that is, resonant frequency (ν) 
relative to a reference frequency (νref). The units of chemical 
shift are parts per million, ppm:

( ) 6 ref

ref

ppm 10 ν νδ
ν
−

= ×  [3]

Chemical shift is field strength-independent and arises 
because different nuclei are shielded by nearby electrons 
to different extents. This shielding causes the effective 
field strength, and thus resonant frequency, to vary slightly 
between nuclei. For example, the 1H spectrum of a volume 
of pure water should have a single peak, as all protons 
experience equivalent electron shielding. However, the 1H 
spectrum of a volume of pure ethanol (CH3CH2OH) has 
three peaks, with amplitudes in a 3:2:1 ratio, corresponding 
to the CH3-, CH2-, and -OH environments. 

At clinical field strengths [1.5 and 3 Tesla (T)], the 
resonant frequencies of 1H, 13C, 23Na, 31P are widely 
separated and these nuclei cannot be co-excited. However, 
the resonant frequencies of moeities containing 31P nuclei 

Figure 1 Cardiac 31P-MRS spectrum obtained from a healthy volunteer at 7T (15). A signal in the spectrum is referred to as a 
resonance. Resonances with chemical shifts more positive than a reference resonance are said to lie downfield of the reference. 2,3-DPG, 
2,3-diphosphoglycerate in red blood cells; PDE, phosphodiesters; Pi, inorganic phosphate; PCr, phosphocreatine; γ-ATP, β-ATP, α-ATP, 
adenosine triphosphate ~P bond in order of descending distance of the ~P bond from adenosine; NADH, nicotinamide adenine dinucleotide.
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are much closer together—within 25 ppm of each other. 
Plotting the signal amplitudes against their chemical shifts 
relative to a designated reference nucleus (PCr) results in 
six visible peaks at 3T: 2,3-DPG/Pi, PDE, PCr, and three 
ATP peaks (Figure 1). 

At 3T, a cardiac 31P spectrum can be obtained from a 
3D-localised myocardial voxel (nominal size 5.6 mL) in 
11 minutes at our institution (16). In practice, 20 minutes 
are required if preparatory steps are included. A longer 
acquisition time would be required if smaller voxels or 
greater signal-noise-ratio was desired. Such spectra are 
most commonly used to estimate the PCr/ATP ratio as 
a key index of energetic state, but in theory could also 
be used to calculate absolute metabolite concentrations, 
intracellular [Mg] (from the shift of β-ATP relative to PCr), 
and pH (from the shift of Pi relative to PCr) (17). While 
signal-noise ratio improves linearly with field strength, 
these gains are only realised if increases in field strength 
inhomogeneity, RF energy deposition, RF thermal noise 
and RF energy requirements are handled acceptably (18). 
The potential of 31P-MRS at 7T probably lies in the 
quantification of [Pi], a molecule that is normally obscured 
by the overlapping blood 2,3-DPG signal and/or too small 
(low in concentration) to be reliably detectable.

The key advantages of 31P-MRS over biochemical 
techniques for the assessment of cardiac energetic state are 
firstly that it is non-destructive (allowing repeat assessments 
over time and correlation with contractile function), and 
secondly that it can assess the labile PCr and Pi molecules. 
As a result, 31P-MRS has been used to study the effects 
of acute changes in blood flow (19-22), workload (23), 
substrate availability, and to assess CK activity (2,3,24,25). 

The key limitation of 31P-MRS is an inherently low 
signal-noise ratio (roughly 105-fold reduced compared with 
1H-MRS). Spectral quality can be improved by using surface 
coils placed as close as possible to the myocardium, although 
techniques to minimise contamination by skeletal wall 
muscle are also required. 31P-MRS is relatively insensitive 
to metabolites at low concentrations (< ~0.5 mM), and 
long acquisition times. In addition, current use of many 
surface coils results in relative insensitivity to the posterior 
myocardial wall due to the greater distance from the coil. 
31P-MRS is therefore better suited currently to studying 
global rather than regional myocardial pathologies, although 
technical work continues to achieve whole-heart excitation. 

The respective intracellular concentrations of PCr, free 
creatine, ATP, ADP, AMP, and Pi are on the order of 24, 16, 
12, 0.04, 1, and 0.1 mM (1,26,27). In particular, the difficult 

metabolites are: Pi (overlapped by 2,3-DPG), β-ADP and 
α-ADP (whose chemical shifts overlap those of  γ-ATP and 
α-ATP respectively), and AMP (a phosphomonoester which 
lies downfield of (i.e., to the left of) Pi on a 31P spectrum 
(Figure 1) and is overlapped by glucose-6-phosphate, 
phosphocholine and phosphoethanolamine). 31P-MRS is 
also insensitive to non-mobile metabolites (as fixed nuclei 
have shorter spin-spin relaxation times (T2s), and spectral 
line-width is proportional to 1/T2), but in practice this is 
helpful as it silences signal from DNA- and macromolecule-
bound nucleoside triphosphates.

In addition to acquiring snapshots of relative metabolite 
concentrations at single timepoints, 31P-MRS can also be 
used to interrogate dynamic reaction kinetics. In its simplest 
form, this can be performed by acquiring sequential 31P 
spectra before and after a metabolic perturbation such as 
exercise. Analysis of energetic and pH recovery rates can 
enable estimation of ATP synthesis rates (by oxidative 
phosphorylation and/or CK) though to date, such studies in 
humans have been restricted to skeletal muscle (17). 

A second dynamic 31P-MRS technique employs 
magnetisation saturation transfer. Saturation transfer 
techniques involve introducing a magnetic resonance label 
(i.e., a non-equilibrium nuclear spin magnetisation) onto 
a molecule of interest using selective RF pulses. If the 
chemical exchange is rapid enough, this magnetic label 
transfers to other moieties before it is relaxed by the spin-
lattice (T1) mechanism. By observing this transfer, the rate 
constants for chemical exchange can be determined. These 
rate constants are unusual as they are unidirectional and 
first-order, even though the underlying reaction may not be.

Two broad classes of magnetisation transfer experiment 
include the steady state experiment, where the label is 
continuously introduced and signal is recorded after the 
system comes to a new steady state, and the temporal 
experiment, where the label is introduced transiently. 
The principles underlying these experiments have been 
reviewed elsewhere (28-31). The only reaction studied to 
date in human myocardium is the CK reaction in the ATP-
producing direction, which requires continuous selective 
saturation of the γ-ATP resonance. Human studies date from 
2002, and have employed four sequences at two centres: 
four-angle saturation transfer at 1.5T (32) and 7T (33),  
and triple repetition time saturation transfer (15,34,35) and 
two repetition time saturation transfer (36), both at 3T. All 
measure the unidirectional forward rate constant of CK, 
kf, which when multiplied by substrate concentration (kf 
× [PCr]) gives total (not net) unidirectional forward flux. 
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The reverse CK reaction could in principle be studied, as 
could ATP hydrolysis, but in practice the requirement to 
concomitantly and selectively saturate Pi remains limiting. 

A third technique, 18O-assisted 31P-MRS (37,38) is 
able to infer net reaction rates by following the rate of 
incorporation of 18O (provided from 18O-labelled water) to 
Pi (ATP hydrolysis), to γ-ATP (ATP synthesis), and then to 
either PCr (CK), β-ADP and β-ATP (adenylate kinase) or 
glucose-6-phosphate (hexokinase). Its key disadvantage is 
that it requires mass spectrometry i.e., ex vivo tissue samples. 

In summary, the above techniques collectively allow 
interrogation of cardiac total creatine, total CK activity, 
and total adenine nucleotide pool (biopsy), and of PCr, 
ATP, Pi, pH, CK kf, and CK total unidirectional flux 
in either direction (31P-MRS). The remaining moieties 
desirable to quantify are ADP and free creatine. ADP is 
usually calculated by rearranging the equation for the CK 
equilibrium constant, with the proviso that this extrapolates 
from a constant established in vitro for rat CK (39,40). Free 
creatine may be calculated by subtracting absolute [PCr] 
determined non-invasively (using a within-study tissue 
calibration) from total creatine by biopsy; it may also be 
non-invasively estimated by 1H-MRS. 

Deficits in high-energy phosphate metabolism 
that may be observed in the myocardium

Human cardiac 31P-MRS studies have documented 
reductions in myocardial PCr/ATP ratio in established 
non-ischaemic cardiomyopathy (41-43), heart failure 
with preserved ejection fraction (44), hypertrophic 
cardiomyopathy (45,46), hypertensive hypertrophy with 
or without heart failure (47,48), severe aortic stenosis with 
or without heart failure (49-51), moderate aortic stenosis 
with preserved left ventricular systolic function (author’s 
data, under review), severe primary mitral regurgitation in 
patients with an indication for operative repair [(52) and 
author’s own data], short term high fat diet (53), obese 
volunteers (54,55), and patients with insulin resistance (56) 
or diabetes mellitus but no known heart disease (57-61). 
There is also a weak negative correlation with age (62-65). 

A reduction in the PCr/ATP ratio is therefore an 
energetic signature common to numerous conditions which 
can predispose to heart failure, and this finding is supported 
by studies in animal models. Furthermore, a reduction in 
the PCr/ATP ratio predicts prognosis in non-ischaemic 
cardiomyopathy (66), and may improve with heart failure 
treatment (41), after aortic valve replacement (51,67), after 

weight loss (68), or with trimetazidine in heart failure (69), 
suggesting that reduced PCr/ATP ratio is not necessarily 
simply an age-related phenomenon, and that energetics may 
be central to disease pathogenesis. 

Several studies have also documented further reductions 
in PCr/ATP in the face of acute metabolic stress, most 
commonly using sustained catecholamine infusions at 
moderate dose (54,59,70). However, not all studies in 
diabetes mellitus (71) or heart failure document reduced 
PCr/ATP ratio at rest (72-75) or during dobutamine 
stress (76)—this may partly reflect a pseudo-normalisation 
of the resting ratio in late disease when absolute ATP 
concentrations reduce, and may also reflect differences in 
body weight, disease stage or degree of stress. 

The above references are only a selection of studies 
performed; there is a body of animal and human work 
not discussed here which complements non-invasive 
phenotyping with biopsy assessments of total CK 
activity, CK isoform composition, total creatine, and/
or total adenine nucleotide pool, or assesses metabolic 
factors upstream of ~P generation (substrate handling, 
mitochondrial capacity, oxidative phosphorylation). For 
this, the reader is referred to further reviews (77-86). 

The underlying mechanism for a reduction in PCr/
ATP ratio is not firmly established in all cases, but two 
explanations have merit in myocardial hypertrophy 
secondary to chronically increased work. Firstly, there 
may be increases in ATP consumption rate per gram of 
myocardium, so shifting the CK equilibrium to the right 
(toward ATP) in the presence of limited phosphotransfer 
reserve. Secondly, there may be a fall in cardiomyocyte 
total creatine concentration. The cell may then respond 
to this by shifting the equilibrium to the right, prioritising 
the ATP/ADP ratio at the cost of the PCr/free creatine 
ratio. Underlying this there may be changes in the CK 
equilibrium constant, which has not been assessed in human 
muscle or in different disease states (39,40). 

Two more recently described variables in human 
myocardium are CK kf and CK total unidirectional 
forward flux. Flux is arguably a more important variable 
than metabolite pool size (PCr, ATP etc) as it correlates 
more closely with contractile reserve (23,87-89), post-
ischaemic functional recovery (37,90), and end-diastolic 
wall tension (2,3,24). Greater flux dampens projected beat-
to-beat fluctuations in metabolite pool sizes, particularly of 
ATP and ADP [see (91) for assumptions implicit to in silico 
models]. Unidirectional forward flux was reduced in human 
hypertensive hypertrophy with failure (48), non-ischaemic 
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cardiomyopathy (72,92), and ischaemic cardiomyopathy (73), 
and this reduction in CK forward flux correlated with non-
invasively estimated cardiac work (93) and carried prognostic 
value (72). These data are consistent with biopsy studies 
documenting reductions in total CK activity in human non-
ischaemic cardiomyopathy (94-97) and severe aortic stenosis 
with or without heart failure [(98) and author’s own data, 
under review], and with within-patient correlations of global 
circumferential strain by MRI, LV ejection fraction, and LV 
end-systolic volume index against biopsy-determined total 
CK velocity in patients with severe aortic stenosis (author’s 
data, under review). 

Quantifying [Pi] reliably is an important goal in 31P-MRS 
research because [Pi] is required to estimate the free energy 
of ATP hydrolysis. It is also important kinetically, both 
limiting the rate of ATP hydrolysis (99) and stimulating 
oxidative phosphorylation (100), and at the level of substrate 
selection, stimulating glycogen catabolism and glycolysis. 
Splitting (and growth) of the Pi peak to indicate two 
compartments, each with different pH, is a classic indicator 
of acute ischaemia (101-104). In human myocardium a few 
groups have described the Pi/PCr ratio: in hypertrophic 
cardiomyopathy (75,105-107) and in non-ischaemic 
cardiomyopathy and healthy volunteers with and without 
dobutamine stress (unpublished). However, reliable signal 
from non-hypertrophied myocardium is only obtainable at 
the present time at 7T and further technical development is 
required.

The meaningfulness of these mostly small cross-sectional 
studies is somewhat paradoxical. On the one hand they afford 
a unique insight into ~P, a central and obligate step linking 
metabolic and contractile reserve. The recent observation 
of an increase in resting myocardial kf and reduced 
responsiveness of kf to acute dobutamine stress in obese 
volunteers, with reversal of the energetic phenotype after 
weight loss (55) raises intriguing questions about whether 
energetic improvement may underlie the reduction in atrial 
fibrillation burden also observed with weight loss (108).  
On the other hand, longitudinal studies of energetic 
phenotype controlling for covariates with known prognostic 
impact are lacking in a contemporary heart failure (or at-
risk) cohort. Empa-Vision (NCT03332212), a longitudinal 
study of the effect of empaglifozin on energetic and 
contractile phenotype in non-ischaemic heart failure, is 
an example of the kind of study required to address this. 
The effect of cardiotoxic chemotherapy upon myocardial 
energetics is also relatively unstudied. 

The relevance of a depressed metabolic phenotype to 

clinical management remains an open question, as it is not 
known to what extent an abnormal energetic phenotype 
permits or maintains the heart failure syndrome, versus 
simply being a bystander consequence (109). While 
upregulation of certain elements of the CK system can 
be cardioprotective [e.g., CK isozymes (110-113), total 
creatine (114,115)] and knockout (116) or inhibition (117) 
of certain elements can be detrimental, the same can be 
said for many parallel processes within the cardiomyocyte 
and do not resolve the question. Rather, they illustrate the 
consequence of extremes of energetic deficiency. Clinical 
trials of interventions that increase CK activity (118) or 
normalise energetic phenotypes (deliberately or not) are a 
required but as yet missing piece to this puzzle. 

Conclusions

31P-MRS affords a unique window into high-energy 
phosphate metabolism, which is an obligate step linking 
myocardial oxygen and fuel delivery with contractile work. 
Most work to date has focussed on the PCr/ATP ratio in 
various preclinical and disease states, but further work is 
required to understand not just whether it is depressed, but 
why, and to explore CK kf and Pi more thoroughly. Together 
with better 1H-MRS assessment of cardiac total creatine, 
non-invasive assessment of the amount of energy available 
from ATP would then become within reach. Ultimately, 
longitudinal studies assessing the effects of myocardial 
therapies on contractile phenotype, energetic phenotype, 
and clinical events (prognosis) will be required to assess to 
what extent energetic dysfunction is a bystander versus an 
active problem in myocardial dysfunction and heart failure. 
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