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Introduction

Heart failure secondary to coronary artery disease is 
a major health issue in the western world affecting a 
substantial percentage of the population, and inducing 
major costs to the healthcare systems (1,2). The assessment 
of ischemic and potentially viable myocardium plays an 
important role in planning of revascularization of patients 
with critical coronary atherosclerosis (3-5) as myocardial 
revascularization in patients with viable myocardium has 
shown to improve ventricular dysfunction and long-term 

survival (6,7). 
Assessment of myocardial perfusion and viability can 

be performed by non-invasive modalities including PET, 
SPECT, and with gadolinium-DTPA-enhanced MRI for 
detailed assessment and differentiation of viable versus non-
viable myocardium (8-13). The nuclear techniques and MRI 
are advanced time-consuming and expensive techniques, 
which are not readily available everywhere. Furthermore, 
several patients groups cannot be investigated with e.g., MR 
due to claustrophobia, pacemaker or metal devices.

Coronary artery disease is increasingly diagnosed with 
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cardiac computed tomography (CT) scanning and this 
has increased the interest in CT as an imaging modality 
to diagnose myocardial viability based on the kinetics of 
intravascular contrast agents (14). Contrary to MRI the 
advantages of cardiac CT include superior spatial resolution 
and the ability to assess myocardial lesions in relation to 
estimating viability in the same dataset (15-17). Furthermore, 
cardiac CT is widely available and has a considerably 
shorter acquisition time compared to MRI, lower cost and it 
is accessible for almost all patients including e.g., pacemaker 
patients who are not candidates for MRI.

A number of previous animal studies have shown the 
clinical potential of CT to diagnose viability and that the 
extent of myocardial damage and microvascular obstruction 
can be assessed by cardiac CT (18-20). However, these 
studies do not accurately evaluate on an individual basis 
the potential emerging clinical usage of cardiac CT to 
differentiate viable from non-viable tissue. In particular 
the regional wall motion abnormalities have not been 
considered. Thus, the aim of the present study was to use 
dynamic CT with optimal spatial and temporal resolution to 
investigate the pattern of contrast distribution over time in 
pigs with experimentally induced antero-septal myocardial 
infarction and evaluate the uptake/washout kinetics in the 
infarcted myocardium and remote healthy myocardium as 
an indicator of viable myocardium. Dynamic CT acquisition 
allows us to use the regional wall motion abnormalities for 
correlating impaired contraction with the infarct zone.

Methods

We used a porcine model since the human and the porcine 
hearts are anatomically and physiologically similar (21). The 
surgical procedures were conducted after approval from the 
Danish Inspectorate of Animal Experimentation.

Chronic porcine infarct model

Twelve 50 kg female mixed Danish landrace and Yorkshire 
pigs were used in this study. Each animal received an 
injection with dormicum (0.5 mg/kg) and stresnil (0.5 mg/kg) 
before transport from the farm facilities to the laboratory 
where the animals were further pre-anesthetized with 
midazolam (0.5 mg/kg) and ketaminol (2.5 mg/kg) to 
allow endotracheal intubation and coupling to a ventilator. 
Anesthesia was maintained with 1.5% inhalational 
sevoflurane (mean alveolar concentration: 1-2%) and 
analgesia with intravenous fentanyl infusion (1-2 μg/kg) at 

the beginning of surgery and before balloon-occlusion. The 
entire procedure was performed with ECG monitoring. To 
prevent both ventricular and supraventricular arrhythmias, 
amiodarone (50 mg) was injected intravenously before 
surgery.

The left common carotid artery was surgically exposed 
to insert a uni-directional 7F sheath. Balloon occlusion of 
the left anterior descending artery was performed guided 
by fluoroscopy. Through a launcher catheter a guide-wire 
was placed in the target coronary vessel and a 2.5-3.0 mm 
balloon was positioned and inflated immediately distal to 
the first diagonal branch (Figure 1). After 60 minutes of 
occlusion, the balloon was deflated, and the guide-wire and 
catheters were withdrawn and the sheath removed from the 
vessel which was ligated to secure hemostasis. All twelve 
pigs developed ventricular fibrillation during the balloon 
occlusion. Eight pigs were successfully defibrillated. Four 
pigs died from intractable VF. The neck incision was closed 
in three layers and the pig was aroused and transported back 
to the farm when its condition was considered acceptable. 

Dynamic CT protocol

After 6 weeks all pigs (N=8) underwent dynamic CT scans 
using an intravascular contrasts agent. Pre-anesthesia and 
anesthesia followed the same procedure as during surgery 
and the pigs were ventilated mechanically during the 
CT scan. The CT scans were obtained using a Siemens 
Definition Flash, Siemens Healtcare, Erlangen, Germany. 
We performed helical, retrospective ECG-gated CT 

Figure 1 Balloon occlusion guided by fluoroscopy of the LAD 
distal of the first diagonal branch.
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scans in the supine position at 20 s, 1, 3, 5, 8 and 12 min 
after contrast infusion. The scanner settings were 120 kV, 
785 mAs, gantry rotation speed of 0.28 s, pitch 0.23 and 
a detector collimation of 66 mm × 0.6 mm with a flying 
focus spot. Slice thickness was 0.75 mm and slices were 
reconstructed with 20% overlap. The contrast media was 
optiray 350 mg/mL and 90 mL was used. Contrast was 
injected by a multiphase contrast administration regime  
(6 cc/s) immediately followed by a saline flush (5 cc/s). A test 

bolus of 10 mL was performed to obtain best timing for the 
arterial phase app. 20 s. Images were reconstructed using 
dedicated cardiac filters (B26f and I26f) and reconstruction 
was performed for every 5% of the cardiac cycle to get 
4D image loop sets. All pigs received 400 microgram of 
nitroglycerine sublingually just prior to contrast injection in 
order to mimic the clinical setting.

CT image analysis

Images were analyzed on a dedicated workstation using 
Siemens a Multimodality Workplace, syngo 2009B. 
The dynamic 4D CT images enables identification of 
dysfunctional myocardium, and both dynamic short and 
long axial images were evaluated for infarct location 
(Figures 2,3). Slice thickness was 0.67 mm. The window 
centre and width were fixed at 200 and 1,000 Hounsfield 
units (HU), respectively. 

Measurements of HU in the infarct zone and the normal 
lateral wall were performed at 20 s, and at 1, 3, 5, 8 and 
12 min after contrast injection. The zone of infarction was 
defined as the hypo-enhanced sub-endocardium in the 
antero-septal wall without wall-motion. It was identified 
using still-images (Figures 2,3) combined with dynamic 
images. The location was confirmed by post mortem 
macroscopic inspection after removal of the heart. Previous 
studies have documented and published histological data 
confirming the extent of myocardial infarction (20). The 
remote myocardium in the lateral wall was defined by 
normal contractility and clearly away from the infarct 
zone. Due to its thin myocardium, the posterior wall 
was not selected to reduce noise. At all time-points HU 
measurements were performed in three different adjacent 
levels of the heart in the infarct zone and the zone of 
remote myocardium. Each measurement region of interest 
constituted 100-104 pixels. 

Statistical analysis

The data were analyzed using STATA software version 
10.0. ANOVA was used to test overall difference between 
regions. Student’s t-test was used to detect statistically 
significant differences in attenuation values between the 
anterior wall with infarction and the lateral wall. Results are 
reported as means [standard deviation (SD)] for continuous 
variables and a P value of less than 0.05 indicated statistical 
significance. The ratio between the attenuation values of 
the two zones was calculated. We used a paired t-test to 

Figure 2 Transverse CT image of 6-week-old infarct in a porcine 
model 20 s after contrast injection demonstrating the hypoperfused 
and thin infarct zone (arrow) in the antero-septal wall and the 
normal lateral wall. CT, computed tomography.

Figure 3 Transverse CT image of left ventricular 12 min after 
contrast injection. Black arrow indicates the zone of infarction. 
CT, computed tomography.



353Cardiovascular Diagnosis and Therapy, Vol 4, No 5 October 2014

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2014;4(5):350-356www.thecdt.org

investigate significant differences comparing the mean ratio 
between early and late attenuation values measurements in 
the infarct to that in the lateral wall.

Results

Four pigs developed ventricular fibrillation and died during 
balloon occlusion. Consequently, eight pigs survived 
for cardiac CT follow-up at 6 weeks. Results from HU 
measurements in the infarcted and remote myocardium of 
the lateral wall are shown in Table 1 and depicted in Figure 4.  
At baseline (20 s) attenuation values in terms of HUs 
was significantly lower in the infarct than in the remote 
normal lateral wall {27 [12] vs. 84 [15], P<0.001}. Mean 
attenuation values for both zones reached its maximal 
intensity at 1 minute {95 [26] and 93 [16], P=0.846}. For the 
remaining time points the infarcted zone showed higher 
HU values (P<0.01). These results indicate that the remote 
myocardium showed a more rapid uptake and washout of 
contrast compared to the infarct zone.

The ratio between attenuation values in the infarcted 
and the remote myocardium was calculated at all time-
points. As shown in Figure 5, the ratio was initially low 
(0.31) but increased abruptly after 1 minute. This would 

indicate that accumulation of contrast is decreased in the 
infarcted myocardium and once trapped in the coronary 
microcirculation of the infarct clearance is decreased from 
this region.

The ratio between early (20 s) and late (12 min) 
attenuation values would depict the ability to accumulate 
and release contrast in the infarct and in the remote 
myocardium. On average the ratios are very different 
0.33 vs. 1.44 (P<0.001). As depicted in Figure 6 there is no 
overlap between the ratios between the two areas in all the 
animals. All infarct zones have a ratio between early and late 
HU values above 1 and all normal areas has a ratio below 1. 

Discussion

The major finding in the present study is that viable 
myocardium is easily and accurately assessable with 
dynamic cardiac CT in a chronic infarct setting. Our results 
confirmed that infarcted myocardium was characterized 
by initial hypo-enhancement compared to the remote 
myocardium. Both zones exhibited an early peak in 
attenuation values at one minute after contrast injection. 
Conversely, at the following time-points values were 
lower in the remote myocardium. This likely reflects 

Table 1 Hounsfield unit values in the infracted and non-infracted areas as a function of time after contrast injection

Time 20 s 1 min 3 min 5 min 8 min 12 min

HU infarct ± SD 27±12 95±26 94±20 92±26 86±14 81±13

HU lateral wall ± SD 84±15 93±16 79±9 71±14 64±9 58±8

HU, Hounsfield unit; SD, standard deviation. 
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the formation of collagenous scars in the infarct zone 
which causes alteration of the characteristics of contrast 
distribution with slower wash-in and wash-out kinetics. 

In the setting of chronic ischemic heart disease, 
assessment of residual myocardial viability is of major 
clinical importance for patients with reversible myocardial 
dysfunction since it provides the rationale for either 
aggressive revascularization or conservative medical 
therapy and also predicts the likelihood of functional 
improvement (5,22). The fact that cardiac CT will yield 
accurate anatomical and in particular coronary anatomical 
information in the same dataset is important clinically. 

Other studies yield support to our findings, and 
quantitative assessment of infarcted myocardium mass by 
MRI and CT correlates (23,24). Lardo et al. found that CT 
was able to distinguish dysfunctional but viable myocardium 
from non-viable myocardium by comparing attenuation 
values in an occlusion/reperfusion animal study with 
MRI. While these studies have demonstrated a tendency 
towards a more rapid washout, our ratio (Figure 6) 
allows the distinction between viable and non-viable tissue 
on an individual basis. Lardo et al. and Brodoefel et al. 
found an attenuation value peak in the infarct zone after 
5 min. However, the imaging protocol of these studies 
did not include time-points between 0 and 5 min, and the 
differences in early perfusion as elucidated by the present 
study was not identified. 

In our study all eight myocardial infarcts were chronic, 
i.e., no ongoing ischemia since the affected myocardium 
was reperfused immediately following balloon occlusion. 
The sensitivity for diagnosing viability with CT has 

been suggested to be optimal for chronic infarctions (25). 
However, recent studies have also shown promising 
diagnostic accuracy for more acute ischemia (26). A 
major concern in adopting CT for assessment of viable 
myocardium is the additional radiation exposure. In our 
study a 120 kV protocol was used, but several studies shows 
promising results with as low as 80 or 90 kV protocols for 
the assessment of viable myocardium (27,28). This would 
lower the radiation considerably and with only one extra 
low dose scan after 10 min e.g., flash scan as suggested 
by our data, this will add very little in terms of radiation 
exposure. Furthermore, in a clinical setting using new edge 
detection methodology would make it possible to use as low 
as 4% radiation for left ventricular measurements. This will 
be adequate for measuring the ejection fraction and evaluate 
the contractility over time. 

CT imaging was performed 6 weeks after reperfusion, to 
insure the infarction process was complete and no further 
remodeling was ongoing. As stated above, our infarcts are 
chronic infarcts, which is preferable since it reflects the 
relevant patient group we want to investigate. Viability 
imaging is not important in the case of acute myocardial 
infarction, where vascularization must be performed rapidly. 
However, it is relevant in chronic patients, for instance 
patients suffering from dilated cardiomyopathy. The occlusion 
time and our time intervals were based on experience from 
previous studies and by the dynamics of contrast distribution, 
since it shows the most rapid changes in attenuation values 
at the earlier time-points (20,24,29). These different time-
points do not provide direct cut-off discrimination between 
infarcted vs. remote segments of myocardium. However, a 
cut-off (1) is provided by the calculated ratio between early 
and late attenuation values (Figure 6) also indicating that only 
two measurements are required.

Furthermore, in the clinic situation it can be difficult to 
correlate the dynamic images obtained by echocardiography 
with CT images. Using a dynamic CT imaging protocol 
such correlation problems can be avoided.

In addition to the assessment of the myocardial viability 
patterns, there are several other clinical implications of 
cardiac CT. Because fast rotation time and multi-slice 
acquisition with a high spatial resolution are combined, 
cardiac CT could, in an acute setting, provide rapid 
information about changes in dynamic parameters of 
myocardial infarction such as alteration of overall left 
ventricular geometry and—although not specifically 
addressed in the present study—simultaneous changes in 
coronary artery morphology. The results provided by our 

Figure 6 The ratio between early (20 s) and late (12 min) 
Hounsfield unit measurements in each pig for both the infarct 
zone and lateral wall.
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study confirms that dynamic CT viability imaging can 
provide the information for the planning of therapeutic 
strategy of myocardial infarction, whether to choose 
aggressive revascularization or conservative medical therapy. 
Since CT systems are standard equipment in almost every 
emergency department this method of assessment will likely 
be cost-effective. 

Study limitations

The present study was conducted in pigs without coronary 
arthrosclerosis. Clinically, infarct characterization in patients 
might not be as homogeneous. Furthermore, all eight 
myocardial infarctions present in the study population were 
chronic (6 weeks). It is not well described how the applications 
will perform in sub-acute infarct or in an acute setting.

Using sevoflurane might have resulted in a smaller infarct 
than if using another anesthetic but the infarcts had a suitable 
size and if larger infarcts were induced the survival rate would 
have been even lower. Also, no gold standard modalities were 
used for comparison purposes and HU measurements was 
used as a surrogate marker for real contrast concentrations. 
Finally, image analysis is to some extent subjective although 
both motion and several planes were averaged. Further 
studies will need to address the issue of reproducibility and 
inter-observer uniformity, and possibly introduce a method 
of automated quantitative data analysis. 

Conclusions

In conclusion cardiac CT seems to provide useful viability 
information with a slightly modified imaging protocol to 
the standard coronary anatomy image acquisition. This may 
hold promise to be a cost-effective way of obtaining clinical 
information in a precise manner in patients with severe 
coronary artery disease. 
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