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Abstract: In the last decades, significant advances have been made in the preventive approaches to 
cardiovascular disease. Even so, coronary artery disease remains one of the main causes of morbidity and 
mortality worldwide. Invasive imaging modalities, such as intravascular ultrasound or optical coherence 
tomography, have played a key role in the comprehension of the pathological processes underlying 
myocardial infarction and cerebrovascular disease. These imaging techniques have contributed greatly to the 
identification and phenotyping of the culprit lesion, the so-called vulnerable plaque. Coronary computed 
tomographic angiography (CCTA) has emerged in more recent years as the non-invasive modality of choice 
in the study of coronary atherosclerosis, showing in many studies a diagnostic yield comparable to invasive 
approaches. Moreover, being able to describe extra-luminal characteristics of the affected vessel, CCTA has 
greatly contributed towards shifting the attention of researchers from the mere quantification of luminal 
stenosis to the identification of adverse plaque features, which appear to have a stronger prognostic value. 
However, the identification of some of the hallmarks of vulnerable plaques is qualitative in nature and, 
therefore, subject to some degree of inter-reader variability. Moreover, CCTA is still unable to identify some 
fine markers of plaque vulnerability which can be detected by invasive techniques, such as neovascularization 
and plaque erosion, among others. Nonetheless, radiological images can be viewed as vast 3-D datasets which, 
via the use of recent technology, allow for the extraction of numerous quantitative features that may be used 
to accurately phenotype a given lesion. Radiomics is the process of extrapolating innumerable parameters 
from a given region of interest, with the goal of establishing correlations between quantitative variables and 
clinical data. These datasets can then be manipulated to create predictive models via the use of automated 
algorithms in a process called machine learning. As a result of these approaches, radiological images may 
offer information regarding the characterization of a plaque which can go much beyond the boundaries of 
what can be qualitatively asserted by the human eye, contributing to expanding the knowledge of the disease 
and ultimately assist clinical decisions. Thus far, radiomics has found its more consistent area of application 
in the field of oncology; to present date, the amount of clinical data regarding coronary artery disease is still 
relatively small, partly due to the technical difficulties associated with the implementation of such techniques 
to the study of a small and geometrically complex lesion such as the coronary plaque. The present review, after 
a summary of the imaging modalities most commonly used nowadays in the study of coronary plaques, will 
provide a perspective on the application of radiomic analysis to coronary artery disease. 

Keywords: Imaging modalities; coronary plaques; coronary atherosclerosis; radiomics

Submitted Feb 03, 2020. Accepted for publication Jul 08, 2020.

doi: 10.21037/cdt-20-156

View this article at: http://dx.doi.org/10.21037/cdt-20-156

2017

Review Article on Impact of Cardiac CT in Clinical Practice

https://crossmark.crossref.org/dialog/?doi=10.21037/cdt-20-156


2006 Murgia et al. Cardiac computed tomography radiomics

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(6):2005-2017 | http://dx.doi.org/10.21037/cdt-20-156

Atherosclerosis and cardiovascular disease

Atherosclerosis is an inflammatory vascular disease caused 
by lipidic and other metabolic alterations. The most relevant 
manifestation of atherosclerosis is cardiovascular disease, 
which results in two major conditions: ischemic heart disease 
and cerebrovascular disease. Even though the second half of 
the 20th century has witnessed a significant reduction in the 
incidence and mortality rates connected to cardiovascular 
disease in high-income countries (Figure 1), atherosclerosis 
still represents the main cause of mortality worldwide, with 
ischemic heart disease and stroke accounting for 247.9 deaths  
in 100,000 persons in 2013 (1,2). 

The pathological  process  of  atherosclerosis  i s 
characterized by lipid deposition and inflammatory changes 
to vessel wall, with coronary arteries being involved in 
this process to some degree almost invariably from middle 
age onwards. These lesions can cause progressive stenosis 
of the coronary lumen or, alternatively, determine plaque 
rupture or erosion with subsequent thrombosis and acute 
myocardial infarction. Imaging techniques play a role of 
vital importance in understanding and monitoring the 
processes which underlie acute adverse events such as 
plaque rupture and erosion. 

Schematically, a number of subsequent steps can be 
identified in the progression of coronary atherosclerosis: 
first the deposition of LDL within the arterial intima, 
lipid oxidation, inflammatory response led by lipid-filled 
macrophages (foam cell formation), and progression of 
inflammatory response towards proteolysis and cell death 
and, ultimately, the formation of unstable coronary lesions 
predisposed to acute plaque rupture. Unstable plaques 
frequently display characteristic histopathology: a large 
necrotic core, a thin fibrous cap, positive remodeling and 
microcalcifications (the so-called thin-cap fibroatheroma). 

The natural history of an atherosclerotic plaque depends 
on a sensitive balance between pro- and anti-inflammatory 
effects. It has been demonstrated that smooth muscle cell 
migration from the arterial media plays a central role in 
the stabilization of a plaque via the secretion of fibrous 
matrix components that thicken and strengthen the fibrous 
cap. Calcification also represents a healing response to the 
inflammatory insult, although it acts in a bi-modal fashion: 
microcalcification in the initial stages correlates to unstable 
plaques, whereas macroscopic calcification in the later 
stages provides stability (3). 

Despite the knowledge acquired in the pathophysiology 
of coronary atherosclerosis, the identification of lesions at 

risk of erosion still represents a challenging task. Indeed, 
current imaging technology has only partially proven 
successful in identifying unstable plaques, which poses a 
severe limit to the capability of clinicians to stratify risk. 
Therefore, further research is urgently needed in this field 
in order to identify novel diagnostic approaches. 

Imaging of the atherosclerotic coronary arteries 

The imaging of coronary artery disease (CAD) comprises 
a vast armamentarium of diagnostic tools which, broadly 
speaking, can provide detail on: anatomic and physiological 
aspects, plaque composition, molecular activity and 
biomechanical stresses (4). The present section will provide 
a general overview of the main imaging tools available 
nowadays to characterize coronary atherosclerotic plaques; 
it will then focus on the role played by coronary computed 
tomography angiography (CCTA), its limitations and future 
directions. 

CAD: a wide array of diagnostic imaging tools

The gold-standard for the diagnosis of CAD is still 
nowadays represented by invasive angiography. This 
procedure involves the catheterization of the coronary ostia 
via a peripheral arterial access, with subsequent injection 
of radio-opaque contrast and visualization of the vessel 
anatomy under X-ray fluoroscopy. Angiography offers 
unmatched spatial and temporal resolution (0.1–0.2 mm 

Figure 1 Age-standardized cardiovascular mortality rates per 
100,000 inhabitants in 1990 and 2010 worldwide, in high income 
countries and in Sub-Saharan countries. Line chart demonstrates 
a global reduction in mortality rates for CVD, with a more steep 
trend for high-income countries compared to lower income 
countries (in this case Sub-Saharan Africa) in the same period 
(approximately 40% vs. 13%). Readapted from: Barquera et al. (1). 
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and 10 ms respectively) and is therefore an unsurpassed 
methodology in the description of the degree of coronary 
luminal stenosis; furthermore, it is the imaging technique of 
choice when revascularization procedures are contemplated.

However, recent research indicates that luminal 
stenosis alone cannot be considered a reliable marker 
for hemodynamic obstruction or accurately evaluate the 
ischemic burden. In case of persistent angina despite 
optimal medical therapy, functional tests provide more 
information than mere anatomic assessment; indeed, 
the hemodynamic significance of a plaque has proven a 
reliable predictor of acute cardiovascular events (5,6). 
Hemodynamically significant CAD can be evaluated 
noninvasively (stress echocardiography, stress perfusion 
MR, myocardial perfusion SPECT or PET, CT perfusion) 
or invasively (fractional flow reserve during angiography). 
Fractional flow reserve (FFR) is the most widely accepted 
functional method, as it provides a reliable pressure-based 
assessment of relative coronary flow reserve across the 
atherosclerotic plaque (7). 

Noninvasive angiography can be achieved via computed 
tomography (coronary computed tomography angiography) 
or magnetic resonance (magnetic resonance angiography, 
MRA), provided ECG-gating is conducted to eliminate 
artefacts of cardiac movement (4). 

CCTA is preferred over MRA for anatomic coronary 
evaluation. New generation CT scanners can offer spatial 
resolution as high 0.5 to 0.6 mm with a temporal resolution 
of 66 to 210 ms. In the presence of angina with a low-
to-moderate risk of CAD, CCTA performs well as a 
first-line diagnostic tool thanks to an excellent negative 
predictive value, although quantification of stenosis can 
be overestimated owing to artefacts caused by coronary 
calcification. In this respect, dual-energy CT renders a 
better coronary plaque characterization by increasing tissue 
contrast, even though at the expense of a poorer image 
quality (8). 

CCTA is often performed in tandem with coronary 
artery calcification (CAC) scoring, a technique that 
provides an estimate of the overall disease burden. CAC has 
historically been used to stratify the risk for CAD, although 
there is no consistent evidence in the literature that it may 
effectively be used to monitor the therapeutic response over 
time. Newer approaches that discriminate calcium density 
from volume may offer more favorable results, following 
the rationale that higher density coronary calcification may 
contribute to plaque stabilization (9-11). 

Compared with CT, MRI allows for better soft-tissue 

characterization and avoids radiation exposure, being 
therefore suitable for children or pregnant women. Its main 
application remains the study of large, static vessels (carotids, 
aorta, peripheral vessels), while the inspection of coronary 
circulation remains challenging due to an unsatisfactory 
control of motion artefacts, contrast-to-noise ratio, spatial 
resolution and volumetric coverage. However, coronary 
MRI technology is rapidly evolving and can reliably image 
proximal and midvessels; in the future, its limitations may 
be overcome and allow for a comprehensive evaluation of 
coronary anatomy, ventricular wall motion, myocardial 
perfusion, viability and scarring.

There is growing evidence in the literature that, 
beyond the degree of luminal stenosis, a number of factors 
connected with plaque composition and morphology 
play a pivotal role in causing cardiovascular acute events. 
Recent research has focused on the identification of 
clinical biomarkers and imaging features of “vulnerable” 
or “unstable” plaques, similarly to what was found for 
the carotid artery bed (12-14). In this regard, the thin-
cap fibroatheroma is generally recognized as the most 
reliable precursor lesion of plaque acute events. As far 
as invasive approaches are considered, the imaging 
techniques available to demonstrate plaque morphology 
are: intravascular coronary imaging with ultrasound (IVUS), 
optical coherence tomography (OCT) and near infrared-
spectroscopy (NIRS). For what concerns non-invasive 
counterparts, CCTA represents an exceptional tool thanks 
to its capability to deliver information not only on coronary 
anatomy and stenosis, but also on plaque morphology and 
composition.

With regards to nuclear medicine techniques, positron 
emission tomography (PET) is a non-invasive modality 
that exploits molecularly targeted probes conjugated to a 
radioactive isotope which can illuminate various plaque 
features. Long scan times, low spatial resolution and not 
well-spread availability have traditionally posed a challenge 
to the diffusion of coronary PET imaging; the introduction 
of hybrid PET-CT and PET-MR systems have partly 
addressed these issues. Most clinical research has thus far 
focused on three types PET tracers: 18F-Fluorodeoxyglucose 
(18F-FDG), 68Gallium-labelled DOTATATE (68Gallium-
DOTATATE) and sodium fluoride labeled with fluorine 18 
(18F-NaF) (15). 

18F-FDG is an unspecific marker of inflammation which 
acts by detecting areas of increased macrophage activity. 
In the carotid artery bed, 18F-FDG uptake has been 
shown to correlate with the presence of high-risk plaque 
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features and to identify post-treatment reduction of plaque 
inflammation (16). While similar results may reasonably 
be expected for the coronary artery bed, in practice intense 
myocardial uptake obscures coronary signal, making the use 
of this tracer unpractical for CAD diagnostics. 

68Gallium-DOTATATE is a marker of inflammation 
which acts by binding to somatostatin receptor subtype 
2 (SSTR2) on macrophages. In comparison to 18F-FDG, 
myocardial uptake appears to be minimal, thus enabling 
for a more reliable identification of culprit coronary (and 
carotid) plaques (17). 

Recent research indicates that 18F-NaF can highlight 
active mineralization by binding to exposed surface 
of hydroxyapatite, thus documenting microcalcific 
deposits, a recognized feature of plaque instability, prior 
to the identification of macrocalcification at CCTA. An 
ongoing prospective multicentre trial will bring further 
evidence regarding the ability of 18F-NaF to improve risk 
stratification in post-infarct patients (NCT02278211). 

Finally, another target for the imaging evaluation of 
coronary atherosclerosis is represented by the analysis 
of vascular wall shear stress, a well-known predisposing 
condition to the formation of atherosclerotic plaques. 
Wall shear stress can be estimated via computational 
simulations that calculate coronary blood-flow through a 
3D reconstruction of the vascular tree. A number of factors 
are taken into account such as blood pressure, plaque 
morphology, plaque composition and luminal geometry. 
This can be achieved both via CCTA or intravascular 
imaging combined with biplane angiography. The same 
concept lies behind CT-calculated fractional flow reserve 
(CT-FFR), which in several clinical studies showed 
comparable results to the invasive FFR in CAD with a 
degree of stenosis higher that 50% (18,19). 

The role of CCTA in CAD

As it was previously discussed, CCTA is an imaging tool of 
widely recognized importance in the evaluation of CAD, as 
it represents a non-invasive and cost-effective alternative to 
other imaging modalities. 

In its early days CCTA was merely considered the non-
invasive counterpart of invasive coronary angiography, 
leading most research to concentrate on the clinical 
predictive value of luminal stenosis found on CTA. In 
this respect, according to the Society of Cardiovascular 
Computed Tomography (SCCT), luminal stenosis can be 
described as minimal (<25%), mild (25% to 49%), moderate 

(50% to 69%), severe (70% to 99%) and occluded; a cut-off 
of 50% to 70% has been found to correlate significantly to 
adverse later outcomes (20). 

However, CCTA derives its strength from the fact that it 
is not only capable of evaluating the degree of stenosis, but 
it also allows for the description of the wall characteristics 
and the morphology of the atherosclerotic plaque. 

The ability to evaluate plaque morphology and 
composition resulted in the identification of high-risk 
plaque features, which retain a higher descriptive value 
than mere stenosis. Thus, unstable lesions tend be large 
in volume, non-calcified, low attenuating, with spotty 
calcifications and of a higher remodeling index (21). It is 
significantly important that such markers predict major 
adverse cardiac events (MACE) even in the presence of non-
obstructive lesions. Plaque volume is closely connected to 
positive (or outward) remodeling, which can be seen as an 
adaptive response to plaque progression, acting to preserve 
luminal caliber at the expense of vessel wall enlargement. 
Importantly, positive remodeling is typically associated to 
the presence of a large lipid core and high macrophage 
density (threshold for positive remodeling: cross-
sectional area 10% higher than reference segment; spotty 
calcification: diameter less than 3 mm in all directions). 
Another sign which strongly associates with MACE is the 
napkin-ring sign (NRS), even though its presence can only 
be qualitatively assessed. The NRS consists in a plaque 
cross-section characterized by a central area of low HU 
apparently abutting the lumen, surrounded by a ring-
shaped hyperdense tissue. Because of its qualitative nature, 
identification of the NRS depends on clinical experience 
and, therefore, it is affected by a certain degree of inter-
reader variability.

CCTA scans can offer information not only at visual 
inspection, but also via the use of dedicated coronary 
segmentation software which can extract volumetric 
information regarding plaque composition. Quantitative 
plaque assessment can provide additional information 
which can help stratifying risk and predicting later 
outcome (22,23). Hell et al. conducted retrospective case-
control study to investigate whether quantitative plaque 
characterization could predict cardiac death in long-term 
follow-up. The study included a population of 64 patients 
(32 cardiac death; 32 controls) who underwent CCTA for 
the inspection of the entire coronary tree in consideration 
of the diffuse nature of CAD; data sets were then analysed 
through a semi-automated software which quantified 
volumetric plaque characteristics. Quantitative measure 
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included: total plaque volume, volumes of non-calcified 
plaque (NCP), low-density non-calcified plaque (LD-NCP; 
attenuation <30 HU), calcified plaque (CP), plaque burden 
(percentage of plaque volume over total vessel volume), 
luminal stenosis and contrast density difference (CDD, a 
recently introduced normalized measure of luminal contrast 
kinetics). Results showed that a number of quantitative 
features could predict cardiac death in long-term follow-
up, including total, non-calcified, and low-density plaque 
volumes as well as CDD. In particular, the Authors stress 
the fact that overall plaque burden, rather than individual 
lesions, holds important prognostic information. In this 
respect, they argue that software-based quantitation offers 
an objective assessment of the total plaque burden that is 
not possible to achieve through visual analysis alone (24). 

Another feature detectable in CCTA which appears to 
correlate with an increased risk of MACE is the alteration 
of pericoronary adipose tissue (PCAT), which has recently 
been shown to reflect plaque inflammation at histology (25).  
Goeller et al. conducted a study to investigate whether 
PCAT attenuation surrounding the proximal right coronary 
artery correlated to progression of coronary plaque burden, 
quantitatively analyzed using semi-automated coronary 
segmentation software in CCTA. Quantitative volumetric 
analysis included: total plaque (TP), calcified plaque (CP), 
noncalcified plaque (NCP), low-density non-calcified plaque 
(LD-NCP) and corresponding burden (plaque volume 
100%/vessel volume). Results showed that an increase in 
PCAT attenuation correlates with an increase in NCP, LD-
NCP and TP burden, but not with CP burden; the Authors 
therefore suggest that PCAT attenuation may represent a 
biomarker of high-risk plaque progression which may aid in 
monitoring plaque progression in medical therapy (26).

The clinical utility of CCTA has been tested in a number 
of randomized trials, such as the PROMISE (Prospective 
Multicenter Imaging Study for Evaluation of Chest Pain) 
and SCOT-HEART (Scottish Computed Tomography of 
the HEART), among others. Overall, there is evidence that 
the integration of CCTA analysis in the assessment of stable 
chest pain can improve clinical outcomes in the follow-up of 
patients affected by CAD (15,27). In particular, it has been 
demonstrated that CCTA can aid in the identification of 
candidates for medical therapy (especially based on statins 
and antiplatelet medication) or revascularization (28,29). 

Besides, CCTA represents a viable tool to appraise and 
monitor the effect of medical therapy on CAD. In this 
regard, a prospective multinational study (PARADIGM) 
enrolled 1,255 patients (statin-naive vs. statin-taking) who 

underwent serial CCTA in order assess the impact of statins 
on individual coronary atherosclerotic lesions. Plaques were 
quantitatively analyzed taking into account the following 
parameters: luminal stenosis, percent atheroma volume 
(PAV), plaque composition and the presence of high-risk 
plaque (HRP) features (defined as the presence of low-
attenuation plaques, positive arterial remodeling, spotty 
calcifications). Results showed that while statin therapy 
did not affect the degree of luminal stenosis, it appeared to 
induce phenotypic plaque transformation; in particular, an 
association was found with: slower progression of overall 
plaque volume, increased plaque calcification and reduction 
of HRP features (30). 

Several Authors demonstrated that the number of  
vessels involved stands in proportional relation to the hazard 
ratio (2). This evidence opens the scenario to a more holistic 
approach to CAD risk assessment, which should account 
not only for stenosis or single plaque features, but also for 
the general extent and burden of CAD (31). In this respect, 
a number of scores have been proposed to quantify plaque 
burden on CCTA, such as: the segment stenosis score 
(SSS) and the segment involvement score (SIS) developed 
by Min et al.; the 3-vessel score (left anterior descending, 
left circumflex, right coronary), the Duke CAD Index, the 
CONFIRM risk score, the Leaman score and the SYNTAX 
score (32), among others. Overall, the concept that emerges 
from recent research is that a reliable appreciation of 
cardiovascular risk should include as many parameters as 
possible, which encompass plaque localization, stenosis, 
morphology, composition and vulnerability features. 

Limitations in conventional CT analysis and future 
directions

In recent years CCTA has emerged as a key player in 
primary/secondary prevention of coronary atherosclerosis 
thanks to its potential to identify and describe plaques 
with a diagnostic accuracy comparable to that of invasive 
techniques. 

However, the diagnostic potential of CCTA is burdened 
by a certain degree of subjectivity and inter-reader variability. 
Moreover, it is unable to detect some fine elements 
characteristic of high risk plaques, such as macrophage 
activity, neovascularization, plaque rupture and plaque 
erosion, which in turn can all be identified by OCT (33).

Even  so ,  r ecent  t echno log ica l  advances  have 
demonstrated how CCTA can be pushed much beyond 
the boundaries of subjective anatomical interpretation of 
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images, thanks to the wealth of information that can be 
extrapolated from post-processing quantitative analysis. 
Indeed, radiological images can be viewed as vast 3D 
datasets which, via an appropriate coronary segmentation 
software, can translate volumetric information into minable 
datasets. The process of extracting quantitative data from 
radiological scans goes under the name of radiomics, a field 
which is bound to have tremendous impact on medical 
imaging in the future. Its relevance also stems from the 
fact that these systems incorporate multi-dimensional 
databases which can integrate patients’ clinical and genetic 
information. As a result of such holistic approach, risk 
assessment can be conducted not only at a population-based 
level, but it can also be tailored around the single patient. 
Such comprehensive approach has shown good results in 
the field of oncology, but to present date its application to 
cardiovascular imaging is still scarce (32). 

Artificial intelligence: a new era?

Radiomics represents a newly emerging area of research 
which aims at extracting more information from scans in 
terms of quantitative data than it may be feasibly possible 
to the human eye. This huge amount of data can then be 
processed via analytic systems which seek to artificially 
reproduce human intelligence, namely machine learning 
(ML) and deep learning (DL) techniques. The rationale 
behind these novel technologies is to identify distinctive 
imaging features that may aid in the diagnosis, predict 
prognosis and guide personalized therapy for various 
conditions. The following paragraphs will provide a brief 
focus into the topics of radiomics, machine learning and 
deep learning. 

Radiomics

Radiomics is a technique that allows for precise phenotyping 
of pathological findings identified in radiological imaging. 
The concept behind this technology is, roughly speaking, 
to transform images into data. Radiomic parameters can be 
sub grouped into four categories: first-order, high-order, 
shape-based and transform-based (21). 

First order parameters basically describe the distribution 
of HU values within a target area (mean HU, minimum HU 
or standard deviation HU), deriving statistical inference 
from these data. Any aspect regarding spatial information 
is disregarded in first order parameters, with explains why 
very diverse plaques may display similar values.

In order to overcome the limitations of first order 
parameters, high-order features were introduced, which 
enable the characterization of the texture and heterogeneity 
of a target lesion via the analysis of spatial  voxel 
distribution. Such goal is achieved by quantifying the spatial 
co-occurrence of given voxel values. There exist several 
matrices at hand, each one capable of identifying diverse 
patterns of spatial voxel distribution. For instance, the 
gray level co-occurrence matrix (GLCM) identifies areas 
where voxel pairs of a given value co-occur next to each 
other: areas where dissimilar voxels frequently co-occur are 
described as heterogeneous. Similarly, the gray level run 
length matrix (GLRLM) pinpoints voxels of identical value 
which repeat along a given axis (Figure 2). 

Shape-based parameters focus on aspects of geometrical 
complexity. For example they describe the surface, volume, 
compactness (a measure of the surface to volume relation) 
or fractal dimension (self-repeating patterns), offering 
somehow a quantitative appraisal of spatial complexity. 

Transform-based radiomic features translate information 
from the spatial domain into the frequency domain. The 
resulting data can then be further analyzed or used to filter 
out specific information from the images (34). 

ML

The amount of medical data has increased exponentially 
in recent years and the common goal for researchers 
has become to find ways to analyze these data in order 
to extrapolate information of clinical significance. 
Conventional statistics, based on probability models and 
designed for population-based analysis, are substantially 
unsuitable to the task of providing case-specific information 
and guide clinical decisions. Human intelligence surpasses 
conventional statistical formulas in identifying unique 
patterns or inferring complex relationships between data 
through observation and experience. The aim of artificial 
intelligence (AI) models is that of recreating these learning 
patterns and, ideally, think and act humanly. Machine 
learning (ML), a subcategory of AI, is an analytic method 
based on computer algorithms that has the ability to learn 
from previously fed data autonomously. The greater the 
amount of input from the environment, the better ML 
algorithms performs: predictions are based on comparisons 
between a new instance and a previous similar occurrence. 
Let us briefly describe a few ML algorithms by way of 
example. Supervised learning algorithms are used to assign a 
certain classification to a newly encountered instance, either 
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using bi-modal (i.e., healthy/unhealthy) or continuous (i.e., 
Agatston score) values. A commonly used algorithm of this 
type is the so-called k-nearest neighbor, which relies on the 
basic idea that similar things exist in close proximity. The 
k values, which the new occurrences are compared against, 
are referred to as hyperparameters and are predetermined; 
optimal values must be balanced in order not to create over-
fitted or under-fitted ML models. 

Another frequently used algorithm is the decision-
tree model, often used in the creation of guidelines or risk 
calculation flow charts. In this case, risk factors are first 
gathered and a subject is assigned to one of two subgroups 
based on one parameter (for example gender: Male or 
Female); subsequently, another parameter is used (i.e., age 
range) and the patient is assigned to a further subgroup; 
the process is repeated until more homogenous groups 
are obtained. The so-called information gain (IG) is a 
uni-variate analytic method which assesses the relative 
importance of a certain parameter with regards to a given 
outcome, in disregard of other possible collinearities

Finally, neural networks are mathematical models 
which aim to conceptually replicate the organization of 
the biological brain. Neural networks are organized in 
single perceptrons, algorithms capable of solving complex 
problems, which can be aligned to other perceptrons 
to form multiple layers. A number of so-called hidden 
layers, which receive no input nor give final outputs, can 

be stacked in the system. When neural networks contain 
two or more hidden layers, they are defined deep neural 
networks (DNN), which substantially represent networks 
of interconnected regression equations: the output of one 
equation represent the input to another. 

Unsupervised learning algorithms (such as the k-means 
clustering) differ from the supervised methods described 
above in that they operate with unlabeled data. The goal 
here is not to assign a value to a new instance but rather 
group the data into k clusters, which can then be compared 
and further analyzed to extrapolate new relationships from 
the data. Semi-supervised learning algorithms, instead, 
operate with data that is both labeled and unlabeled. They 
are useful in those cases in which there is too large an 
amount of data to be labeled. Thanks to the addition of 
some labeled cases to the model, semi-supervised models 
usually perform better than fully unsupervised learning, 
since some preliminary information is provided regarding 
how many clusters may be identified or what distribution 
the parameters have in each group. 

DL

DL, an analytic method which is derived from ML, expands 
on the concept of deep neural networks (DNN) and finds 
application in complex tasks of AI, such as analyzing visual 
imagery. In DL, the perceptrons of a neural network are 

Figure 2 The illustration schematically represents the pipeline for the calculation of GLRLM. First, coronary segmentation takes place, 
followed by the extraction HU values and discretization into n value groups. Then, for a given direction (i.e., angle 0 degrees), GLRLMs are 
calculated by reporting the number of times i values appears next to each other in the direction examined. Rows contain the value i (reflecting 
voxel value) and columns contain the value j (reflecting the number of repetitions in the given direction). The statics are then calculated in 
various directions and averaged. Readapted from Kolossvary et al. (21). 

Pipeline for the calculation of GLRLM

Outer vessel
Inner vessel wall
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not fully connected, but some hidden layers are skipped in 
order to activate a deeper perceptron, in a fashion similar 
to pyramidal cells in the brain cortex. In other words, they 
use a hierarchic approach in the analysis of data, recreating 
complex patterns from the assembly of simple ones. 

Radiomics applied to coronary atherosclerosis

The first area of research to focus on the potentials of 
radiomics was oncology, and still nowadays the most 
advanced applications are seen within this medical area (35). 
While the scientific community has shown growing interest 
in the fascinating potentialities and novel applications 
of radiomics, standardized protocols and techniques 
must be defined in order to provide research groups and 
clinicians with a consistent and reliable framework for 
radiomic analysis. In an attempt to reduce the degree of 
variability among quantitative imaging biomarkers from 
different centers worldwide, the Radiological Society of 
North America (RSNA) initiated the Quantitative Imaging 
Biomarkers Alliance (QIBA), followed shortly after by the 
European Imaging Biomarkers Alliance (EIBALL) created 
by the European Society of Radiology (ESR) (27). Within 
this scenario, chest CT and coronary artery disease represent 
a strategic target which is currently attracting ever growing 
attention. The following section will provide an overview 
on the current applications of radiomics, ML and DL 
techniques to the study of atherosclerotic coronary disease. 

Present and future applications 

One of the main advantages in employing radiomic 
techniques in the study of coronary atherosclerotic lesions is 
to overcome the limitations of qualitatively assessed lesions, 
which result in inter-reader variability. One typical example 
that depicts this scenario is the identification of the napkin 
ring sign, an independent prognostic marker for MACE. 
Kolossváry et al. conducted a study with the specific intent 
to determine whether radiomic analysis could improve the 
identification of NRS plaques (36).

They identified 30 NRS plaques on CCTA out of 2,674 
patients studied for stable chest pain and matched them 
with 30 non-NRS controls (comparable for degree of 
calcification, degree of stenosis, localization and imaging 
parameters). Case to control comparison was conducted 
using 8 conventional and 4,440 radiomic parameters. They 
were able to demonstrate that there were no significant 
differences among NRS and non-NRS patients with regards 

to conventional parameters (namely: lesion length, area of 
stenosis, mean plaque burden, lesion volume, remodeling 
index, mean plaque attenuation, and minimal and maximal 
plaque attenuation). Conversely, radiomic parameters 
displayed a significant difference between the groups; in 
particular, features incorporating the spatial distribution of 
voxels (GLCM, GLRLM, and geometry-based parameters) 
retained a higher predictive value than first-order statistics 
(which reflect the mere distribution of the intensity values) 
(Figure 3). It must be highlighted that the study was limited 
by the small number of patients enrolled and that the true 
number of NRS is considerably smaller in a real population. 
However, the Authors showed that radiomic analysis may 
indeed compete with the diagnostic accuracy of clinical 
experts. In addition, from the analysis of datasets emerged 
a number of clusters of information, which suggests that 
further experimentation in this direction may allow for 
the identification of new image markers that are currently 
unknown. The Authors discuss that in the future radiomics 
could be integrated into currently used workstations to 
function as a computer-aided diagnostic tool. 

As it was previously discussed, a number of invasive 
imaging modalities, such as IVUS and OCT, have 
demonstrated distinctive capacity to identify vulnerable 
plaques in tests validated by histology and clinical 
assessment. Moreover, NaF18-PET has been shown to 
effectively identify inflammation and microcalcifications 
in coronary atherosclerotic plaques. In a future ideal 
scenario, these methodologies will be substituted by non-
invasive imaging modalities with no loss in diagnostic 
accuracy. In recent times, CCTA has been proposed as 
a potential candidate in this role, but it has only shown 
modest correlation with findings of vulnerable plaque 
identified by IVUS, OCT, or NaF18-PET. However, the 
extra information that can be extracted from CT scans 
using radiomic techniques may provide new answers in the 
near future. Kolossváry et al. conducted a study to address 
the question whether coronary CTA radiomics could 
correlate better than conventional CCTA with invasive and 
radionuclide imaging markers of high-risk plaques (37). In 
this retrospective analysis, the Authors analyzed 44 plaques 
from 25 patients using four imaging methodologies: CCTA, 
NaF18-PET, IVUS and OCT (in the context of invasive 
coronary angiography) between March and October 2015. 
For what concerns conventional morphologic features, 
the study considered: low attenuation plaque, positive 
remodeling, spotty calcification and napkin-ring sign. 
With regards to quantitative analysis (based on HU), it 
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considered the volume of: low attenuation non-calcified 
plaque (<30 HU), non-calcified plaque (30–130 HU), 
calcified plaque (>130 HU). Finally, the radiomic features 
accounted for included 935 parameters: 44 first-order 
statistics; 342 statistics calculated from GLCM; 33 statistics 
extracted from GLRLM, 516 geometry-based statistical 
parameters. Overall, the study demonstrated that radiomic 
analysis performed better than conventional CCTA in 
identifying specific invasive and radionuclide findings of 
plaque vulnerability, particularly with regards to features 
determined via OCT and NaF18-PET. 

In another prospective study, Kolossváry et al. analyzed 
21 coronary arteries ex vivo obtained from seven male 
donors with a mean age of 52. The specimens were studied 
with CCTA and histologic cross sections. Subsequently, 
radiomic parameters were extracted to conduct a histogram-
based assessment and serve as an input for a machine 
learning evaluation. At histology, lesions were considered 
advanced if early fibroatheroma, late fibroatheroma or 
thin-cap atheroma was found. CT cross sections were 
classified as homogeneous, heterogeneous or napkin-ring 

sign positive on the basis of visual assessment. Radiomic 
parameters included first-order statistics and geometry-
based features. With regards to ML, eight models were 
trained on cross sections selected on a random basis. 
Visual assessment, histogram-based assessment and the 
best ML model were then put to the test and compared 
against the histological findings. In their study, the Authors 
demonstrate that radiomics-based ML could outperform 
not only CT angiography, but also the histogram-based 
measurements in differentiating between early and advanced 
atherosclerotic lesions (38). 

A comparison between machine learning and conventional 
CCTA was the subject matter of another retrospective 
study conducted by Masuda et al. in 2018, conducted on 
115 patients who underwent both CCTA and IVUS. In this 
study, the Authors start from the assumption that mean CT 
number is generally recognized as a useful feature in the 
characterization of coronary plaques, indicating an optimal 
threshold of 36±3 HU to differentiate between fatty- and 
fibro-fatty plaques. However, the Authors argue that a 
number of factors limit the reliability of such parameter, 

Figure 3 Diagnostic sensitivity and specificity in the identification of plaques with Napkin-Ring Sign by Conventional Quantitative 
Parameters vs. Radiomic Parameters. The chart graphically represents the results obtained in the study by Kolossváry et al. (the bars 
represent a rounded off value of the AUC) and it shows that radiomic features were superior in the identification of plaques with napkin ring 
sign. Conventional quantitative metrics included: mean plaque attenuation; mean plaque burden; lesion volume; minimal plaque attenuation; 
maximal plaque attenuation; remodeling index; lumen area stenosis; lesion length. GLCM, gray-level co-occurrence matrix; GLRLM, gray-
level run-length matrix. Readapted from Kolossváry et al. (32). 

Identification of Napkin-Ring Sign plaques by Conventional Quantitative Parameters vs. Radiomic Parameters

100

90

80

70

60

50

40

30

20

10

0

Sensitivity

Specificity

Conventional
quantitative
parameters

First-order
statistics

GLCM GLRLM Geometry-based
parameters



2014 Murgia et al. Cardiac computed tomography radiomics

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(6):2005-2017 | http://dx.doi.org/10.21037/cdt-20-156

such as differences in the examination type, in the vessels 
examined and the CT scanning settings. Therefore, in their 
study they attempt to verify whether histogram analysis 
combined with ML can serve as a tool for characterization 
of coronary plaques with a diagnostic potential superior 
to median CT number. Despite a number of intrinsic 
limitations to the study (small sample size, CCTA images 
obtained with a single protocol and others), the results 
again lean in favor of the ML performance (39). 

Limitations 

While several research groups have demonstrated the 
potentialities of radiomic analysis, a number of aspects must 
be taken into consideration to identify its present limitations. 

Firstly, radiomic parameters are derived from HU voxel 
values and, as such, they are limited by all possible factors 
that may somehow influence their acquisition. These, 
among others, include: CT hardware, kernel, tube voltage, 
reconstruction and segmentation algorithms, single patient 
characteristics. Further data are needed in order to quantify 
to what extent these variables affect radiomic statistics and, 
consequently, the generalizability of the radiomic signature 
of a certain lesion (21,36).

Furthermore, since the number and type of radiomic and 
machine learning (ML) parameters are arbitrarily decided 
by the operator, a question arises regarding what the 
optimal standard should be. An excessively high number of 
parameters may, for example, result in overfitting, which in 
turn requires a large number of patients to ensure results of 
statistical significance (40). 

With regards to ML, it must be observed that the 
diagnostic accuracy of a model should ideally be evaluated 
by applying it to an external validation cohort. However, 
since such protocol is technically difficult to implement, 
in many published studies ML models are run on a whole 
population and then evaluated on the same population itself 
by using test-sets and n-fold cross-validation techniques. 
This approach may eventually lead to biased estimates. 

Besides, ML models are designed to makes predictions 
based on the data on which they were trained. Thus, 
whenever an ML model happens to be unrepresentative 
of a given dataset of application, inaccurate predictions 
will result. This means that ML models are, by their own 
nature, subject to training biases of some degree. 

Another aspect which must be accounted for is that ML 
models are affected by low diagnostic accuracy in identifying 

rare cases, since their predictive ability is proportional to 
the number of similar cases previously encountered. This 
is in contrast with the human ability to memorize and then 
recognize the random case even after the experience of few 
isolated instances (21). 

Finally, while radiomic analysis holds a potential as a 
powerful diagnostic aid in the future, it also threatens to 
substantially increase the burden of work for the radiologist, 
especially in consideration of its significant technical 
complexity. In order for this technology to integrate into 
the daily clinical routine, further advances are needed in the 
development of automated, user-friendly and time-saving 
software platforms which will allow the radiologists to deal 
with such huge datasets (41).

Conclusions 

Radiomics, machine learning and deep learning are newly 
emerging imaging techniques which, via the extrapolation 
of quantitative information from conventional radiologic 
images, can identify imaging biomarkers that can contribute 
significantly to the characterization of coronary plaques. 
Such approach has the potential to overcome the limitations 
represented by the qualitative interpretation of images and 
identify unknown disease biomarkers, aiding in diagnostic, 
prognostic and therapeutical decisions. Several Authors 
have demonstrated that radiomic analysis and machine 
learning models can typify coronary atherosclerotic plaques 
with a level of accuracy comparable, if not superior, to other 
conventional imaging techniques. However, the amount 
of clinical data to present date is still scarce and further 
research is needed in order to standardize radiomic analysis 
protocols among different centers. Moreover, a number of 
technical aspects need to be further investigated to ensure 
the reliability and generalizability of the radiomic features 
of a given lesion. Similarly, in order to make radiomics 
a reality in the clinical daily routine, further advances 
are needed to render such technology sufficiently user-
friendly and time effective. Even in consideration of its 
present limitations, there are great expectations for the 
future development of radiomics, as this technology has 
the potential to significantly change the field of medical 
imaging in the near future.
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