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Introduction

The left atrium (LA) plays an essential role in left ventricular 
filling. Evaluation of left atrial (LA) structure and function 
has an important place in diagnosis and prognostication 
of a variety of disease processes, such as atrial fibrillation 

(AF), hypertension (HTN), heart failure (HF), valvular 
heart disease, cardiomyopathies and coronary artery disease 
(CAD). The assessment of LA function in physiologic and 
pathologic states is increasingly being viewed as a biomarker 
for outcomes in various cardiovascular conditions (1). 
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Myocardial strain is a measure of tissue deformation, and 
is expressed as a percentage change in the length of the 
underlying myocardial tissue. Strain imaging, using two-
dimensional (2D) speckle tracking echocardiography 
(STE), has emerged as a non-invasive and reliable marker 
of estimating myocardial function, and helps overcome 
a number of angle-dependent limitations of traditional 
Doppler echocardiography (2). Strain imaging using tissue 
Doppler imaging (TDI) as well as 2D STE allows an early 
estimation of myocardial dysfunction, viability, evaluating 
optimal timing of cardiac surgery, as well as post-surgical 
outcomes (3). In recent times, strain and strain rate imaging 
have been developed as non-invasive techniques to assess 
systolic and diastolic function of the LA. Here, we focus on 
the various aspects of strain imaging, how disease processes 
affect LA strain parameters, and discuss the various clinical 
applications of LA strain mechanics (Figure 1). We present 
the following article in accordance with the NARRATIVE 
REVIEW reporting checklist (available at http://dx.doi.
org/10.21037/cdt-20-461).

Physiological function of the LA in cardiac cycle 
and correlation with left ventricular function

The physiologic function of the LA in assisting left 
ventricular filling, and subsequently cardiac output, 
can broadly be studied under three phases: the LA 
“reservoir” phase, the passive “conduit” phase, and the 
“contractile” phase (4). Initially, during the iso-volumetric 
relaxation phase, the LA relaxes and receives blood from 
the pulmonary veins, hence acting as a “reservoir” of 
potential energy. In this sense, the LA “reservoir” strain 
is a reflection of LA behavior during the period when the 
mitral valve is closed, and may be sensitive to changes in LA 
compliance as seen with fibrosis. Following the opening of 
the atrioventricular valves in early ventricular diastole, the 
LA acts as a “conduit” and allows transfer of blood from 
the pulmonary veins to the left ventricle (LV). Thus, the 
LA “conduit” strain is a reflection of LA behavior when the 
mitral valve is opened, and may be affected by changes in 
the LV, as seen in HF and long-standing hypertensive heart 

Figure 1 Central illustration demonstrating the established and emerging applications of LA strain mechanics in various cardiovascular 
conditions. LA, left atrial.
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disease. Finally, in late ventricular diastole that coincides 
with the atrial contraction phase, the LA acts as a “pump” 
to augment left ventricular filling by 20–25% (5). LA strain 
measured during this phase is a measure of the contractile 
function of the LA and may be affected by changes in both 
LA and LV. Through these three phases, the LA plays an 
essential role in the continuous transfer of blood from the 
pulmonary veins to the LV in different phases of the cardiac 
cycle.

The myocardial deformation or strain in the LA is load 
dependent and varies with LV function. Physiologically, 
LA strain changes are often noted prior to the onset of 
functional or structural changes in the LV. The changes in 
myocardial deformation detected are described under each 
section, and are often secondary to pressure changes in LV.

Existing imaging techniques for evaluating the 
LA

The contributions of the LA reservoir, conduit and pump 
functions to left ventricular filling are approximately 50%, 
30% and 20%, respectively, in healthy individuals (6).  
Alteration in LA size and function can occur in a number 
of physiological as well as pathological disease processes. 
It is, therefore, important to have non-invasive and 
efficient methods for estimation of LA function. M-mode 
echocardiography can measure the LA diameter in 
the antero-posterior diameter; however, it cannot be 
extrapolated to estimate the LA size accurately due to 
the irregular shape of the chamber (7,8). Measurement 
of LA volume by 2D and three-dimensional (3D) 
echocardiography provides a more accurate estimate, 
comparable to reference standards such as multi-detector 
cardiac computed tomography (MDCT) and cardiac 
magnetic resonance (CMR) imaging (9-11). The pitfalls 
of 3D echocardiography potentially include inconsistent 
estimation of LA border and LA long axis, wrongly timed 
reading frame, falsely foreshortened LA, and inter-observer 
and intra-observer disparities (1).

Pulsed wave Doppler also provides a valuable measure 
of transmitral and transpulmonary venous blood flow, 
as well as LV filling pressures which help determine LA 
function (12,13). The peak atrio-ventricular flow A-wave 
velocity, its velocity-time integral, atrial ejection force, 
and atrial ejection fraction are some of the parameters 
applied to assess LA function indirectly (14,15). However, 
the majority of the listed parameters require the presence 
of normal sinus rhythm, precluding their use in AF and 

other abnormal rhythms leading to the development of the 
rhythm independent variable called LA functional index 
(LAFI). LAFI is defined as LAFI = LAEF × LVOT VTI/
LAESVI, where LAEF is LA emptying fraction, LVOT 
VTI is velocity time integral across the left ventricular 
outflow tract and LAESVI is the largest LA volume 
measured in ventricular systole indexed to body surface 
area. Thus, it is proportional to the LA reservoir function 
and stroke volume, and inversely proportional to LA  
size (16). LAFI is found to be lower in patients with AF and 
improves on cardioversion to sinus rhythm (16). A recent 
study investigating its utility to existing prediction scores 
for cardiovascular disease (CVD) did not yield positive 
results (17).

LA strain imaging

Strain imaging has traditionally been studied for assessing 
LV function. Recently, strain imaging has been applied to 
assessing LA function. It allows for measurement of LA 
function through the different phases of the cardiac cycles, 
and differentiates between active and passive myocardial 
involvement. While utilizing strain measurement to assess 
LA function, it is also important to consider the impact 
of LA size and wall thickness in accordance to LaPlace’s 
law as an independent variable. Pre-clinical studies have 
shown that because of the heterogeneous thickness and 
complex anatomy of the LA, its effect on strain is difficult 
to assess, but in general, this effect is more pronounced in 
the LA passive filling phase than in the contractile phase, 
and more near the annulus than the lateral walls (18,19). 
Further, there may be heterogeneity in the value of LA 
strain measured by different software packages, as described 
later. Prospective studies addressing these studies may help 
strengthen the role of LA strain measurement in clinical 
practice.

LA strain can be measured using two main techniques: 
TDI, or 2D STE. Image acquisition should be at a higher 
frame rate when using TDI, ideally >140 frames per second 
compared to STE where the frame rate is often between  
40–80 frames per second. At least four QRS complexes should 
be covered with data sampling starting at least 100 msec  
before the R wave of the first QRS complex and ending 
about 200 msec after the last QRS complex. In the absence 
of existence of dedicated software for LA strain analysis, LV 
strain software are used to analyze the LA mechanics after 
image acquisition. These include vendor specific software 
such as EchoPAC (GE Healthcare, Chicago, IL, USA) 
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and vendor independent software such as Velocity Vector 
Imaging (Siemens Healthineers, Washington, DC, USA). 
Notably, there are no American Society Echocardiography 
(ASE) consensus guidelines at present regarding acceptable 
variability across different software platforms for LA strain 
analysis (20). Wang et al. examined the variability across 
vendor platforms in LA measurement and concluded that 
vendor independent software had a significantly smaller 
difference in strain measurements (21).

The European Association of Cardiovascular Imaging/
American Society of Echocardiography hare commend 
recommended LA strain analysis should begin with tracing 
the endocardial border of the mitral annulus, and then 
tracing the LA endocardial border, extrapolating across the 
pulmonary veins and/or LA appendage (LAA) orifices, up to 
the opposite side of the mitral annulus, using the apical four 
chamber view (22). Biplane LA strain (from four and two 
chamber views) could also be considered as an option (22).  
The myocardial region of interest of the LA is defined by the 
endocardial border and the epicardial border, similar to LV 
strain measurement (22). If the tracking software requires 
the definition of the region of interest, a default width of  
3 mm is recommended (22). The region of interest size and 
shape should be adjusted in order to include the thickness 
of LA wall and to avoid including the pericardium (22).  
If the tracking software uses endocardial tracking only, 
the endocardial contour is delineated (22). The user 
should compare visually the tracking to the motion of the 
underlying LA wall in order to judge the accuracy of the LA 
strain estimate (22). Feasibility of LA strain measurements 
was reported in a meta-analysis, ranging from 83.3% to 
96.7% on a per-patient bias, and from 93.8% to 98.1% on a 
per-segment bias (23).

As the LA cycles through different phases, the strain 
measurements change accordingly. Strain measured during the 
LA filling phase corresponds to reservoir strain (LASr) (19).  
This is followed by a fall in the strain curve and passive flow 
of blood from the LA to LV, during the conduit phase of 
the LA. Strain measured in this phase corresponds to the 
conduit strain (LAScd). Finally, there is a second rise on 
strain curve with contraction of the LA during the booster 
phase and peak LA strain measured in this phase is known 
as LA contractile strain (LASct).

A recent study evaluated the pattern of change of tissue 
velocity as well as the strain and strain rate changes across 
the different walls of LA amongst healthy volunteers. 
They reported that the peak systolic and absolute diastolic 
velocities decreased from the base to mid-wall and from the 

mid-wall to the roof, and the value of strain and strain rate 
increased from the base to mid-wall and from the mid-wall 
to the roof (24). Many studies have attempted to suggest 
standard values for LA strain, and the largest involving 
329 participants from 10 centers showed that mean value 
for LA peak systolic strain during reservoir phase was 
45.5%±11.4%, and strain rate during peak atrial contraction 
was –2.11±0.61 s–1 (25).

Clinical applications of LA strain mechanics

LA strain and AF

A F  i s  o n e  o f  t h e  m o s t  c o m m o n l y  e n c o u n t e r e d 
electrophysiological abnormalities and is associated with 
increased cardiovascular morbidity and mortality. A high 
CHA2DS2-VASc score coupled with transesophageal 
echocardiographic (TEE) findings of LA or LAA thrombus 
or spontaneous echo contrast (SEC) have been shown to have 
a positive correlation with increased thrombo-embolic risk in 
patients with AF (26). Large prospective studies have shown 
a positive correlation between increasing LA dimensions and 
volume, as measured on M-mode and 2D echocardiography, 
and the risk of developing AF (27,28). These results 
encourage further exploration into the utility and accuracy of 
estimating LA strain through noninvasive methods.

A recent study in patients undergoing ablation for 
persistent AF showed that decreasing LAA emptying 
velocity and worsening LASr were associated with findings 
of LAA thrombus on TEE (29). In patients with advanced 
interatrial block, worsening LA strain rate in the systolic 
pump function has been shown to be associated with new-
onset AF and ischemic stroke (30). Worsening LA systolic 
strain has also been associated with progression from 
paroxysmal to persistent AF (31).

Following catheter ablation pulmonary vein isolation, 
there remains a risk of AF recurrence. Studies correlating 
LA strain in patients undergoing catheter ablation for 
AF have shown that lower systolic strain rates may be 
associated with recurrence of AF after catheter ablation, 
and pre-procedural screening using strain analysis may have 
value in selection of patients suitable for the procedure. In 
an age and gender matched cohort of 40 patient with AF 
undergoing catheter ablation, Hwang et al. showed that LA 
strain was useful for predicting AF recurrence at 9 months 
follow-up (32). Such results point toward the potential 
utility of LA strain measurement in prognosticating AF 
recurrence after catheter ablation.
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LA strain in HTN

HTN results in left ventricular pressure overload and 
subsequent changes in LA structural and morphological 
properties (33). Structural changes in the LA referred to 
as remodeling, are often preceded by functional changes 
as measured by strain and strain rate. In a study including 
patients with diabetes mellitus (DM) and HTN who have 
normal LA volume measurements, Mondillo et al. showed 
that LA deformational parameters, including LASr, as 
well as diastolic strain was reduced in patients with DM 
and HTN when compared to controls (34). Further, the 
presence of both clinical conditions resulted in additive 
decline in the LA strain parameters (34). Similar findings 
were confirmed by Hennawy et al., who showed that 
the parameters of LA function, including LASr and LA 
deformation index were significantly lower in hypertensive 
patients with normal LA volume indices as compared to 
controls. Their study was unique in the way that the control 
subjects were matched for a greater number of confounding 
factors, including body mass index (BMI), which was not 
accounted for in prior studies (35). Additional studies in 
individuals with preserved LV function have confirmed 
these findings, giving merit to the role of LA strain 
measurement in detecting HTN related myocardial 
dysfunction, before the onset of LV wall thickening (36). 
Pharmacological interventions resulting in improvement in LA 
strain parameters with better blood pressure control has also 
been demonstrated, pointing toward a beneficial role of LA 
strain measurement to monitor response to treatment (37).

LA strain in HF

With growing interest in HF, there has been expanding 
interest in diagnostic and prognostic implications of various 
imaging modalities. Doppler imaging is angle-dependent 
and has a debatable value in estimating left ventricular 
filling pressure changes (38). As compared to E/e’ and  
E/Em, the global LASr has greater accuracy in estimating 
left ventricular end diastolic pressure (LVEDP), particularly 
pulmonary capillary wedge pressures (39-41). In a study 
evaluating LA reservoir function in 405 patients with HF 
with reduced ejection fraction (HFrEF), impaired LASr 
was found to be associated with elevated left ventricular and 
atrial volumes, worse left ventricular global longitudinal 
strain and LVEF, worse right ventricular systolic 
dysfunction and more severe diastolic dysfunction. These 
changes in echocardiographic variables translated into LASr 

being a significant predictor of death/HF hospitalization at 
12, 24 and 36 months of follow-up (42). Other studies have 
also demonstrated the association of impaired LASr with 
cardiovascular mortality, risk of AF, higher brain-derived 
natriuretic peptide (BNP) levels and worsening New York 
Heart Association (NYHA) in patients with HFrEF (42-44).

LA strain imaging has also shown promise in HF with 
preserved ejection fraction (HFpEF), with some differences 
from HFrEF by virtue of its distinctive physiology.

Impaired left ventricular distensibility causes a 
compensatory and chronic elevation in LA pressure, 
eventually leading to declining reservoir and pump 
functions along with increased LA stiffness (45,46). In 
a prospective cohort study, Telles et al. suggested that 
impaired LA strain could be used as a marker of impaired 
exercise hemodynamics (47). Patients diagnosed with 
HFpEF by right heart catheterization have reduced LASr, 
increased stiffness, worse pump strain and a reduced 
contraction strain index (47). Impaired LA reservoir and 
pump phase function are also strongly associated with 
increased pulmonary artery pressure and resistance, and 
reduced cardiac output and exercise workload. However, 
the usefulness of LA strain in predicting hospitalization and 
death, independent of LV strain, remains uncertain (48,49).

LA strain and aortic stenosis (AS)

LA enlargement is a common consequence of AS and 
estimation of LA size is an independent determinant of left 
ventricular filling pressure (12). Although data from recently 
published small scale trials has also indicated a correlation 
between these indices, such as LA volume index (LAVI), LA 
distensibility, LA strain and LA volume, and the chronicity 
of the disease, the value of LA strain in prognostication 
of AS remains unclear. In the absence of primary aortic or 
mitral disease, LA diameter has been positively correlated 
with post valve replacement outcomes in AS (50). Rusinaru 
et al., in a recent French study, studied 715 patients with 
aortic leaflet calcification and a peak aortic jet velocity of 
>2.5 m/s for a median period of 22 months to estimate 
the cut-off value of LAVI, which can be used to correlate 
with the risk for the combined endpoint of cardiovascular 
death and hospitalization for HF. The results of the study 
indicated that LAVI of ≥45 mL/m2 was associated with 
increased left ventricular volume and filling pressure (51).  
A subsequent study evaluated 77 severe AS and 25 moderate 
AS patients for a median follow-up period of 25 months, 
demonstrating that LA distention of ≤69% and LA 
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maximal strain of ≤17% were independently associated with 
increased hospitalization for HF and all-cause mortality (52).

LA strain and CAD

As with other CVD processes, ischemic effects on myocardium 
also leads to deformation of LA myocardium before 
the onset of gross structural or functional changes (53).  
In one of the earliest studies on CAD patients, Yan et al. 
showed that LA strain/strain rate was affected in patients, 
even in those with preserved ejection fraction and normal 
LA size. LASr was decreased in patients with CAD with 
a significant increase in atrial strain in late LV filling, 
particularly in patients with left anterior descending (LAD) 
stenosis (54). In a small-scale study conducted in Egypt 
based on 30 patients with stable CAD, it was found that LA 
diameter and volume correlated directly with the severity 
of CAD. Additionally, LA strain and strain rate were noted 
to be reduced in CAD and negatively correlated with 
increasing severity of stenotic lesion as measured by Syntax 
score (55). Existing literature also indicates a lower early 
diastolic LA strain rate and higher late diastolic strain rate 
in diabetic CAD as compared with non-diabetics CAD (56).  
Although the existing data are largely from small scale 
studies, it opens up possibilities for future exploration of LA 
indices in CAD and early evaluation for both medical and 
interventional therapies.

LA strain and obesity

Obesity is associated with early LA enlargement partly as 
a compensatory response to increased cardiac output and 
stroke volume, similar to what may be observed in athletes 
(57,58). Other mechanisms contributing to atrial remodeling 
include increased afterload, myopathic effect of systemic 
inflammation and adipokines, and a possible paracrine 
effect from epicardial fat (59,60). Therefore, using LA 
dimensions as a marker of obesity related LA remodeling 
offers little insight into the causal mechanism. In a 
community-based design, the Chirinos et al. designed a first 
of its kind study to assess the change in LA strain patterns 
with increasing BMI amongst 1,531 participants (59).  
Authors of the study reported that increasing BMI was 
associated with declining LA reservoir and conduit function, 
and a compensatory increase in the booster pump function, 
when adjusted for age and gender (59). They further 
argued that the loss of the booster pump function with 
increasing BMI likely increased likelihood of development 

of HF (61). LA strain parameters can, thus, be used to 
trend obesity related cardiac remodeling, and monitor 
response to medical and lifestyle interventions to decrease 
predisposition for adverse outcomes.

LA strain in acute ischemic stroke

Stroke is a leading cause of long-term cardiovascular 
morbidity and mortality, as well as healthcare expenditure 
in the western world. In patients with AF, the CHA2DS2-
VASc score is used for risk stratification and assessment 
of the need for anticoagulation (62). The score does not 
take into account the role of LA size and deformational 
parameters in determining the risk of stroke in patients with 
AF. Studies evaluating LA strain in patients with paroxysmal 
and persistent AF have shown that reduced strain values are 
associated with higher atheroembolic burden, and provided 
incremental value over CHA2DS2-VASc score in risk 
stratification (63).

Moreover, studies in patients with acute ischemic stroke 
without a prior diagnosis of AF have shown that reduced 
global LA peak longitudinal strain offered prognostication 
value in terms of recurrent stroke, and was suggestive of 
more advanced atrial cardiomyopathy (64). These patients 
were also shown to be more likely to develop subsequent 
AF, suggesting that altered LA contractility predisposed to 
increased risk of developing AF as well as thromboembolic 
phenomenon (65). In theory, the reduced value of global 
PLAS could strengthen the indication for loop recorder 
implantation (to detect possible atrial arrhythmias) and/
or for anticoagulation therapy for secondary prevention in 
patients with a recent acute ischemic stroke.

LA strain in hypertrophic cardiomyopathy (HCM)

H C M  i s  o n e  o f  t h e  m o s t  c o m m o n  i n h e r i t e d 
cardiomyopathies characterized by heterogeneous 
myocardial hypertrophy and left ventricular dysfunction (66).  
In a manner reminiscent of changes in AS, the natural 
course of the disease involves progressive LV diastolic 
dysfunction, leading to increased filling pressures which 
are transmitted to the LA and cascading to progressive LA 
enlargement with morpho-functional dysfunction (67). The 
manifestations of the disease encompass decreased exercise 
tolerance, HF, AF, ventricular arrhythmias, and sudden 
cardiac death (68-70). It is therefore clinically relevant 
to risk stratify these patients using non-invasive imaging 
modalities.



930 Jain et al. Contemporary update on LA strain mechanics

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2021;11(3):924-938 | http://dx.doi.org/10.21037/cdt-20-461

There have been a number of studies demonstrating 
that increasing left ventricular stiffness and subsequent 
decrease in LV long-axis shortening result in worsening 
LV longitudinal strain values, often associated with adverse 
outcomes (71). Early reports have also shown that the 
disease process is associated with progressive LA stiffness 
and decreased reservoir function forming the basis for the 
growing interest in evaluating morpho-functional changes 
in LA in patients with HCM (72). Figure 2 demonstrates 
representative LA strain curves analyzed by two different 
software platforms (EchoPAC and Velocity Vector Imaging) 
in a healthy subject versus a patient with HCM. In HCM, 
the LA strain values were lower, compared with the 
normal subject. In a study of 76 HCM patients, Fujimoto 
et al. showed that HCM was associated with declining LA 
booster as well as conduit strain parameters, and increasing 
LAVI. Worsening of LA pump function was associated with 
increasing hospitalizations for HF and AF, and correlated 
with adverse outcomes (73). Another study assessing 
LA dysfunction among different phenotypes of HCM 
found that LA function was impaired even in minimally 
symptomatic and non-obstructive phenotypes, and 
progressively worsened with the degree of obstruction (74).  
These findings support the utilization of LA strain 
assessment as a means of tracking disease progression and 
risk stratification of patients, with the hope of improved 
survival with timely interventions. However, it is important 
to note that Wang et al. recently showed that there may be 
variability in LA strain measurements by different strain 
software platforms (21). Figure 2 demonstrates an example 
of variability in strain mechanics between EchoPAC and 
Velocity Vector Imaging. Therefore, when interpreting LA 
strain values, attention must be paid to the type of software 
platform used (75).

LA strain in amyloidosis (AL)

Cardiac amyloidosis (CA) involves the intramyocardial 
deposition of abnormally folded amyloid chains, and is 
usually a component of systemic AL (76). Based on the type 
of amyloid chain deposited, CA can be light chain AL, where 
clonal expansion of plasma cells leads to overproduction of 
immunoglobulin light chain, or transthyretin AL, which 
can be further due to hereditary (ATTRm) or deposition of 
wild type (ATTRwt) transthyretin (77). Regardless of the 
etiology, CA results in progressive increases in LV thickness, 
diastolic dysfunction, and elevated filling pressures (78). 
This increased pressure coupled with deposition of amyloid 

fibrils leads to progressive LA dilation and dysfunction, 
and worsening LA size has been correlated with adverse 
outcomes in patients with CA (79).

A control matched study of 77 patients with diagnosed 
AL type of CA using 3D speckle tracking imaging (STI) 
showed that advancing disease was associated with lower 
3D-LA total emptying fraction (3D-tLAEF), and worse 
LASr. The 2-year survival was noted to be significantly 
lower in patients with 3D-tLAEF < +34% (P=0.003) and 
in those with LASr < +14% (P=0.034) (80). Another study 
by Nochioka et al. found that all LA strain parameters, 
including peak longitudinal strain rate (LSR) (reservoir 
function), early LSR (conduit function), and late LSR 
(booster pump function) were impaired in individuals with 
CA regardless of the characteristic of fibrils deposited (AL, 
ATTRm, ATTRwt). LA dysfunction correlated well with 
the degree of LV dysfunction, and was worse in patients 
with ATTRwt, compared with other subtypes of CA (81).

LA strain in Fabry disease (FD)

FD is an X-linked disorder characterized by decreased 
activity of the lysosomal enzyme alpha-galactosidase, 
resulting in deposition of glycosphingolipids in multiple 
organ systems, and cardiovascular involvement is a cause 
of significant morbidity and mortality, including premature 
death (82). Enzyme replacement therapy (ERT) has been 
shown to improve mortality and reverse increased LV wall 
thickness. However, due to the high cost, it is currently 
recommended only in patients with increased LV wall 
thickness, diastolic dysfunction and LA enlargement (83). 
A study by Pichette et al. enrolling 50 control matched 
subjects with FD noted that LASr, early diastolic strain and 
late contractile strain were significantly impaired in patients 
with FD (84). Fifteen patients who received ERT had 
significant improvement in all LA strain parameters when 
compared to 15 patients who did not receive ERT (82).  
The peak positive and early diastolic strain were also found 
to correlate with adverse outcomes like new onset AF and 
stroke at 4-year follow-up (84). Such findings highlight the 
important role of LA strain imaging in early assessment 
of disease severity and timely initiation of ERT for better 
outcomes. It is noteworthy that a number of conditions 
including HTN, HCM, CA and FD may lead to LV 
thickening and consequently affect LA strain patterns, but 
at present data are limited regarding the feasibility of using 
the pattern of LA strain mechanics to determine the cause 
of LV thickening.



931Cardiovascular Diagnosis and Therapy, Vol 11, No 3 June 2021

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2021;11(3):924-938 | http://dx.doi.org/10.21037/cdt-20-461

LA strain and chronic mitral regurgitation (MR)

LA dilation seen in chronic MR is associated with increased 
risk of development of new onset AF, which is also a class 
IIb recommendation for mitral valve replacement (85). 
Yang et al. concluded that reduced baseline LA strain 
and strain rate in the filling phase were associated with a 
higher rate of mortality and mitral valve replacement or 
repair procedures after a mean follow-up of 13.2 months in 
primary severe MR (86). A small study on participants with 
severe Carpentier class II MR with lower baseline LASr 
rate were noted to have more rapid LA remodeling over 

a mean period of 153 months (87). In a study conducted 
on 192 patients with mitral valve prolapse and MR, it was 
noted that tLAEF, reservoir strain and the contractile 
strain were all independent predictors of requirement of 
valve replacement. In fact, the study calculated a sensitivity 
of 91% and a specificity of 92% for future surgery with 
tLAEF cutoff value of <50% (88). These findings, although 
restricted to small studies, reflect a growing utility of 
LA strain measurements in stratifying risk, predicting 
progression and eventually optimizing timing of surgical 
interventions in this patient population.

Figure 2 LA strain mechanics through the different phases of the cardiac cycle in a normal subject (top panel) compared to a patient with 
HCM (bottom panel). The series of images on the left represent strain measurements by EchoPAC (GE Healthcare, Chicago, IL, USA)] 
software, while the series of images on the right represents measurements by velocity vector imaging (Siemens Healthineers, Washington, 
DC, USA). The illustration also highlights the differences in LA strain values obtained, depending on the type of software platform used. 
LA, left atrial; HCM, hypertrophic cardiomyopathy; LASr, LA reservoir strain; LAScd, LA conduit strain; LASct, LA contractile strain.
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LA strain and DM

DM is a common cardiovascular risk factor, often found 
in association with HTN, with current data indicating 
worldwide prevalence of 7% by 2030 (89). Long standing 
DM is associated with LA enlargement in concordance with 
LV diastolic dysfunction and an increased predisposition 
to HF (90). Studies using LA volume measures and strain 
echocardiography have shown decreased LA reservoir 
and conduit function, in addition to impaired global 
longitudinal LV strain (91). In a recent study evaluating 73 
patients with type 2 DM, Kadappu et al. showed that LA 
enlargement was independent of the degree of HTN and 
diastolic dysfunction (92). Another study highlighted the 
usefulness of LA strain mechanics in detecting early changes 
in the myocardium caused by DM, reporting impaired LA 
strain mechanics (reservoir and conduit strains) in diabetic 
patients without HTN and LV hypertrophy (93). Tadic  
et al. performed a study in 55 asymptomatic diabetic patients 
and similarly concluded that DM was independently 
associated with decreased reservoir and conduit strain 
function, impaired autonomic function as measured by 
reduced heart rate variability, and a compensatory increased 
booster pump function (94). Such remodeling influences of 
DM on LA add to the risk of development of AF, an already 
feared outcome of diabetic cardiomyopathy (95). Table 1 
summarizes the studies evaluating LA strain mechanics in 
various disease conditions.

Current limitations in clinical applications of LA 
strain mechanics

Widespread utility of LA strain mechanics for assessment 
of disease severity and prognostication is limited at present. 
This is partly contributed to by a relative lack of robust 
data on the correlation between different LA parameters 
with outcomes, as well as accurate non-invasive modalities 
for LA volume estimation. The assessment of LA function 
in a comprehensive manner requires a combined assessment 
of both LA pressure and LA volume. In the absence of 
modalities for direct assessment of LA pressure, estimates 
are indirectly measured, and can be influenced by both LV 
dysfunction and primary abnormalities in the LA, making 
it difficult to differentiate between the various contributing 
factors. Additionally, rhythm disturbances are not accounted 
for in LA strain assessment. Additionally, the heterogeneity 
in the LA strain values obtained from different software 
platforms should be noted.

Future perspectives and conclusions

Traditionally, imaging parameters relating to LV function 
and structure have been typically used to assist with risk 
stratification and help guide decisions for interventions. 
More recently, the assessment of LA function and 
structure has gained increasing popularity for early 
detection of disease severity, and the scope has gradually 

Table 1 A review of existing literature on the clinical utility of LA strain mechanics

Clinical 
application

Author, publication year
Study sample 

size
Outcome

AF Cameli et al., 2017 (29) 79 Global LASr <8.1%, predicted LAA thrombus and reduced LAA emptying 
velocity

Lacalzada-Almeida et al., 2019 (30) 98 SRa decrease related to evolution of new onset AF or stroke or both

Yoon et al., 2015 (31) 52 LAS ≤30.9% was associated with AF progression

Hwang et al., 2009 (32) 40 Average strain was associated with AF recurrence

HTN Mondillo et al., 2011 (34) 121 Decreases in all LAS and SR indices, exception of peak LASRa

Hennawy et al., 2018 (35) 50 Global LASr lower in the HTN despite normal LAVI

Karakurt et al., 2019 (36) 29 Peak LAS and SR lower in HTN with preserved LAEF and LVEF

HFrEF Carluccio et al., 2018 (42) 405 LASr independent prognostic marker

Kurt et al., 2012 (43) 62 LAS associated with increased LVEDP

Malagoli et al., 2019 (44) 286 Lower global LASr showed worse event-free survival

Table 1 (continued)



933Cardiovascular Diagnosis and Therapy, Vol 11, No 3 June 2021

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2021;11(3):924-938 | http://dx.doi.org/10.21037/cdt-20-461

Table 1 (continued)

Clinical 
application

Author, publication year
Study sample 

size
Outcome

HFpEF Telles et al., 2019 (47) 71 Reservoir strain ≤33% associated with HFpEF hospitalization (Sen 88%, Sp 77%)

Freed et al., 2016 (48) 308 Reservoir strain correlated with composite of cardiovascular hospitalization 
or death

Santos et al., 2016 (49) 357 LAS associated with HF hospitalization became non-significant after 
adjustment for LV systolic and diastolic function

AS Rusinaru et al., 2017 (51) 715 LAVI ≥45 mL/m2 lower LVEF and higher LVEDP

Meimoun et al., 2019 (52) 102 LAD ≤69% and LAS ≤17% correlated with HF and all-cause mortality

CAD Yan et al., 2012 (54) 65 Decreased SRe and increased SRa in CAD patients with preserved LVEF

Said et al., 2018 (55) 30 LASr and LASct lower in high syntax group

Hosseinsabet et al., 2017 (56) 205 LAS lower in the diabetic patients than in the pre-diabetic and euglycemic 
patient

Obesity Oliver et al., 2017 (58) 748 ΔLAV correlated with BMI exclusively by associations with visceral fat mass

Chirinos et al., 2009 (59) 1,531 Obesity associated with impaired reservoir and conduit LA function and 
higher booster function

Ischemic 
stroke

Sonaglioni et al., 2019 (64) 85 Global LASr ≤15.5% shows advanced atrial cardiomyopathy

Kim et al., 2016 (65) 227 Global LASr <14.5% better distinguished post-stroke AF than CHA2DS2-
VASc score

HCM Hiemstra et al., 2017 (71) 427 Significantly better survival for patients with LAVI <34 mL/m2 and LASr 
<–15%

Fujimoto et al., 2018 (73) 76 Cardiac events more frequent with LAS <20.3%

Kobayashi et al., 2017 (74) 105 LA function impaired in non-obstructive HCM; total and passive LA function 
further impaired in obstructive HCM

AL Mohty et al., 2011 (79) 134 LAE associated with worse overall mortality at 5 years

Mohty et al., 2018 (80) 77 Two-year survival lower with LASr <14% (P=0.034)

Nochioka et al., 2017 (81) 124 All LA function phases significantly impaired in CA

MR Yang et al., 2015 (86) 104 Reduced LASp and LASRr associated with worse prognosis asymptomatic 
severe primary MR

Yang et al., 2017 (87) 159 Lower LASRr at baseline showed higher risk of deterioration in severe 
chronic Carpentier II MR

DM Kadappu et al., 2012 (92) 73 LAVI was larger (38.2±9.9) in DM group

Tadic et al., 2017 (94) 55 LA reservoir and conduit function significantly lower in diabetic subjects and 
LA booster pump function is compensatory increased

LA, left atrial; HF, heart failure; AF, atrial fibrillation; LASr, LA reservoir strain; LAA, LA appendage; SRa, strain rate during late filling; LAS, 
LA strain; SR, strain rate; HTN, hypertension; LAVI, LA volume index; LAEF, LA ejection fraction; LVEF, left ventricular ejection fraction; 
HFrEF, HF with reduced ejection fraction; LVEDP, left ventricular end diastolic pressure; HFpEF, HF with preserved ejection fraction; Sen, 
sensitivity; Sp, specificity; AS, aortic stenosis; LAD, left anterior descending; CAD, coronary artery disease; SRe, strain rate during early 
filling; LAV, LA volume; BMI, body mass index; HCM, hypertrophic cardiomyopathy; AL, amyloidosis; LAE, LA enlargement; CA, cardiac 
amyloidosis; MR, mitral regurgitation; LASp, peak LA strain; LASRr, strain rate in LA filling phase; DM, diabetes mellitus.
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expanded to include assessment of valvular pathologies, 
cardiomyopathies, and systemic diseases, such as HTN 
and DM. With the advent of newer technologies for 
strain measurement, the understanding of LA function 
through the different stages of the cardiac cycle is evolving. 
Furthermore, the introduction of standardized indices has 
laid the foundation for future larger studies, and potential 
future inclusion of LA strain mechanics in consensus 
guidelines with the emergence of more robust prospective 
data. The current data regarding the clinical utility of LA 
strain mechanics are largely derived from small studies. 
This highlights the need for further large prospective 
multicenter studies, investigating the clinical applications of 
LA strain mechanics in various cardiovascular conditions.
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