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Introduction

Vascular calcification (VC) is the deposition of calcium/
phosphate crystals in the vascular system. The link between 
VC and increased mortality is well established: the presence 
of aortic valve sclerosis, as well VC in other arterial beds, 
has been associated with increased risk of mortality for 
cardiovascular disease (CVD) (1). VC portends a worse 
clinical outcome and predicts major adverse cardiovascular 
events: the prevalence of calcification increase with age, 
with evidence of VC present in more than 90% of men and 
67% of women over the age of 70 (2). Several conditions 
such as diabetes mellitus, dyslipidemia and renal diseases 
are identified as major predisposing factors. However, it is 
incorrect to consider VC as an equivalent of atherosclerosis. 
The reason for this is twofold. In ancient cultures, VC 
has been found in several arterial districts: this not only 
challenges the fact that that atherosclerosis is a modern 
disease caused by present day risk factors, but also implies 

that VC might be associated with other conditions such 
as certain types of infection (3). An autopsy of an ancient 
Egyptian teenage male found that he was infected with 
four parasites (4). Modern day patients with chronic 
inflammatory diseases experience premature atherosclerosis 
and VC. These observations suggest that atherosclerosis 
and, specifically, VC, are the results of interplay between 
genes and environment.

Types of VC

VC is an active process initiated and regulated by a variety 
of molecular signaling pathways. There are mainly two types 
of calcifications: medial VC and the intimal VC (5). Medial 
VC is characterized by the deposition of hydroxyapatite, 
mainly localized in the peripheral arteries, deposited along 
the elastic lamina and extracellular matrix, and is associated 
with diabetes mellitus and chronic kidney disease (CKD) (6). 
Recent works suggest a potential role for Receptor activator 
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for nuclear factor κB ligand (RANKL)—Receptor activator 
for nuclear factor κB (RANK)—osteoprotegerin (OPG) 
signaling in this type of vascular disease. The clinical 
outcome of media VC are vascular stiffness, impaired 
hemodynamic regulation, and increased cardiac post-
load. Intimal VC is systemic, mainly determined by the 
classical CVD risk factors, and it is activated by either 
oxidative stress or inflammatory pathways (7). In the intima, 
calcification occurs in two distinct patterns: (I) punctate foci 
of calcification, which may also undergo osseous metaplasia, 
including marrow and bone; (II) diffuse calcification, with 
an undefined biological role of this pattern. The clinical 
outcomes of intimal VC are arterial stiffness and changes 
in plaque characteristics, potentially predisposing to 
vulnerability. 

Calcifications can be classified also according to their 
burden: spotty or granular calcifications (“micro-calcification”), 
typically <15 nm in diameter, is associated with feature of 
ruptured plaque while diffuse, homogeneous, or sheet-like 
calcifications (“macro-calcification”), typically >5 mm, is 
associated with plaques less prone to rupture (8).

Risk factors for VC

All major risk factors for CVD have been linked to 
the presence or development of VC (i.e., age, obesity, 
hypertension, smoking, non-HDL cholesterol, and 
diabetes). Besides the risk factors, a genetic component 
is also operative to determine arterial calcification: some 
rare monogenic disorders have been associated with the 
pathological development of VC (9). Nevertheless, other 
investigation showed that up to 40-50% of the variance 
of aortic and coronary calcium could be also attributed to 
genetics (10). The 9p21 locus, which has been linked to 
vascular disease, also associates with calcification (11). A 
meta-analysis identified 48 single nucleotide polymorphisms 
at 9p21 near the cyclin genes, cyclin-dependent kinases 
(CDKN) 2B and CDKN 2AA, that met significance for 
coronary artery calcium (CAC) score association (12). These 
genes encode cyclins that may be implicated in cellular 
senescence and inflammation.

In the presence of dyslipidemia, acetylated LDL increase 
by 3-fold the osteogenic phenotype of cultured vascular 
smooth muscle cells (VSMCs) (13). Moreover, it was found 
that minimally oxidized LDL induced VC and increased 
alkaline phosphatase (AP), thus promoting osteogenic 
differentiation of VSMC. Conversely, HDL inhibits 
osteogenic differentiation pathway in vitro (14). Obesity per 

se does not seem to be a determinant of VC. However, the 
epicardial fat seems to be relevant for coronary calcification, 
which has an intense paracrine activity, probably mediating 
its propensity to induce calcification (15). It was reported 
that CAC score correlates with the volume of fat around the 
heart, and a greater volume of epicardial fat was associated 
with a higher risk for stenosis on angiography, independent 
of diabetes status (16). Although epicardial fat is associated 
with all classical CV risk factors (17), a study has shown that 
epicardial fat is associated with a 34% increased odds of 
CAC, independent of visceral fat volume (18). In addition 
to indicating the presence of calcification, the CAC score 
per se predicts cardiac events and survival rates when 
combined with other traditional risk factor scoring systems, 
as the Framingham risk score (19). For instance, the 
Diabetes Heart Study, conducted on a population of 1,123 
type 2 diabetic patients aged 34-86 years, showed that CAC 
predicted CVD over 7.4-year follow-up, regardless of the 
Framingham Risk score (20).

The contribution of hypertension to VC is still 
uncertain (21). The renin-angiotensin-aldosterone system 
is a major pathogenic factor in VSMC apoptosis, growth, 
and differentiation thus suggesting a possible involvement 
of the system in arterial calcification (22). Angiotensin-II 
(Ang-II) can promote VSMC differentiation into osteogenic 
cells through RANKL activation (23). Calcified arteries 
showed an up-regulation of angiotensin 1 receptor (AT1) 
and treatment with an AT1 blocker was able to prevent  
VC (24). In a rodent model of arterial calcification induced 
by administration of vitamin D plus oral nicotine, increased 
calcium content of the arteries was associated with 
increased levels of Ang-II and aldosterone in the tissue (25). 
Conversely, treatment with captopril or spironolactone 
reduced calcium accumulation. Long-standing hypertension 
can also induce fracturing of elastic fibers (26) that may 
indirectly predispose to VC.

Inflammation, a hallmark of insulin resistant states, is a 
potent inducer of VC. Osteogenesis is associated with local 
inflammation and macrophage infiltration in atherosclerotic 
plaques of ApoE−/− mice (27). In addition, several cytokines 
have been shown to induce mineralization of calcifying 
vascular cells in vitro, mainly through the induction of AP 
expression (28). These inflammatory processes might be 
amplified in patients with diabetes, especially in case of 
concomitant CKD.

Cigarette smoking, a major cause of CVD, is typically 
associated with VC (29). The effect of smoking can be 
direct or indirect. Smoking appears to have a multiplicative 
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interaction with the other major risk factors for coronary 
heart disease. However, cigarette smoke delivers a high 
level of oxidizing chemicals to smokers, including oxides 
of nitrogen and many free radicals. Studies indicate that 
oxidant stress contributes to several potential mechanisms 
of CVD, including inflammation, endothelial dysfunction, 
lipid abnormalities such as oxidation of LDL, and platelet 
activation. All these mechanisms along with alteration in 
plasma lipids, glucose metabolism, and blood flow can 
contribute to the ability of smoking to induce VC (30).

Molecular mechanisms leading to VC

Several events take place before VC is established. 
VSMC transdifferentiate into cells that look like bone-
formative cells where smooth muscle-specific genes down-
regulate, and genes associated to osteochondrogenesis, 
such as runt-related transcription factor 2 (Runx2), osterix, 
osteopontin (OPN), osteocalcin, and AP up-regulate. These 
cells produce a collagen matrix and form calcium- and 
phosphorus-rich matrix vesicles (MVs) that are capable of 
initiating mineralization of the vascular wall. Runx2, a key 
transcription factor for osteoblast differentiation, is a critical 
element of this phenotypic change (31,32). Elastin, the 
most abundant protein in the aortic wall, can be degraded 
by matrix metalloproteinase (MMP), MMP-2 and MMP-9:  
the degradation of this protein, increases calcification 
of VSMC grown in a high-phosphate medium because 
of its ability to increase the expression of transforming 
growth factor (TGF)-β, which is involved in osteoblast 
differentiation (32). An increased calcium-phosphorus 
product (Ca × P) is important for the mineralization of 
vascular wall, although the concentration of calcium 
appears to play a more significant role. Hyperphosphatemia 
also plays an important role through the activity of type 
III sodium-dependent phosphate transporters, Pit-1  
and Pit-2 (33). The knocking down of Pit-1 in VSMC is 
associated to significant less sodium-dependent phosphate 
uptake and calcium deposition. In patients with CKD, 
parathyroid hormone (PTH) and fibroblast growth factor 
(FGF)-23 are both implicated in VC (34). In these patients, 
failure of anti-calcific mechanisms is reported. One of the 
mechanisms is the matrix Gla protein (MGP), which acts 
by binding calcium ions and clear excess calcium, as well as 
binds calcium crystal and inhibits crystal growth (35). MGP 
expression is down-regulated by vitamin D deficiency (36).  
γ-Carboxylation converts MGP into its active form, and 
vitamin K acts as a cofactor for this process. Vitamin K 

antagonists interfere with the generation of active 
MGP (37): indeed warfarin use is associated with VC 
in the hemodialysis population. Fetuin-A is another 
important inhibitor of calcification: this glycoprotein is 
present in the circulation, where it binds calcium ions 
and hydroxyapatite (38). Mice deficient in fetuin-A show 
increased susceptibility to widespread calcification, and 
fetuin-A added to bovine VSMC inhibits calcification. 
OPN inhibits formation of apatite crystals and promotes 
osteoclast function (39): this phosphoprotein is seen at high 
levels in calcified arteries, where it counteracts VC (40).  
OPG, a member of the tumor necrosis factor (TNF)-α 
receptor superfamily, indirectly inhibits osteoclastogenesis (41). 
It functions as a soluble “decoy” receptor that binds and 
inhibits RANKL, which instead promotes calcification (41). 
Studies in humans have shown an association between OPG 
levels, presence of CAD and the risk of future CVD events (42).

A progressively increasing role of S100A in calcification 
is being acknowledged. S100A8 (MRP-8) and S100A9 
(MRP-14) are members of the S100 family of calcium-
binding proteins and highly expressed in numerous 
inflammatory conditions (43). Monocytes infiltrating 
early atherosclerotic lesions, and macrophages within 
mature plaques of  ApoE −/− mice were reported as 
S100A9+S100A8+ (44). Intracellular S100A8 and S100A9 
essentially regulate phagocyte through calcium and 
mitogen-activated protein kinase transduction pathways 
affecting the micro-tubular system. S100A8-elicited 
macrophages exhibit a pro-atherogenic phenotype. Burke 
et al. found strong expression of S100A12 in human 
coronary artery VSMC in ruptured plaques associated with 
sudden cardiac death, with the highest S100A12 expression 
observed in ruptured plaques of diabetic patients (45). 
These studies strongly suggest a relationship between the 
pathological expression of S100A12 in the vasculature and 
features of plaque instability.

To create  a  microenvironment  permiss ive  for 
calcification, specialized membrane-bound bodies called 
MVs, serve as nucleation sites for hydroxyapatite. On 
exposure to high extracellular calcium, or with intracellular 
calcium release, and when calcification inhibitor levels are 
low, VSMCs produce mineralization-competent vesicles 
that contain preformed HA (46). MVs contain apoptotic 
bodies, which creates a phosphate source by degrading 
pyrophosphate (47). VSMC as well as leukocyte derived 
MV may play a role in VC. MV have been identified 
in both atherosclerotic plaques associated with intimal 
calcification and in non-atherosclerotic vessels associated 
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with arterial medial calcification (48). Elevation in both 
calcium and phosphate levels have been shown to induce 
release of MV from cultured VSMC, whereas elevated 
calcium levels enhance the mineral formation from these 
MV (49). MVs, which are found in atherosclerotic plaques 
and in blood may also contribute to VC: it has been shown 
that a high number of circulating micro-particles are seen in 
menopausal women with coronary calcification and the level 
of micro-particles is directly correlated with the calcium 
score (50). Table 1 reports an overview of biomarkers and 
potential modulators of VC, whereas Figure 1 shows the 
interplay between molecular and cellular mechanisms of VC.

Diabetes as a predisposing factor for VC

Diabetes leads to CVD via several mechanisms [reviewed 
in (59)], and is an important predisposing factor for 
VC (60). Compared with non-diabetic subjects, patients 
with diabetes show increased VC and higher expression 
in the medial layer of the vessels of bone-related proteins, 
such as OPN, type I collagen, and AP (61). These findings 
indicate that the activation of an osteogenic program is 
accelerated within the arterial wall of diabetic patients. 
Hyperglycemia and insulin resistance are hallmarks of 
diabetes, and can be actively involved in the pathological 
processes leading to VC (62). Hyperglycemia influences VC 
through the production of reactive oxygen species (ROS), 

Table 1 Soluble biomarkers and regulators of calcification.

Biomarker Mechanism of Action Effect on VC

FGF-23 (51) Requires Klotho as biomarker; promotes phosphate excretion;  

reduces calcium absorption; decreases PTH release

High levels associate 

with VC

Fetuin-A (52) Binds calcium phosphate; decreases inflammation Inhibition of VC

MGP (53) Binds calcium crystals; inhibits crystal growth; inhibits BMP-2 Inhibition of VC

BMP-2 (54) Regulates bone formation; promotes osteoblast differentiation;  

decrease miRNA 30b and 30c; promotes mineralization

Promotes VC

OPG (55) Inhibits osteoclast differentiation; interferes with the interaction RANKL/RANk Inhibits VC

OPN (56) Blocks hydroxyapatite formation; inhibits mineralization of VSMC; pro-inflammatory Inhibits VC (?)

Osteonectin (57) Binds calcium Associates with VC

OS (58) Inhibits calcium precipitation; inhibits crystal growth; 

increased in polarized myeloid procalcific cells

Associates with VC (?)

Sclerostin (52) Inhibits osteoblast-mediated bone formation Inhibits VC

?, the mechanism of the biomarker is not established yet. FGF, fibroblast growth factor; PTH, parathyroid hormone; VC, vascular 

calcification; MGP, matrix Gla protein; BMP-2, bone morphogenetic protein-2; OPG, Osteoprotegerin; RANKL, receptor activator 

for nuclear factor B ligand; RANK, receptor activator for nuclear factor B; OPN, osteopontin; VSMC, vascular smooth muscle cells; 

OS, osteocalcin.

Figure 1 Contributors to plaque calcification. Representative 
Alizarin red staining of a carotid plaque section is shown with a 
calcified nodule (arrow) in the medial layer and other calcifications 
(arrowheads) beneath the endothelial layer; Plaque ruptures are also 
present where indicated. Multiple mechanisms contribute to plaque 
calcification and they are interacting mutually and with traditional 
risk factors. Humoral regulators, parietal as well as circulating cells 
are depicted. VC, vascular calcification; MGP, matrix Gla protein; 
FGF, Fibroblast growth factor; BMPs, bone morphogenetic 
proteins; RANKL, receptor activator for nuclear factor B ligand; 
OPG, osteoprotegerin; VSMC, vascular smooth muscle cells; 
EPCs, endothelial progenitor cells; MCCs, myeloid calcifying cells.

Humoral 
regulators of VC 
(see table)

∙ MGP
∙ Fetuin-A
∙ FGF-23
∙ BMPs
∙ RANKL/OPG
∙ Osteopontin
∙ Osteocalcin
∙ Sclerostin

Traditional 
risk factors

Plaque 
reptures

Calcified plaque
(Alizarin red staining) Parietal cells 

involved in VC 

∙ Endothelial cells
∙ Pericytes
∙ Interstitial cells
∙ VSMCs
∙ Adventitial cells
∙ ...

Circulating cells 
involved in VC 

∙ Mesenchymal cells
∙ EPCs
∙ MCCs
∙ ...
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major inducers of vascular cell trans-differentiation into 
osteoblast-like elements (63). Medial calcification occurs 
preferentially in diabetic patients with neuropathy: this type 
of calcification is a strong predictor of total CVD mortality, 
and also a significant predictor of future CHD events, 
stroke, and lower limb amputation (64). It should also be 
noted that, in the lower limbs, calcification is typical of 
intimal plaques leading to femoral artery occlusion (65). High 
glucose and other potential factors may play an important 
role by transforming VSMCs into osteoblast-like cells (66).  
In addition, CKD often complicates long-standing 
diabetes: this condition is per se associated with accelerated 
calcification (67). The molecular cues underpinning this 
calcification pattern remain elusive. Several mechanisms 
may be involved. One is the formation of advanced 
glycation end products (AGE). The receptor for these 
RAGEs colocalizes with inflammatory cells in regions with 
micro-calcifications (68). In rodents with diet-induced 
diabetes, RAGE is up-regulated and colocalizes with VSMC 
undergoing osteochondrogenic differentiation. Diabetes 
may promote VC by reducing the vitamin K—dependent 
activation of the inhibitor of calcification, MGP (69).  
Hyperglycemia, combined with elastin degradation products 
increases osteogenic markers, such as osteocalcin, and 
Runx2 in vascular cells (70). In human aortic endothelial 
cells, high glucose concentration augments expression of 
BMP-2 and BMP-4, MGP and Noggin, thus suggesting 
a role also for endothelial cell activation in promoting 
vascular cell osteogenic activation (71). Diabetic mice and 
rats showed a dramatic increase in aortic BMP activity, 
as demonstrated by SMAD1/5/8 phosphorylation. This 
was associated with increased osteogenesis and calcium 
accumulation. Such changes were prevented in the Ins2 
(Akita/+) mice by breeding them with MGP transgenic 
mice, which increased aortic BMP inhibition (72). 
Collectively, these data demonstrate that elevated glucose 
levels induce the promoters of calcium deposition such 
as TNFα, IL-6, TGF-β, RANKL, adipokines (leptin), 
morphogenic proteins (such as BMP-2, Wnt). All these 
mediators have been shown to induce the osteogenic 
activity of vascular cell and/or drive the trans-differentiation 
of VMSCs, and adventitial myofibroblasts into calcifying 
cells. BMP-2 is known to produce osteogenic differentiation 
of VSMCs. Endothelial cells produce BMP-2, which is 
increased by the action of inflammatory mediators; in the 
presence of an inflammatory milieu endothelial cells release 
endothelial micro-particles. These micro-particles, which 
are abundant in BMP-2, are able to stimulate VC through 

the osteogenic modification of VSMCs (50).
In diabetes, pericytes may be particularly prone to 

osteogenic differentiation, which has been shown to be 
driven by AGEs (73). Based on their vascular stabilizing 
activity, it was speculated that the pro-angiogenic and pro-
calcific activity of pericytes might be linked (74).

Diabetes and circulating pro-calcific cells

In the recent years, it has been clarified that circulating 
cells can contribute to the processes that drive ectopic 
calcification, especially in the vasculature (75,76). It has been 
reported that about 20% of human peripheral blood CD34+ 
stem cells express mRNA for OC. Interestingly: the level of 
such osteoprogenitor in blood appears to be correlated with 
the extent of the atherosclerotic burden in vivo, in humans. 
Eghbali-Fatourechi, by using flow cytometry, identified 
cells positive for osteocalcin and for bone-specific AP in the 
peripheral blood of adult subjects (77). They also showed 
that the percentage of OC+ cells correlated with markers of 
bone formation. In patients undergoing invasive coronary 
assessment compared with controls, patients with coronary 
heart disease had significant increase in the percentage 
of CD34+KDR+ and CD34+CD133+KDR+ endothelial 
progenitor cells (EPCs) co-staining for OC (78). These 
findings deserve attention for at least two reasons: first, 
the levels of osteoprogenitors may determine the extent of 
atherosclerotic lesions, and, second, important determinants 
of VC originate from outside the vascular wall. Our 
group has recently added some important information 
to the identity and biology of circulating calcifying cells. 
We identified a population of heterogeneous circulating 
mononuclear cells expressing osteocalcin and bone AP 
(OC+BAP+) producing high amounts of spotty areas of 
calcification, which do not include bone or cartilage (79). 
These OC+BAP+ cells, called myeloid calcifying cells 
(MCCs), are distinct from hematopoietic stem cells, but the 
expression of CD45, CD14, and CD68 suggest that they 
derived from monocyte/macrophage lineage. The myeloid 
origin was confirmed using lineage tracing of the BCR-ABL 
transcript in naïve chronic myeloid leukemia patients. We 
also found that these cells, called MCCs, were significantly 
increased in the bloodstream of patients with either CVD 
or diabetes. In diabetic versus non-diabetic patients, 
MCCs were higher in the presence and in the absence 
of CVD. In parallel, it seems that EPCs cultured from 
diabetic patients with CAD occasionally formed structures 
highly suggestive of calcified nodules, and the expression 
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of osteogenic markers by EPCs from control subjects was 
significantly increased in response to the toll-like receptor 
agonist LPS (80). In parallel to this finding, it should be 
noted that Yao et al. reported that, in models of diabetes and 
in response to hyperglycemia, the endothelium undergoes 
loss of MGP expression, dedifferentiation to an oligopotent 
mesenchymal-like state, invasion of the subintimal space 
and induction of calcification (81). Further to this, Albiero 
et al. tested whether MCCs truly promote atherosclerotic 
calcification in vivo (82). They show that the murine spleen 
contains OC+BAP+ cells with a phenotype similar to human 
MCCs, a high expression of adhesion molecules and 
CD11b, and capacity to calcify in vitro and in vivo. Finally, 
Menegazzo et al. reported that MCCs have anti-angiogenic 
activity in vitro and in vivo, by virtue of their intense 
paracrine secretion (83). The integration of calcification 
with angiostasis might be seen in the framework of chronic 
inflammation as an extreme attempt to confine a chronic 
inflammatory stimulus, which, in the vascular wall, can be 
represented by cholesterol crystals (84).

Glycemic control and VC

In this setting, the aim of a treatment is either to avoid 
or to delay VC, especially in diabetic patients, who are 
much more prone than non-diabetic ones to suffer from an 
exaggerated calcification burden. It is clinically important 
to determine whether the correction of HbA1c is associated 
with a reduction of calcification. Anand and colleagues have 
reported that, in a multivariate model, baseline CAC, and 
an HbA1c >7%, are strong predictors of CAC progression 
in type 2 diabetic patients (85). Very recently Carson and 
colleagues have observed that during the 5-year follow-
up period, higher HbA1c was associated with incident 
CAC [risk ratio (RR) =1.45; 95% CI, 1.02-2.06], any CAC 
progression (RR =1.51; 95% CI, 1.16-1.96), and advanced 
CAC progression (RR =2.42; 95% CI, 1.47-3.99) after 
adjustment for sociodemographic factors (86). Jorgensen and 
colleagues have found that the odd ratio for hard plaques 
versus no plaques was 5.8 in the highest HbA1c group 
(>6.4%) compared with subjects in the lowest group (<5.0%) 
after adjustment for several possible confounders (87).  
Dayan and col leagues have found that  there is  a 
significant relationship between CAC score, albuminuria 
and inflammation in patients with type 2 diabetes (88). 
Flammer and colleagues have shown that patients with 
elevated HbA1c compared with those with normal HbA1c 
had a significantly higher percentage of circulating OC+ 

mononuclear cells, higher numbers of OC+ EPCs, thus 
suggesting an association between the osteogenic drift of 
EPCs and an HbA1c in the pre-diabetic range (89). As 
described before, Fadini and colleagues have also shown 
that in diabetic versus non-diabetic patients, MCCs were 
higher in the presence and in the absence of CVD, and 
that an HbA1c decreased by 1.15% was associated with a 
significant decrease of circulating MCC levels (79). Higher 
HbA1c level was found to have a modest and independent 
association with subclinical coronary atherosclerosis, even in 
metabolically healthy individuals (90). These reports suggest 
that not only overly but also slightly elevated glucose levels 
are associated with increased VC. However, to what extent 
pursuing glycemic goals will reduce the VC burden and its 
effect on VC outcomes remains to be elucidated.

Conclusions

The evidence herein summarized clearly indicates that 
diabetes and its associated complications represent a 
preferential milieu for the development of VC. It is well 
recognized that diabetes induces VC and knowledge of 
the mechanisms and consequences of this phenomenon 
is expanding. The clinical significance of excess VC in 
terms of cardiovascular risk is still a matter of debate. 
While medical calcification increases arterial stiffness, 
blood pressure and cardiac post-load and impairs vascular 
reactivity/adaptivity, the role of intimal atherosclerotic 
calcification is less clear. Extensive calcification is supposed 
to stabilize atherosclerotic plaques, while spotty micro-
calcification, especially in the shoulder or subendothelial 
space is expected to increase plaque instability and 
vulnerability (91,92). Future studies should unveil the 
relationships between aging pathways and VC, to identify 
potential common targets of prevention or intervention.
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