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Introduction

The maintenance of blood vessel function throughout life 
requires the continuous replacement of lost or dysfunctional 
cells as well as the adaptation to changing physiologic 
or pathologic stimuli, including changes in local oxygen 
demand, varying amounts of pro- or anti-inflammatory 
agents, or injury. Over decades, those mechanisms fulfill 
their function unnoticed. Repetitive challenge of vascular 
regenerative mechanisms by lifestyle-mediated cues, 
including the intake of noxious substances and lipids, 
as well as insufficient physical activity, evokes a gradual 
exhaustion and dysregulation of reparative pathways over 
the years (Figure 1). The impairment of cellular function—
affecting resident vascular cells as well as “accessory” 
cells—is associated with the development of microvascular 
and macrovascular dysfunction. The resulting clinical 
manifestations include microvascular rarefaction in the 
limbs, myocardium, kidneys and bone marrow, causing 
the loss of the affected limb and/or dysfunction of the 
organ, impaired wound healing and altered hematopoiesis. 
Macrovascular  dysfunction increases the r isk for 
myocardial, cerebral or peripheral occlusive events through 
atherosclerotic vascular remodeling, endothelial erosion 

and, finally thrombotic events.
Circulating inflammatory mediators and cells play 

a crucial role in the regenerative processes guiding the 
dynamic adaptation to changing conditions (oxygen 
demand, injury). Recent years have seen a more varied 
perception of the role of inflammation in both, vascular 
regeneration and pathological remodeling. While 
inflammatory mechanisms are crucial in the mounting 
phase of angiogenesis and damage repair, its transformation 
into a chronic process underlies various pathologies. 
Likewise, inflammatory cell infiltration of adipose tissue 
critically determines the turning point at which adipose 
tissue becomes dysfunctional and in turn conveys systemic 
insulin insensitivity, a hallmark of type 2 diabetes (T2D) 
and a limitation of vascular regenerative capacity. In the 
recent years, our conceptions about endogenous repair 
mechanisms have widened to include a better appreciation 
of the high degree of integration between various tissues 
and organs, including adipose tissue, the hematopoietic 
system, skeletal muscles and the liver, all interconnected by 
the vascular system (Figure 2). Already the clinical routine 
is successfully using statins, angiotensin-receptor blockade 
or angiotensin-converting enzyme inhibition, which target 
multiple molecular pathways and cell types to support 
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vascular repair mechanisms in patients with T2D (1). In this 
review, we will discuss further novel treatment strategies at 
various stages of clinical translation.

Clinical need 

More than 50% of al l  diabetic  patients  die from 
cardiovascular-related causes and suffer from a diffuse 
and more aggressive course of atherosclerosis resulting in 
poorer outcomes (2,3). Despite advances in multifactorial 
management, the rate of coronary events remains 
disproportionally high in diabetic patients. Finding the 
appropriate revascularization strategy for these patients 
is therefore of outstanding importance (4). However, due 
to the impaired response to vascular injury, which is a 
major factor in the pathophysiology of diabetic vascular 
complications, percutaneous coronary intervention (PCI) 
poses a higher risk for diabetic than for non-diabetic 

patients. A recent network meta-analysis including trials 
comparing combinations of bare metal stenting (BMS), 
drug eluting stent (DES) placement and coronary artery 
bypass grafting (CABG) revealed an increased need for 
repeated revascularization as well as a higher mortality of 
diabetic patients after PCI (5). These observations confirm 
the findings of the BARI 2D and FREEDOM trial which 
both favor CABG over PCI as revascularization strategy 
in patients with T2D and coronary artery disease (6,7). 
Another meta-analysis demonstrated that diabetes is still 
one of the most important risk factors for restenosis after 
PCI (8). Recently, two research groups addressed the need 
for a comparison of PCI with second generation DES 
and CABG, the lack of which was a major limitation of 
previous studies (9,10). Park et al. performed a randomized 
noninferiority trial randomly assigning 1,776 patients with 
multivessel CAD to PCI with everolimus-eluting stents or 
to CABG. There was no statistically significant difference 

Figure 1 On the basis of individual genetic makeup, lifestyle-associated cues accumulate over time to initiate a spiral leading through the 
gradual dysfunction of rescue and repair mechanisms to the impairment of vascular function, finally resulting in (cardio-) vascular event(s).

Gradual failure of regenerative 
mechanisms within vascular cells, 
excessive leucocyte recruitment

Persistant, excessive 
inflammation

Increasing accumulation 
of modified lipo-/proteins

Adipose tissue 
dysfunction

Insulin resistance

Cardiovascular 
event(s)

Advanced atherosclerotic 
remodelling, endothelial erosion, 

thrombotic events

Persistant presence & accumulation 
of multiple messenger molecules# 
within the circulation and tissues

Modification of messenger 
molecules# and matrix

Continuous activation 
of rescue mechanisms

Gradual failure of 
rescue mechanisms$

Genetic pre-disposition

Life style

# metabolites, glyco-/oxidative products,
   hormones, growth factors, ROS, cytokines
$ inflammation, lipid storage, reverse
   cholesterol transport



376 Kuschnerus et al. Vascular repair strategies in type 2 diabetes

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2015;5(5):374-386www.thecdt.org

in the occurrence of the primary endpoint consisting of a 
composite of death, myocardial infarction or target-vessel 
revascularization at 2 years after randomization. However, 
at longer-term follow-up, the primary endpoint had been 
observed in 15.3% of the patients in the PCI group and 
in 10.6% of those in the CABG group. The incidence of 
stroke did not differ between both groups. Furthermore, the 
incidence of any repeat revascularization and spontaneous 
myocardial infarction were significantly higher in patients 
undergoing PCI than in those undergoing CABG (9). 
Bangalore et al. conducted an observational registry study 
comparing again the outcomes of patients undergoing PCI 
with the use of everolimus-eluting stents with the outcomes 
of patients undergoing CABG. They observed a similar 
risk of death associated with the respective procedure 
but a higher risk of repeat revascularization and a lower 
risk of stroke for PCI (10). Nevertheless, researchers and 
clinicians agree that the decision between PCI and CABG 
for diabetic patients remains a controversial one. CABG 
tends to yield better outcomes in terms of myocardial 
infarction and repeat revascularization but could also be 
associated with a higher risk for stroke. These results should 
be taken into account when entering the clinical process of 
shared decision making to enable the patient to make the 
best choice for both, disease and personal preferences. In 

addition, extensive efforts should be undertaken to address 
cardiovascular risk factors in diabetic patients and thus 
render primary and secondary prevention of cardiovascular 
events more effective (11).

Adipokine-related tissue inflammation and 
insulin resistance 

Obesity—the enlargement of fat mass by increasing 
numbers and/or size of mature adipocytes—is traditionally 
considered a crucial component of metabolic syndrome, 
responsible for the development of insulin resistance and 
for the increase of cardiovascular risk. Newer experimental 
findings as well as observational studies paint a more 
differentiated picture in which a certain degree of adiposity 
is not immediately tied to adipose tissue inflammation and 
insulin desensitization (12). Instead, pro-inflammatory and 
insulin-desensitizing mechanisms are only triggered once 
adipocyte hypertrophy reaches a certain point at which 
their capacity to store free fatty acids (FFA) is exceeded 
(13-15). These “overfed” adipocytes alter their secretome, 
resulting in the enhanced recruitment of leukocytes, as 
well as a shift of macrophage functional subtypes present 
within the adipose tissue (16-18). Hypertrophic adipocytes 
will release, rather than store FFA, which then links to 

Figure 2 The systemic transport of cells and mediators facilitates the tight interaction of various organs, with their individual effects on 
vascular cells. Endothelial cells, with their constant exposure to circulating substances, as well as their crucial role in vascular function, 
present the key interface translating blood-borne stimuli into pathologic phenomena. Figure prepared using template images from the 
Servier Medical Art collection (http://www.servier.com).
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insulin resistance, as well as TLR4 activation and other 
pro-inflammatory mechanisms (19-25). Vice versa, insulin 
itself regulates fat uptake and inflammatory cytokines 
secreted by the activated macrophages perpetuate adipose 
tissue inflammation and dysfunction, and further insulin 
desensitization (26,27).

Several studies have therefore aimed to identify molecular 
players that delay the “trigger point” at which hypertrophic 
adipocytes become dysfunctional and upregulate pro-
inflammatory mechanisms. Promising molecular strategies 
have targeted the transcription factor Rev-ErbA and 
phosphoenolpyruvate carboxykinase (PEPCK), both 
increasing adiposity, but without a concomitant increase in 
white adipose tissue (WAT) inflammation or loss of insulin 
sensitivity (28,29). Instead, serum adiponectin levels were 
increased in Rev-ErbA knockout mice and leptin levels kept 
low in PEPCK overexpressing mice (28,29). The Triggering 
Receptor Expressed on Myeloid Cells 2 (TREM2), instead, 
accelerates adipocyte hypertrophy and inflammatory 
functional dysregulation, together with causing decreased 
plasma adiponectin levels and elevated leptin levels (30). 
Adiponectin and leptin belong to a group of adipose tissue-
derived cytokines termed “adipokines”, which harbour 
widespread implications for systemic metabolism and 
vascular biology (31). Adiponectin modulates macrophage 
polarization and function towards a less inflammatory profile 
(28,32-35). Given the important surveillance function 
of the M2-type macrophages within the vasculature, the 
adipokines-macrophage-axis might crucially contribute to 
vascular healing as well as promote angiogenesis (36). 

Another knob to adjust might be DNA transcriptional 
regulation; regulated amongst many others by a family 
of histone deacetylases (HDAC) termed sirtuins. Sirtuins 
are involved in aging as well as a series of cardiovascular 
relevant processes (37). Sirtuin 1 levels are reduced in 
leukocytes of patients with insulin resistance/metabolic 
syndrome and are negatively associated with carotid intima 
media thickness (38). High glucose, palmitate-induced 
insulin resistance and FFAs all downregulated SIRT1 in 
vitro (38). Sirtuin 1 itself might be regulated by the product 
of the Deleted in Breast Cancer 1 gene (DBC1), which is 
upregulated under high fat diet (39). Mice lacking DBC1 
became more obese but showed lower blood FFA levels, 
less atherosclerosis and longer life expectancy under high 
fat diet (39). Ablation of another histone deacetylase, 
HDAC9, led to reduced weight gain and improved glucose 
tolerance, associated with a shift of white adipose (WAT) 
tissue towards beige adipose tissue, which usually has higher 

energy expenditure rates than WAT (40).
Several depots of adipose tissue throughout our body 

differ in their phenotypic and functional characteristics (41). 
Macrophage infiltration rates differ between visceral and 
subcutaneous adipose tissue, potentially contributing to 
the different secretory spectra of subcutaneous, visceral 
and perivascular WAT depots (31,42). Especially visceral 
adipose tissue can increase cardiovascular risk significantly, 
likely through its more inflammatory secretome, as well as 
its direct connection with the portal circulation. Anatomical 
localization also characterizes the vascular relevance of 
perivascular adipose tissue (PVAT) (43-45). Similar to 
visceral adipose tissue, PVAT mass increases with obesity 
and features macrophage infiltrates, as well as paracrine 
dysfunction (43). Thus, dysfunctional PVAT can severely 
affect the vascular response to acute injury (46). One relevant 
mechanism might be through PVAT-derived ROS (47). 
On the other hand, vascular wall-released superoxide and 
adiponectin released by “healthy” PVAT are able to balance 
each other in a way that increased oxidative stress from the 
vascular wall can induce the counterregulatory increase of 
adiponectin in the PVAT (48). Interestingly, this mechanism 
was still functional in diabetic specimens, supporting 
the conclusion that in diabetic patients the reduction of 
adiponectin levels rather than compromised downstream 
signaling has a role in enhanced NAPDH oxidase-derived 
superoxide (48).

In contrast to WAT, brown adipose tissue (BAT)—
featuring a higher mitochondrial density—is characterized 
by a high-energy expenditure. BAT is moreover a source 
of growth factors and chemokines regulating vascular 
layout and function, such as VEGF (49,50). Concomitantly, 
vascular density is higher in BAT than in WAT and reduced 
BAT VEGF-A levels in obesity were associated to vascular 
rarefaction and “whitening” of BAT with mitochondrial 
dysfunction and lipid droplet accumulation (49). Of interest, 
the diet-induced decline of VEGF-A and its receptor, KDR, 
preceded the development of adiposity and mitochondrial 
dysfunction, pointing to a causal role of VEGF-A shortage 
for the observed BAT whitening, a hypothesis backed by 
the fact that re-introduction of VEGF-A was able to rescue 
glucose uptake and insulin sensitivity (49). The findings are 
also supported by another study describing a crucial role of 
VEGF-A in BAT maintenance (51).

Thus, targeting of the individual adipose tissue depots 
might help support their intrinsic protective mechanisms 
while limiting the establishment of an inflammatory 
vicious cycle in adipose patients. As an example, VEGF-A 
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manipulation or dietary intervention did affect brown, but 
not WAT vascularization, thus indicating a tissue-specific 
effect (49).

Lifestyle-based therapies

Despite a role of genetic predisposition, a larger impact 
on individual cardiovascular risk is accredited to lifestyle 
factors, such as sedentary behavior and excess caloric intake. 
A wealth of studies has linked sedentary time to metabolic 
disorders and more frequent occurrence of cardiovascular 
events, while physical activity is recommended for primary 
as well as secondary cardiovascular prevention (1,52-57). 
In fact, lifestyle modifications, consisting of diet changes 
combined with physical exercise, may be even more 
effective for the prevention of T2D than medical therapy 
such as metformin (58-60).

Both, dietary interventions and exercise training 
programs act at several leverages in addition to limiting 
caloric excess. Myokines are secreted by the active skeletal 
muscle and exert anti-inflammatory and pro-survival/pro-
angiogenic effects in a systemic manner (61,62). Moreover, 
the increased blood flow during physical activity can directly 
affect endothelial cell signaling, supporting anti-oxidative 
and pro-survival signaling (63,64). Beyond the control of 
lipid, carbohydrate and protein intake, dietary interventions 
target the intake of a plethora of substances including 
minerals, anti-oxidants, unsaturated fatty acids, as well as 
hormonally active substances (65-69). Therefore, optimal 
parameters of both, dietary as well as physical activity 
interventions are still under intense investigation, including 
the choice of relevant endpoints as well as applicability 
for a wide part of the general population, considering 
motivational aspects and cost-effectiveness.

Several parameters influence the effects of exercise 
training, including the type (resistance or endurance), 
intensity, duration and frequency of exercise. Current 
guidelines recommend a weekly exercise duration of at 
least 150 min of moderate-intensity aerobic exercise or at 
least 90 min of vigorous aerobic exercise per week for the 
prevention/delay of diabetes onset (1). Both, endurance and 
resistance exercise can improve glucose disposal and hence 
lower HbA1c levels, albeit by differential mechanisms 
(54,70-72). Commonly, endurance training is favored 
for cardiovascular benefits due to more solid data (73). 
However, the addition of two to three sessions of resistance 
training per week is specifically recommended for T2D 
patients (74,75).

Despite all this evidence, adherence to an active life with 
a more healthy diet is a main obstacle with the majority 
of patients at risk, as well as the general population in the 
Western world. A recent widely discussed study failed to 
achieve a reduction of cardiovascular events in overweight 
or obese adults withT2D after a 10-year intense lifestyle 
intervention, despite improvements in body weight, 
physical fitness and metabolic markers (76). Of note, a 
delay in the onset of diabetes was observed in the exercise 
group, allowing for reduced insulin medication (76). Crucial 
information, however, can be gained from the time course 
of the measured parameters. The main difference between 
the intervention and the treatment group in HbA1C as 
well as weight loss was achieved at 1 year, with a gradual 
loss of the beneficial effects in the following years. This 
coincides with a gradual reduction in the frequency of 
counseling sessions, as well as physical fitness (76). One 
might therefore speculate that adherence to the exercise 
protocol declined after 1 year, very likely due to a lack of 
motivation. Indeed, the American Diabetes Association 
explicitly stresses the importance of follow-up counseling 
for the success of weight loss and physical exercise programs 
for the prevention and/or delay of T2D (1).

The precise control of dietary habits over long 
periods of time proves equally difficult than adherence 
to regular exercise regimens. Diets in most long-term 
studies are only roughly defined, but have been shown 
to improve endothelial function and inflammatory 
parameters in patients at high risk to develop coronary 
artery disease and with a family history of diabetes (66). 
In a food component analysis, lean fish and raw vegetable 
consumption were negatively associated with the overall 
endothelial dysfunction score, while a positive association 
was established between high-fat dairy products and 
endothelial dysfunction (66). Beneficial effects of a diet 
high in cereal-derived fibers on insulin resistance were 
associated with changes in plasma amino acid signatures, 
including branched-chain amino acids (77). Those findings 
are in line with earlier reports suggesting a diagnostic 
relevance of plasma amino acid levels, especially for insulin 
resistance and the risk to develop diabetes (77-79). Insulin 
resistance as well as various inflammatory parameters can 
also be improved by increasing uptake of mono- or poly-
unsaturated as compared to saturated fatty acids (69,80,81).

Despite the adverse effects of extreme obesity, the 
indiscriminate indication for weight loss is currently under 
intense discussion and more patient-specific indications will 
have to be developed, taking into account the individual 
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distribution of AT depots, as well as motivational aspects 
and obviously co-morbidities. Indeed, we might have to 
look towards other endpoints, such as a gain of certain 
fitness levels instead of weight loss (82,83).

Cell therapy

T2D is defined by peripheral tissue insulin resistance. 
Transplantation of β cells—in contrast to T1D—would 
therefore not address the peripheral component of 
the pathological process (84). Promising cell therapy 
approaches in T2D therefore need to account also 
for cardiovascular endpoints. Several large trials have 
successfully demonstrated the safety and efficacy of 
multipotent mesenchymal stem cells for the treatment of 
cardiovascular disease (85). Before clinical application, 
however, several limitations have to be overcome, especially 
the unsuitability of autologous cells due to their loss 
of functional capacity in chronic diseases such as CAD 
and T2D (86-90). Furthermore, the hyper- as well as 
hypoglycaemic conditions in the recipient can inhibit 
angiogenic repair capacity of cardiac stem cells (91,92). 
Another promising cell type, adipose tissue-derived stromal 
cells, also exert angiogenic effects (93-95), but exhibit a 
significantly impaired angiogenic capacity when obtained 
from patients with CAD and T2D (96). This is thought to 
be due to an altered secretome and delayed differentiation 
to an endothelial cell phenotype (96).

Beyond the provision of new cellular material , 
transplanted cells can also be employed for their paracrine 
actions, thus bypassing the obstacle of inefficient homing 
and retention at the injection site (97). CD34+ stem cells, 
ex vivo modified to overexpress the angiogenic factor sonic 
hedgehog (SHH) exert beneficial effects by secreting 
SHH laden exosomes, which in turn induce the canonical 
SHH pathway in the surrounding tissue ultimately 
leading to a better preservation of myocardial function 
after MI (98). Similarly, exosomes might be conveyors of 
cardioprotection in ischemic preconditioning (99). The 
better characterisation of relevant paracrine factors and the 
development of non-immunogenic delivery mechanisms, 
including cell-derived vesicles are therefore of considerable 
interest for targeting vascular complications in a chronic 
disease such as diabetes which would require repeated 
applications.

micro-RNAs (miRNAs)

miRNAs comprise a class of endogenous short non-coding 

RNAs that regulate gene expression by repressing protein 
translation or by inducing mRNA degradation (100). 
miRNAs are involved in virtually every physiological and 
pathological cellular process, usually targeting several 
proteins within the same pathway. They have been 
shown to influence differentiation, function and survival 
of immune cells, stem cells, vascular endothelial and 
smooth muscle cells as well as adipocytes and are highly 
regulated in cardiovascular diseases and diabetes. Two 
main approaches to miRNA modulation are commonly 
applied, depending on the desired effect on the target 
miRNA: miRNA antagonists (antagomirs), lowering 
the effective levels of the target miRNA, and miRNA 
mimics, increasing the target miRNA amount (101,102). 
miRNAs have been recognized as mediators of almost 
every pathophysiological step of atherosclerosis, diabetes 
and their culmination in vascular complications (103). To 
date, more than 2,500 human miRNAs are known, with 
the number still increasing. We will therefore only discuss 
selected miRNAs with relevance to vascular regenerative 
potential and T2D.

Circulating levels of the miR-126—involved in vascular 
integrity, angiogenesis and wound repair—and the anti-
inflammatory miRNAs miR-146a and miR-155 are 
decreased in patients with T2D resulting in impaired 
endothelial repair capacity, increased chronic inflammation 
and atherosclerosis-associated vascular remodeling as well 
as failing glucose control (104-112). Interestingly, miR-155 
also limits BAT genesis and function (113). MiR-155 might 
therefore potentially also exert negative effects on BAT-
mediated glucose tolerance and insulin resistance (114,115). 
The miR-182 and miR-203 were furthermore identified to 
regulate BAT development and homeostasis by ablation of 
Dgcr8, a crucial regulator of microRNA biogenesis (116). 
Several studies give evidence that miRNAs affect the 
behavior of stem and progenitor cells which are essential 
for vascular repair processes (117). For instance, miR-99b, 
miR-181a and miR-181b contribute to the differentiation 
of human embryonic stem cells towards an endothelial cell 
phenotype and render them more efficient in therapeutic 
revascularization (118). Saphenous vein-derived pericyte 
progenitor cells depend on paracrine secretion of the pro-
angiogenic miR-132 which improves post-infarct fibrosis, 
reparative angiogenesis and ventricular contractility (119). 
Caporali et al. demonstrated a significant increase in miR-
503 expression in ischemic limb muscles of diabetic mice 
and of human diabetic muscle specimens (120). Therapeutic 
downregulation of miR-503 restored endothelial function 
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and angiogenesis and might thus prove a potential regulator 
of post-ischemic neovascularization (120).

Taken together, modulation of miRNA levels by 
antagomiRs and miR mimics represents a promising therapy 
approach for the treatment of vascular dysfunction. Their 
targeting of multiple gene products, however, requires 
extensive in vitro and in vivo screening to prevent off-target 
effects. The same characteristic, on the other hand, could 
also result in a more efficient targeting of regeneration-
specific signaling cascades, as is seen in the case of miR-
126, thereby improving the efficiency of potential future 
miRNA-based drugs.

Dipeptidyl peptidase-4 (DPP-4) inhibition and 
glucagon-like-peptide-1 (GLP-1) (analogues)

Incretinergic therapies such as dipeptidyl peptidase-4 
(DPP-4 or CD26) inhibitors and GLP-1 receptor 
antagonists or GLP-1 analogues have been proven to be 
vital new members of the anti-diabetic drug repertoire. 
Unlike other betacytotrope agents, such as sulfonylureas 
and glinides, DPP-4 inhibitors and GLP1-antagonists 
neither induce weight gain nor do they increase the risk 
of hypoglycaemia (121,122). Furthermore, they can be 
combined with biguanides if the initial monotherapy fails 
to sufficiently reduce blood glucose levels (123). DPP-4 
inhibitors protect incretin hormones, such as GLP-1, from 
degradation by DPP-4. GLP-1 is produced and released 
by neuroendocrine L-cells in the ileum after a meal and 
exerts its beneficial effects by stimulating pancreatic insulin 
release, inhibiting glucagon release and by slowing down 
gastric passage (124). However, DPP-4 inhibitors do 
not only improve glucose metabolism, but may also hold 
favourable pleiotropic effects in the cardiovascular and 
immune system. This is due to the broad substrate affinity 
of DPP-4, which besides GLP-1 include MCP-1, IL-1, 
RANTES and SDF-1 (125). Several in vitro and in vivo 
studies demonstrate the impact of DPP-4 inhibition on the 
cardiovascular system, including the reduction of intimal 
hyperplasia formation, and faster regenerative response 
after experimental vascular injury in rodents (126-128). The 
protection of the SDF-1/CXCR4 pathway might therefore 
crucially contribute to the cardiovascular regenerative 
effects of DPP-4 inhibitors, which are also investigated in 
several clinical trials (128). Zaruba et al. describe the first 
treatment of a child with severe ischemic cardiomyopathy 
with granulocyte colony stimulating factor (G-CSF) and 
sitagliptin, a concept which they previously demonstrated 

to be efficient in mouse myocardial infarction (129). The 
mobilization of stem cells by G-CSF and the stabilization 
of their homing factor stromal derived factor-1 (SDF-1) 
resulted in an increase of ejection fraction from 27% to 
33% and a decrease in the heart failure markers BNP and 
pro-BNP (130). In a small non-randomised controlled 
trial, a 4-week treatment with sitagliptin in addition to 
metformin or other insulin releasing agents compared to 
no additional therapy lead to significantly higher levels of 
circulating CD34+KDR+ cells. This was accompanied by 
an increase in plasma levels of SDF-1α and a decrease in 
MCP-1 (131). Furthermore, Tremblay et al. conducted a 
double-blind crossover study with T2D patients treated 
with 100 mg/d sitagliptin and were able to observe a 
significant decrease in plasma markers of low-grade 
inflammation, such as CRP, IL-18, IL-6, ICAM-1 and 
E-Selectin, thus demonstrating potentially beneficial off-
target effects for this patient population (132). Finally, the 
retrospective analysis of the LifeLink database indicated 
that T2D patients had a significantly lower risk of 
experiencing cardiovascular complications when treated 
with the GLP-1 analogue exenatide in comparison to other 
glucose-lowering substances (133). Two large randomized 
controlled trials, SAVOR and EXAMINE, have assessed 
the cardiovascular safety profile of saxagliptin (SAVOR) and 
alogliptin (EXAMINE) and found no increase in adverse 
cardiovascular events compared to placebo (134,135). 
However, before implementing DPP-4 inhibition as a 
standard of care in primary or secondary prevention of 
cardiovascular events in patients with type diabetes results 
from double-blind randomised controlled trials such as the 
TECOS trial have to be awaited (136).

Conclusions

In the recent years, we have come to understand diabetes-
associated vascular complications as a result of cascade 
failures of several interlinked, paracrinally active organ 
systems, including adipose tissue, the immune system, 
skeletal muscles and the liver. It appears that effective 
therapies need to act pleitropically, interfering with 
several points of this “downward spiral” (Figure 1). Hence, 
lifestyle interactions have been successful in primary and 
secondary cardiovascular prevention as well as for the 
improvement of metabolic parameters. Due to their cost-
effectiveness and efficiency, they harbor great potential, if 
long-term adherence can be improved. Micro-RNA-based 
strategies have a significant potential, if safety concerns 
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can be overcome. More personalized treatment strategies, 
such as autologous cell transplantation is met with various 
limitations, not least economically.
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