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Introduction

According to the World Health Organization (WHO), an 
estimated 17.5 million people died from atherosclerotic 
cardiovascular diseases (ASCVDs) in 2012, which 
represents 31% of all global deaths. Various risk factors 
are associated with the increased rate of adverse events 
and the increased mortality of ASCVDs (1). It has been 
proven that maintaining a healthy lifestyle, such as by not 
smoking, maintaining a healthy body mass index, exercise, 
and a healthy diet, is important for preventing ASCVDs (2). 
However, people develop numerous risk factors, such as 
dyslipidemia, diabetes, and hypertension, which contribute 
to the atherosclerotic plaque burden and lead to ASCVDs. 
Medical treatments that target ASCVD risk factors have 
been proven to reduce adverse events and mortality (3). 

With respect to reducing mortality, it is especially 
important to elucidate the mechanisms of atherosclerotic 

plaque development and to identify approaches to stabilize 
atherosclerotic plaque, especially “vulnerable plaque”. 

Pathology of “vulnerable plaque”

It is difficult to distinguish vulnerable plaque from 
atherosclerotic lesions in a clinical setting, and this has 
led to the development of imaging modalities that can 
detect high-risk atherosclerotic plaques (4). Although 
coronary angioscopy was developed in the 1980’s (5), a 
morphological approach is insufficient to capture the 
detailed mechanisms of plaque vulnerability. Therefore, 
other imaging modalities with the ability to clarify the 
characteristics of plaque composition have been developed, 
such as intravascular ultrasound-virtual histology (IVUS-
VH), optical coherence tomography (OCT), and near-
infrared spectroscopy (NIRS). 

These imaging modalities and pathological studies 
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have demonstrated that acute myocardial infarction (AMI) 
can be caused by the rupture or erosion of a coronary 
atherosclerotic plaque (6,7). Atherosclerotic plaque consists 
of various components, i.e., lipid, calcified lesion, vascular 
smooth muscle cells (VSMCs), and inflammatory cells (i.e., 
T lymphocytes and macrophage cells). While the concept 
of atherosclerosis is complicated, it has been recognized 
that the stability of atherosclerotic plaque depends on the 
relationships among these components. VSMCs synthesize 
collagen I and III, which are important for plaque 
stabilization. On the other hand, inflammatory cells release 
various molecules, including metalloproteinases (MMPs), 
which lead to plaque instability.

Morphological and pathological studies have demonstrated 
that infiltrated inflammatory cells and the percentage 
of the lipid core are associated with positive remodeling 
(PR), which reflects the vulnerability of a culprit lesion (8).  
Fibrous-cap atheroma can be divided into a coronary 
arterial lumen and a lipid or necrotic core, and its thickness 
reflects plaque stability. Thin-cap fibroatheroma (TCFA), 
which is a morphological feature of vulnerable plaque, i.e., 
rupture-prone plaque, is characterized by a large lipid 
or necrotic core with an overlying fibrous cap measuring 
<65 µm, consisting of rare VSMCs, PR, spotty calcification, 
and numerous inflammatory cells (9-11). Both the size 
of the necrotic core and the thickness of TCFA may be 
structural determinants of vulnerability (12).

Vulnerable plaques by erosion (erosion-prone plaques), 
which lack surface endothelium, are defined solely by 
their associated events. Coronary plaque erosion accounts 
for 40% of thrombotic coronary sudden deaths (13), and 
is common in smokers and younger patients, especially 
premenopausal women (14). VSMCs and proteoglycans 
are predominant, while inflammatory cells are variable 
(13-15). The missing endothelium may be associated with 
vasospasm, and the vessels show negative remodeling 
(14,15). While the mechanisms of erosion are clearly 
different from those of plaque rupture, we do not yet know 
the details.

Targets for plaque stabilization

LDL cholesterol and cardiovascular events

It is well known that lowering the low-density lipoprotein 
cholesterol (LDL-C) level is useful in both the primary 
and secondary prevention of cardiovascular events (16-18). 
Statins are the most common therapeutic agents for lipid-

lowering (19). The major effect of statins is the reduction 
of LDL-C levels through the inhibition of 3-hydroxy-
3-methylglutaryl coenzyme A (HMG-CoA) reductase. 
Statins have favorable pleiotropic effects on atherosclerosis, 
including a reduction in lipid volume, anti-inflammatory 
activity, and improvement of endothelial function (20-22).  
They are now considered to be essential for treating 
ASCVDs due to their impact on atherosclerotic plaque. The 
classical understanding is that the infiltration of LDL-C 
to the intima is an early step that induces subsequent 
inflammatory responses in the vessel wall. Statins exert 
pleiotropic effects to interrupt inflammation within 
atherosclerotic plaque, which suppresses the secretion of 
inflammatory mediators (23). 

A meta-analysis in 14 randomized clinical trials (RCTs) 
reported a relationship between achieved LDL-C and major 
adverse cardiac events (MACE) (24). In this study, there 
was a 12% proportional reduction in all-cause mortality 
per 1.0 mmol/L (39 mg/dL) reduction in LDL-C [rate 
ratio (RR) 0.88; 95% CI, 0.84–0.91], and corresponding 
reductions in myocardial infarction or coronary death 
(RR 0.77; 95% CI, 0.74–0.80), in the need for coronary 
revascularization (RR 0.76; 95% CI, 0.73–0.80), and in 
fatal or non-fatal stroke (RR 0.83; 95% CI, 0.78–0.88). 
The Collaborative Atorvastatin Diabetes (CARDS) study 
assessed the effectiveness of statin (atorvastatin 10 mg) 
therapy for the primary prevention of major cardiovascular 
events in patients with diabetes mellitus (DM) without high 
concentrations of LDL-cholesterol. The group allocated to 
statin was associated with a 37% reduction in the incidence 
of major cardiovascular events (P=0.001) compared to 
the placebo group. Acute coronary heart disease events 
were reduced by 36%, coronary revascularization by 31%, 
and stroke by 48% (25). Diabetic patients have a high 
atherosclerotic risk with about a three-fold increased risk 
of cardiovascular disease (26). This study suggested that 
statins are also potent in type 2 diabetes even without high 
concentrations of LDL-cholesterol. The PROVE-IT TIMI 
22 (Pravastatin or Atorvastatin Evaluation and Infection 
Therapy-Thrombolysis in Myocardial Infarction 22) study 
showed that an achieved LDL-C under 60 mg/dL was 
associated with a lower risk of MACE in patients after acute 
coronary syndrome (ACS). (27) In this study, patients with 
ACS who were treated with atorvastatin were divided into 5 
groups according to four-month LDL-C levels: >100, >80 
to 100, >60 to 80, >40 to 60, and <40 mg/dL. Both of the 
lowest LDL groups, >40 to 60 (hazard ratio 0.68; 95% CI, 
0.50–0.92) and <40 (hazard ratio 0.61; 95% CI, 0.40–0.91), 
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showed significantly lower endpoint rates than the reference 
group (>80 to 100). 

Reduction of LDL cholesterol and modification of plaque 
instability

Various imaging modalities have been used to elucidate 
the mechanism underlying these relationships, and have 
demonstrated that statin therapies attenuate plaque 
progression and strengthen plaque stability. Various 
studies using IVUS have demonstrated that lipid-lowering 
therapy with statins can achieve plaque regression (28). 
The ESTABLISH (Demonstration of the Beneficial 
Effect on Atherosclerotic Lesions by Serial Volumetric 
Intravascular Ultrasound Analysis During Half a Year After 
Coronary Event) study clarified for the first time that statin 
(atorvastatin 20 mg daily) significantly reduced plaque 
volume consistent with a reduction in the LDL-C level (29). 
The PROSPECT (30) (Providing Regional Observations 
to Study Predictors of Events in the Coronary Tree) and 
VIVA (31) (VH-IVUS in vulnerable atherosclerosis) studies 
showed that the coronary plaque burden was closely related 

to MACE risk. Furthermore, the optimal level of LDL-C 
has been sought, i.e., high-intensity statin therapy (HIST) 
vs. low-intensity statin treatment (LIST) (28,32,33). In the 
REVERSAL (Reversal of Atherosclerosis with Aggressive 
Lipid Lowering) study, patients were randomly assigned 
to receive a moderate lipid-lowering regimen (40 mg of 
pravastatin) or an intensive lipid-lowering regimen (80 mg of 
atorvastatin) for 18 months. The primary efficacy parameter 
was the percentage change in atheroma volume as analyzed 
by IVUS. Although the coronary atherosclerosis progressed 
in the pravastatin group, progression did not occur in the 
atorvastatin group. As a result, the progression rate was 
significantly lower in the atorvastatin (intensive) group, 
which suggested that HIST is superior to LIST for slowing 
plaque progression (Figure 1). 

A lot of studies have reported that statin therapies have 
favorable effects on the coronary plaque composition. 
Some studies used coronary angioscopy, with which the 
lipid core can be seen through TCFA, but not through 
a thicker fibrous cap. Takano et al. first reported in 2003 
using angioscopy that the administration of atorvastatin for 
12 months improved the yellow grade of coronary plaques, 

Figure 1 IVUS studies examining the impact of statin therapy on plaque progression/regression. The REVERSAL (Reversal of 
Atherosclerosis with Aggressive Lipid Lowering) (32) study compared the efficacy of two statin regiments of different lipid lowering 
intensities on coronary atherosclerosis. The SATURN (34) (Effect of Rosuvastatin versus Atorvastatin) study compared the efficacy of 
two intensive statin regiments on coronary atherosclerosis. The ASTEROID (28) (A Study to Evaluate the Effect of Rosuvastatin on 
Intravascular Ultrasound-Derived Coronary Atheroma Burden) study was the first large-scale IVUS study to evaluate the effect of intensive 
statin therapy on coronary atherosclerosis. LDL-C, low-density lipoprotein cholesterol; IVUS, intravascular ultrasound.
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which is associated with vulnerability to disruption. There 
was a strong correlation between the changes in LDL-C 
levels and the changes in the mean yellow score (r=0.81, 
P<0.0001) (35). Recently, color fluorescent angioscopy has 
become available as an advanced modality. It can be used 
to visualize not only collagen fibers but also oxidized LDL, 
and can provide useful information related to the plaque 
composition (36).

Among the reports with IVUS, Taguchi et al. reported 
that early statin therapy reduced the necrotic core 
component in patients with ACS, even in the case of plaque 
progression (37). A study with rosuvastatin (low dose:  
5 mg/day, high dose: 40 mg/day) in patients with ST-
segment elevation myocardial infarction (STEMI) clarified 
that the necrotic core component was reduced only in the 
high-dose rosuvastatin group (low dose; baseline 44.6± 
38.2 mm3, 12-month follow-up 41.2±40.3 mm3, P<0.29 
vs. high dose; baseline 47.4±38.2 mm3, 12-month follow-
up 40.7±34.4 mm3, P=0.003) (38). Another study that used 
VH-IVUS in patients with stable angina pectoris (AP) 
demonstrated that one year of lipid-lowering therapy 
with fluvastatin reduced the fibro-fatty volume (baseline 
80.1±57.9 mm3 vs. follow-up 32.5±27.7 mm3, P<0.0001) 
and increased the fibrous tissue volume (baseline 146.5± 
85.6 mm3 vs. follow-up 163.3±94.5 mm3, P<0.0001). In 
addition, this study showed a positive correlation between 
the changes in LDL-C levels and the changes in the fibro-
fatty volume (R=0.703, P<0.0001) (39). The TRUTH 
(Treatment With Statin on Atheroma Regression Evaluated 
by Intravascular Ultrasound With Virtual Histology) 
study also demonstrated that statin therapies in patients 
with stable and unstable AP not only reduced the fibro-
fatty volume at 8 months (pitavastatin 4 mg/day; baseline  
1.09 mm3/mm, follow-up 0.81 mm3/mm, P=0.001, 
pravastatin 20 mg/day; baseline 1.05 mm3/mm, follow-up 
0.83 mm3/mm, P=0.0008) but also increased the calcium 
volume (pitavastatin 4 mg/day; baseline 0.42 mm3/mm, 
follow-up 0.55 mm3/mm, P=0.001, pravastatin 20 mg/day;  
baseline 0.44 mm3/mm, follow-up 0.55 mm3/mm,  
P=0.005) (40). Recently, a post-hoc analysis of 8 prospective 
randomized trials using IVUS revealed that statins promote 
calcification in coronary plaques, and the changes in the 
formation of calcification were independent of LDL-C and 
CRP (41). These effects of statins on coronary calcification 
may reduce the vulnerability of coronary plaques. 

Some studies using OCT demonstrated that the fibrous-
cap tended to thicken in response to HIST (42,43). In 
addition, the increase in fibrous cap thickness achieved 

with a HIST was significantly correlated with the reduction 
of infiltrated macrophages, LDL-C, oxidized LDL, 
high-sensitivity C-reactive protein (CRP), and matrix 
metalloproteinase-9 (MMP-9) (44). As described above, it 
has been demonstrated that statin therapies stabilize plaque 
by converting its components.

Ezetimibe reduces the absorption of cholesterol from 
the intestine by inhibiting the Niemann-Pick C1-like 1 
(NPC1L1) protein and serves as another LDL-C-lowering 
agent (45). Recently, it was reported that ezetimibe helps 
to improve cardiovascular outcomes (46). The LDL-C 
level could be reduced by an additional 23% to 24% by 
the addition of ezetimibe to statins (46-48). With regard 
to its effect on plaque composition, it has been shown that 
ezetimibe, when added to fluvastatin, increased the fibrous 
cap thickness and reduced lipid plaque (49). 

 Despite these impressive cardioprotective effects of 
lowering the LDL-C level, the residual risk is still very 
important. Statins can reduce cardiovascular events by 
no more than 40% (50). In the SATURN (34) (Effect of 
Rosuvastatin versus Atorvastatin) and ASTEROID (28) 
(A Study to Evaluate the Effect of Rosuvastatin on 
Intravascular Ultrasound-Derived Coronary Atheroma 
Burden)  studies ,  coronary plaques progressed in 
approximately 30% of patients despite low LDL-C levels. 
This residual risk is related to the presence of small dense 
LDL, triglyceride, low levels of high-density lipoprotein 
cholesterol (HDL-C) and DM. 

High-density lipoprotein (HDL)

Various epidemiological studies have revealed that HDL-C 
levels are inversely related to the risk of ASCVDs (51-54). 
In the Framingham Heart Study, a low level of HDL-C 
was shown to be a predictor of coronary heart disease, 
independent of LDL-C levels (55). The treating to new 
targets (TNT) study demonstrated that a low HDL-C 
level remains a good predictor of MACE even when an 
LDL-C level of under 70 mg/dL has been achieved with 
statins (56). Thus, a low level of HDL-C is recognized as a 
strong and independent risk factor for ASCVDs (57). This 
favorable effect of HDL-C is thought to be attributable to 
several atheroprotective effects of HDL (58). A classical 
interpretation is that HDL promotes the transport of excess 
cholesterol from macrophage cells in peripheral tissues to 
the liver (i.e., cholesterol efflux capacity). In addition, HDL 
has anti-oxidant, anti-inflammatory, anti-thrombotic or 
fibrinolytic activities, and improves endothelial function 
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by activating endothelial nitric oxide (NO) synthase. Based 
on these anti-atherosclerotic activities, HDL-C-targeted 
therapies have been advocated. 

With regard to coronary atherosclerosis, it has been 
demonstrated in a pool analysis of 1,455 patients using 
IVUS that raising HDL-C levels by more than 7.5% was 
associated with plaque regression in patients who achieved 
LDL-C under 87.5 mg/dL with statins (59). Furthermore, 
another study of 261 consecutive ACS patients reported that 
the HDL-C level was positively associated with fibrous-cap 
thickness. They suggested that HDL-C has potential to be 
a beneficial therapeutic target for plaque stabilization (60). 

However, these past studies failed to show an association 
between an increase in the HDL-C level and a reduction in 
the risk of ASCVDs (61,62). In the AIM-HIGH trial, there 
was no clinical benefit in patients with ASCVD with the 
addition of niacin to statin therapy, despite significant increases 
in HDL cholesterol levels (from 35 to 42 mg/dL) and 
decreases in triglyceride levels (from 164 to 122 mg/dL) (63). 
Addition of the cholesterol ester transfer protein (CETP) 
inhibitor dalcetrapib increased HDL cholesterol levels from 
baseline by 31% to 40% in patients with ACS, but did not 
have significant effect on major cardiovascular outcomes 
including the rates of myocardial infarction and death from 
coronary heart disease (64). 

As a result, the quality of HDL, or HDL function, rather 
than its quantity, has lately been the focus of increasing 
attention. Khera et al. reported that the cholesterol efflux 
capacity of HDL was strongly and inversely associated 
with the likelihood of angiographic coronary disease, 
independent of the HDL cholesterol level (65). In addition, 
the cholesterol efflux capacity of HDL has been shown to 
be inversely associated with the incidence of cardiovascular 
events (66).

Apolipoprotein A-I (apoA-I), which contains 243 
amino acids and is a major component protein of HDL, 
plays important roles in HDL function. Various basic 
studies have been performed using recombinant HDL 
[apoA-I Milano (67), CER-001 (68)], apoA-I mimetic  
peptides (69), reconstituted HDL [rHDL (70), CSL-
111 (71)], delipidated HDL (72), and antagonist of 
microRNA-33 (Anti-miR33) (73). ApoA-I mimetic peptides 
are a major example; the 5F peptide inhibits the formation 
of aortic plaque in mice receiving a high-fat diet, which 
is the first in vivo demonstration that apoA-I mimetic 
peptides have atheroprotective properties (74). An ApoA-I 
mimetic peptide that contains 24 amino acids without 
phospholipids, Fukuoka University ApoA-I Mimetic 

Peptide (FAMP), enhanced HDL function and suppressed 
aortic plaque formation in apoE KO mice (75). In human 
studies, intravenous administration of ETC-216 (an 
apoA-I Milano/1-palmitoyl-2-oleoyl phosphatidylcholine 
complex) was associated with the significant regression of 
coronary atherosclerotic plaques as measured by IVUS (76).  
After the infusion of ETC-216, coronary plaque regression 
was accompanied by reverse remodeling of external 
elastic membrane (EEM) without changes in luminal 
dimensions (77). On the other hand, the ERASE (Effect 
of reconstituted HDL on Atherosclerosis-Safety and 
Efficacy) study, which used CSL-111 (reconstituted HDL 
consisting of apoA-I from human plasma combined with 
soybean phosphatidylcholine), resulted in no significant 
reductions in the percentage change in both plaque and 
atheroma volume, but significantly improved plaque 
characterization indexes on IVUS and coronary stenosis 
scores on quantitative coronary angiography (QCA) (78). 
Moreover, autologous delipidated HDL plasma treatment 
for ACS patients reduced the changes in total atheroma 
volume from baseline as analyzed by IVUS (delipidated 
group vs. control group, –12.2±36.8 vs. 2.8±21.3 mm3). 
Plasma-selective delipidation converted the levels of preβ-
like HDL and α-HDL from 5.6% to 79.1% and 92.8% to 
20.9%, respectively. These changes in HDL subfraction 
may be a key point in support of the favorable effects of 
delipidated HDL. The level of preβ-HDL, which is the 
primary acceptor of cholesterol efflux by the ABCA1 
transporter, is positively associated with efflux capacity in 
vitro. Among various HDL functions, efflux capacity and 
anti-inflammatory activities in particular may have potential 
to play crucial roles in stabilizing coronary plaques. The 
potential of these new approaches based on HDL-targeted 
therapies is substantial, and the results of human studies are 
eagerly awaited.

Diabetes mellitus (DM)

DM is associated with a higher morbidity of ASCVDs 
(79-81). Along with other clinical trials (26,82,83), the 
Copenhagen City Heart Study showed that the relative risk 
of the incidence of myocardial infarction in DM was 2- to 
3-fold greater than that in non-DM, independent of the 
presence of other established risk factors (84). IVUS studies 
showed that DM accelerated the development of coronary 
atherosclerosis (85). Coronary specimens from patients 
with DM contained larger lipid-rich atheroma, infiltrated 
macrophages, and thrombosis than those from non-DM 
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patients (86). 
Even in the absence of DM, higher blood glucose levels, 

higher hemoglobin A1c levels, and insulin resistance (IR) 
have been shown to be associated with an increased risk of 
ASCVDs (87-89). IR plays crucial roles in atherosclerosis (90), 
and it has been clarified that IR was positively associated 
with coronary severity (91), the coronary calcium score (92), 
and a remodeling index (93). Various past studies in basic 
research have supported the results of these clinical trials. 
They have also linked not only diabetes (94,95) but also 
glucose tolerance (96,97) to endothelial dysfunction, which 
is the initial step in the development of atherosclerotic 
plaque.

Metformin and thiazolidinediones (TZDs) are well-
known to improve IR. The UK Prospective Diabetes Study 
(UKPDS) Group showed that metformin was superior 
to diet, sulfonylurea, and insulin with respect to survival 
benefit and cardiovascular protection (98). Although there 
is some evidence to support the use of metformin in basic 
science (99) and some retrospective analyses have indicated 
that metformin reduced cardiovascular-related morbidity and 
mortality in type 2 diabetes (100), there is no solid evidence 
to support the use of metformin for ASCVDs (101). Further 
randomized, double-blind clinical trials on metformin will 
be needed in the future. 

TZDs are ligands for peroxisome proliferative-activated 
receptor-γ (PPARγ), which mainly resides in adipose tissue 
and ameliorates insulin sensitivity. This improvement in 
insulin sensitivity by TZDs leads to the reduction of blood 
glucose levels and hemoglobin A1c levels, suppresses 
inflammation, lowers blood pressure, and decreases 
urinary proteins (102,103). The PROactive (PROspective 
pioglitAzone Clinical Trial In macroVascular Events) study 
failed to prove that pioglitazone had a beneficial effect 
on the primary endpoint, i.e., the reduction of coronary 
and peripheral events. Nevertheless, the risk-reduction 
effect for the secondary endpoint, which was a composite 
of death, non-fatal myocardial infarction, and stroke, was 
significantly less than that with the placebo (104). In addition, 
the PERISCOPE (Pioglitazone Effect on Regression of 
Intravascular Sonographic Coronary Obstruction Prospective 
Evaluation) trial reported that pioglitazone showed a 
significantly slower progression of coronary atherosclerotic 
plaques compared with glimepiride (105). 

Hyperglycemia induces endothelial dysfunction via 
various mechanisms. After glucose molecules enter the 
vascular wall, hyperglycemia increases the expression of 
adhesion molecules, and produces less NO. NO plays key 

roles in vasodilation and the regulation of platelet activation. 
Moreover, hyperglycemia induces protein kinase C (PKC) 
activation, increases the formation of advanced glycation 
end-products (AGEs) (106), and produces reactive oxygen 
species (ROS) (107). Raising the intracellular glucose level 
increases the expression of glycoprotein Ib (GpIb), which 
is a mediator of platelet aggression (108). Furthermore, it 
was reported that insulin activated plasminogen activator 
inhibitor type 1 (PAI-1) (109). 

Postprandial hyperglycemia has been established as 
a better predictor of cardiovascular events than fasting 
hyperglycemia (110,111). Postprandial hyperglycemia 
induces oxidative stress, which leads to inflammation and 
endothelial dysfunction (112). α-glucosidase inhibitors 
(α-GIs), which delays carbohydrate digestion in the small 
intestine, have potential to prevent a glucose spike (the 
difference between the fasting glucose level and the peak 
level of postprandial hyperglycemia). In fact, both the 
STOP-NIDDM (Study to Prevent Non-Insulin-Dependent 
Diabetes Mellitus) trial (113) and a MeRIA (Meta-analysis 
of Risk Improvement under Acarbose) study (114) reported 
that α-GI acarbose could prevent future cardiovascular 
events.

Whereas the avoidance of hyperglycemia seems to 
be important for reducing cardiovascular events, recent 
clinical trials of intensive glucose-lowering in DM, the 
ACCORD (Action to Control Cardiovascular Risk in 
Diabetes) study, the ADVANCE (Action in Diabetes and 
Vascular Disease: Preterax and Diamicron Modified Release 
Controlled Evaluation) study and the VADT (Veterans 
Affairs Diabetes Trial) study, failed to demonstrate a 
reduction in cardiovascular events (115). An increased rate 
of hypoglycemia was considered to be one of the factors 
behind the excess mortality (116,117). Hypoglycemia 
induces increases in the amount of proinflammatory 
mediators and platelet activation (118), and this is mainly 
mediated by the sympathoadrenal system. In addition, 
hypoglycemia also induces endothelial dysfunction via the 
production of mitochondrial superoxide (119). 

Based on these perspectives, the mean amplitude of 
glycemic excursion (MAGE) and glycemic variability (GV) 
have attracted considerable attention. GV has potential 
to more effectively trigger oxidative stress than chronic 
sustained hyperglycemia (120). It has also been advocated 
that GV may be associated with diabetic complications 
including cardiovascular events (121). It has been shown 
that GV derived from a continuous glucose monitoring 
system (CGMS) is an independent predictor of MACE in 
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AMI with type 2 diabetes (odds ratio 1.592; 95% CI, 1.034–
2.451) (122). In addition, another group demonstrated that 
MAGE in a plaque-rupture group was significantly higher 
than that in a non-rupture group (123). Recently, it was 
clarified that glucose fluctuation may affect the formation 
of lipid-rich plaques and thinning of the fibrous cap in 
patients with optimal lipid treatment. The study population 
consisted of 85% patients with glucose metabolism 
disorder. In this study, MAGE was the only independent 
predictor of the presence of TCFA (124). Thus, it may be 
important to consider MAGE in the treatment of DM by 
using diabetic agents, such as α-GIs, TZDs, metformin, and 
incretins, which do not induce hypoglycemia except when 
administered in combination with sulfonylureas and insulin.

Hypertension

Blood pressure has been shown to be a strong predictor of 
cardiovascular deaths (125,126). In fact, it was demonstrated 
that an increase in systolic and diastolic blood pressure 
of 20/10 mmHg doubles the risk for cardiovascular  
disease (127). It is also well known that hypertension 
increases atherosclerotic plaques (128,129). The reduction 
of blood pressure through lifestyle modification and/
or blood pressure-lowering agents dramatically reduced 
the risk of ASCVDs (130-132). Consequently various 
therapeutic agents for lowering blood pressure have been 
developed, i.e., angiotensin-converting enzyme inhibitors 
(ACE-Is), angiotensin II receptor blockers (ARBs), 
β-blockers, and calcium channel blockers (CCBs).

Activation of the renin-angiotensin system (RAS) plays 
important roles in cardiovascular events (133). In fact, the 
HOPE (Heart Outcomes Prevention Evaluation) study 
showed clinically that RAS inhibition not only lowers 
blood pressure but is also vasoprotective (134). In this 
study, the ACE-I ramipril significantly reduced the rates 
of death (relative risk 0.74; 95% CI, 0.64–0.87 compared 
with the placebo group), myocardial infarction (relative risk 
0.80; 95% CI, 0.70–0.90), and stroke (relative risk 0.68; 
95% CI, 0.56–0.84) in high-risk patients (≥55 years old 
who had evidence of vascular disease or diabetes plus one 
other cardiovascular risk factor) without evidence of left 
ventricular systolic dysfunction or heart failure. Similarly, 
the EUROPA (European trial On reduction of cardiac 
events with Perindopril in stable coronary Artery disease) 
study showed that blood pressure-lowering by 5 mmHg 
with perindopril reduced the cardiovascular risk by 20% 
among patients with stable angina without apparent heart 

failure (135). 
There is a connection between the activation of RAS 

and the formation of thrombus, e.g., angiotensin II (Ang 
II) activates PAI-1 in ECs (136). The pleiotropic effects 
of ACE-Is on platelet aggregation have been reported in 
a clinical study (137). The inhibition of RAS by ACE-
Is and ARBs leads to a reduction in ROS, suppression 
of the activation of redox-sensitive pro-inflammatory 
transcription factors, and the maintenance of NO 
production in endothelial cells (ECs) (138). The reduction 
of free radicals by the inhibition of xanthine oxidase and 
the reduction of LDL oxidation by ACE-Is brings about 
plaque stabilization (139). In a rabbit plaque model, 
ACE-Is and ARBs increased collagen content, VSMCs, 
and the thickness of TCFA (140). Clinical studies have 
shown that coronary atherosclerotic plaque volume, as 
measured by IVUS, significantly decreased after ARB 
treatment (141-143). ARBs have potential to decrease 
inflammatory infiltration, increase collagen content and 
stabilize human carotid plaques (144). Another favorable 
effect of ARBs beyond their ability to lower blood pressure 
is the prevention of blood vessel aging by suppressing the 
senescence of ECs and VSMCs (145-147). In these ways, 
ACE-Is and ARBs, which block activation of the RAS, may 
confer a cardioprotective effect beyond their ability to lower 
blood pressure.

There is abundant evidence on the relation between 
CCBs and cerebrovascular diseases (148). The PREVENT 
(Prospective Randomized Evaluation of the Vascular Effects 
of Norvasc Trial) showed that a long-acting CCB significantly 
regressed carotid arteriosclerosis. Another important 
finding of this trial was that amlodipine reduced the rates 
of unstable angina and coronary revascularization (149).  
The CAPARES (Coronary Angioplasty Amlodipine 
Restenosis Study) also showed a reduction of coronary 
revascularization (150). The vasorelaxant effect of CCBs, 
i.e., the regulation of NO production, prevents the 
formation of abnormal vasoconstrictions, which can lead 
to plaque rupture. Several atheroprotective effects of 
amlodipine may also contribute to these results. It has the 
capacity to inhibit lipid oxidative modification (151,152), 
and subsequently inflammatory responses (153).

β-blockers have been used as therapeutic drugs for 
hypertension for more than 50 years (154). Their efficacies 
in congestive heart failure and angina have been well 
established. β-blockers are particularly effective for 
preventing recurrent ASCVD events in patients with 
ACS (130). Some β-blockers also have the ability to block 
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the oxidation of LDL, which leads to foam cell formation 
and the augmentation of atherosclerotic plaque (155). 
However, their association with plaque stability is not clear. 
Further research on the relationship between β-blockers and 
coronary atherosclerotic plaque stability will be required.

Smoking

Cigarette smoking increases the risk of AMI more than 
that of stable angina (156). Active and passive smoking are 
strong risk factors for AMI (157). It has been demonstrated 
that  plaque in smokers  contains  higher levels  of 
extracellular lipid (158). Eroded plaque was associated with 
smoking, especially in women, compared with ruptured 
plaque (159). The mechanisms by which smoking promotes 
atherosclerotic lesions or erosion are not completely 
elucidated. 

Smoking is associated with endothelial dysfunction (160), 
which is restored by smoking cessation. Toxic gas-phase 
substances in tobacco damage vascular endothelium due 
to their proinflammatory effects. Smoking elevates the 
expression of soluble adhesion molecules, vascular cell 
adhesion molecule 1 (VCAM-1) and intercellular adhesion 
molecule 1 (ICAM-1) in ECs. Exposure to cigarette smoke 
increased intraplaque inflammation and neovascularization, 
which leads to intraplaque hemorrhage and consequent 
necrotic core formation (160). Nicotine affects serum 
thromboxanes A2/B2 and catecholamines, which enhance 
platelet activation (12). Cigarette smoke extracts decreased 
prolyl-4-hydroxylase (P4H) expression, which is essential 
for the folding of newly synthesized collagen polypeptide 
chains into triple-helical molecules, in ECs and smooth 
muscle cells, which leads to decreased vascular collagen 
production (161). Basic research clarified that smoking-
induced oxidative stress and inflammation have potential to 
increase MMP gene expression (162). In fact, smoking was 
shown to increase MMPs in patients with AMI (163). 

With regard to lipids, it is well known that smoking 
increases the level of LDL-C (164). Nevertheless, a meta-
analysis reported that there was no significant change in 
LDL-C after smoking cessation (165). It was reported that 
smoking cessation leads to improved HDL functionality 
(efflux capacity and anti-inflammatory property) (166). 

These mechanisms may contribute to the plaque 
instability and thinning of the fibrous cap by smoking, and 
to stabilized plaque after smoking cessation. The cessation 
of smoking, such as with an anti-tobacco program, can lead 
to the reduction of the risk of tobacco-related ASCVDs 

events, especially in AMI.

Inflammation

The relationship between atherosclerosis and inflammation 
has been well established (167). The REVERSAL trial 
showed a 36.4% reduction in CRP in the atorvastatin group 
compared with a 5.2% reduction in the pravastatin group, 
which was an independent predictor of a reduction in 
plaque progression (32). The SATURN study demonstrated 
that, after 24 months of statin therapy, non-increasing levels 
of CRP were independently associated with greater percent 
atheroma volume regression, and the on-treatment CRP 
level was significantly associated with MACE (168). The 
JUPITER (Justification for the Use of Statin in Prevention: 
An Intervention Trial Evaluating Rosuvastatin) trial showed 
that statin therapy is effective at preventing cardiovascular 
events in healthy persons without hyperlipidemia but 
with elevated levels of high-sensitivity CRP. This trial was 
stopped early after a median follow-up of 1.9 years since 
there was a 44% reduction in the primary endpoint of all 
vascular events, a 54% reduction in myocardial infarction, 
and a 48% reduction in stroke in the rosuvastatin group 
compared with the placebo (169). 

The responses that serve to protect us against 
inflammation are called immunity, and these consist of 
natural and adaptive immunities. T cells play a particularly 
important role in adaptive immunity, and are considered to 
be highly involved in the process of atherosclerosis (170).  
It is well known that CD4+ T helper (Th) cells can 
differentiate into some distinct subsets, i.e., Th type 1 (Th 1), 
Th type 2 (Th 2), Th type 17 (Th 17), and T regulatory 
cells (Tregs), which can be distinguished from one another 
by their cytokine profiles (171). Th 1 produces interferon 
(INF)-γ, interleukin (IL)-2, and IL-12. Th 2 produces IL-4,  
IL-5, IL-10, and IL-13. Th 17 produces IL-17 and IL-22.  
Tregs can suppress inflammatory responses by various 
mechanisms.

Each of these subsets plays different roles, and it has 
been reported that the Th cell-mediated immune response 
is related to the development of atherosclerotic plaque. 
Th 1/Tregs have proatherogenic/atheroprotective effects. 
Th 1 cells play roles in the activation of macrophages, 
neutrophils, and cytotoxic T lymphocytes. Th 1 cells are 
related to atherosclerosis, rheumatoid arthritis (172), 
type 1 DM (173,174), multiple sclerosis, and graft-versus-
host disease (GVHD) (175). As for atherosclerosis, the 
presence of Th 1 in human atherosclerotic plaque and a 
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positive relationship between Th 1 activity and coronary 
artery disease have been reported (176). Oxidized LDL, 
LDL, and heat shock protein 60 (HSP60) activated Th 1 
in atherosclerotic plaque as the relevant activating antigen 
(177-179). In an atherogenic state, Th 1 produces large 
amounts of INF-ɤ, resulting in the overexpression of 
MMPs, the reduction of collagen production, and thinning 
of the fibrous-cap (180,181). In contrast to Th 1, Tregs can 
suppress inflammatory responses by various mechanisms 
(182-186). Tregs serve to maintain immunological 
tolerance and suppress effector T cell responses (187). The 
atheroprotective effect of Tregs on atherosclerosis has 
been reported in both a mouse model and a human 
study (188,189). 

The roles of Th 2 and Th 17 are not completely 
understood. Th 2 has a stimulatory effect on antibody 
production and promotes the neutralization of microbes 
and toxins. It has been considered to be predominant in 
abdominal aortic aneurysm (190) and allergic diseases 
(191,192).  The effect  of  Th 2 on atherosclerosis 
is controversial, since, while IL-5 and IL-13 show 
atheroprotective effects (193,194), IL-4 may promote 
atherosclerosis (195,196). As for IL-17, a study on 
specimens of human atherosclerotic plaque revealed that 
IL-17 promoted plaque vulnerability (197). However, it has 
also been reported that a deficiency of IL-17 could result 
in vulnerable plaque by reducing collagen and VSMCs. 
Similar unclear results have been reported in other studies 
(198-202). Further studies are needed to elucidate the roles 
of IL-17 in atherosclerosis. 

Accumulating evidence suggests that it might be possible 
that the balance of Th cells is important, i.e., a Th 1/Th 2 
imbalance may result in atherosclerosis (203). For instance, 
it has been reported that Th 1 is predominant in ACS 
(204,205) and unstable angina pectoris (206-208). Similarly, 
a Th 17/Tregs imbalance has been associated with plaque 
destabilization and its progression (209,210). 

As described above, statins are widely used for the 
reduction of LDL-C and plaque stabilization. They 
are also useful with respect to the relationship between 
inflammation and Th cells. Statins may mainly suppress 
Th1 activity in the acute phase of ACS. After the 
administration of rosuvastatin, there was a reduction in 
the pro-inflammatory cytokines that are related to Th 
1 (INF-γ). On the other hand, there was no change in 
the anti-inflammatory cytokines that are related to Th 2 
(IL-4 and IL-10) (211). It has been reported that statins 
promote the differentiation of Tregs (212), and restrain the 

differentiation of Th 17 (213). Kruppel-like factor 2 (KLF2), 
which regulates the expression of molecules essential for 
naive T cell recirculation and the maintenance of T cell 
quiescence, plays a key role in this mechanism (214).

HDL also has potential to suppress the immune response 
of Th 1 and Th 17 by modulating dendritic cell maturation 
and function (215). On the other hand, an inverse 
relationship has been reported between Tregs and the 
HDL-C level (216). Further studies are needed to elucidate 
the role of HDL in atherosclerosis. 

Conclusions

A growing body of evidence indicates that plaque 
progression can be suppressed or even reversed by anti-
atherosclerotic medications, especially statins. Currently, 
the plaque burden and composition, which can be elucidated 
by various imaging modalities, are the main targets for 
medical treatment. We are assessing the effects of anti-
atherosclerotic medications not only in terms of the event 
rate but also using these imaging modalities. However, 
it is possible that these modalities evaluate only part of 
the plaque morphology, pathology, and cardiovascular 
outcome. The mechanisms of plaque vulnerability are not 
fully elucidated, and various projects are ongoing in not 
only basic research but also clinically. One of the important 
topics clinically is the arrival of proprotein convertase 
subtilisin/kexin type 9 (PCSK-9) inhibitors, which reduce 
LDL-C levels >50% in combination with statins, and 
which may have potential as an anti-atherosclerotic 
treatment, especially for high-risk patients. Ongoing and 
further studies should help to determine the most effective 
approach to stabilize atherosclerotic plaque and improve 
the cardiovascular outcome.
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