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Introduction

Prostate cancer (PCa) is the most common non-cutaneous 
malignancy among American men with 180,890 new cases 
and 26,120 deaths estimated for 2016 (1). In the ongoing 
effort to understand, control, and to cure this disease, 
better imaging tools for detecting PCa in its various states 
are constantly evolving to assist clinical decisions. PCa 
demonstrates a wide range of biologic activity ranging from 
indolent to highly aggressive, although the vast majority of 

PCa are clinically insignificant, meaning that they do not 
pose a threat to the patient’s longevity. In addition to having 
markedly different aggressiveness among tumors, there is 
also a great deal of heterogeneity within tumors. Thus, it 
is not sufficient to simply localize the tumor but it is also 
important to find regions within the tumor that are the 
most aggressive. To date, neither MRI nor PET has been 
sufficient for this task. For patients with low risk tumors 
(e.g., Gleason 3+3 low volume), there is increasing emphasis 
on using active surveillance instead of definitive treatment. 
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For patients with organ-confined PCa that is considered 
intermediate or high risk, primary curative approaches, 
including radical prostatectomy (RP) or radiation therapy 
(RT), are advised provided that there is no evidence of 
metastatic disease. On the other hand, when the disease is 
metastatic, systemic therapies are more suitable (2).

The initial routine screening evaluation for PCa includes 
prostate specific antigen (PSA) screening followed by 
transrectal ultrasonography (TRUS)-guided systematic 
biopsy of the gland (10–12 cores) (3). Due to the high 
false positive rate of PSA and the non-guided nature of 
TRUS biopsy many low risk cancers are “overdiagnosed” 
even while higher risk tumors are underdiagnosed. Multi-
parametric MRI (mpMRI), was initially introduced to 
improve detection of these underdiagnosed tumors. mpMRI 
is indicated after a negative TRUS-guided biopsy but with 
persistent clinical suspicion of PCa and the results can be 
used to guide prostate biopsy. However, the mpMRI simply 
identifies the location of the lesion without specifically 
identifying particular biologic “hot spots” within the tumor. 
Moreover, staging with regard to nodes or bony metastases 
are limited. Despite the high success rates of primary 
definitive therapy options including radiation therapy (RT) 
and RP, PCa mortality has not decreased significantly and 
about 15–25% of cases still experience biochemical failure, 
or biochemical recurrence (BCR), following primary 
definitive therapy (4-9). Thus, there is increasing interest 
in PET imaging in PCa (10), as it provides more functional 
information than other imaging modalities and can detect 
metastases. In PET, radiolabeled biomolecules pertinent 

to cellular processes are used to detect metabolic activity 
or cell surface molecules that are usually associated with 
cancer. PET imaging is usually combined with CT or MRI 
which improves anatomic localization of any abnormal 
tracer uptake. Furthermore, CT or MRI helps differentiate 
physiologic activity (e.g., activity in the ureters) from 
pathologic uptake (11). Clinical experience with PET in 
PCa is increasing. PET might also be useful for identifying 
patients suitable for active surveillance (AS), for accurate 
pre-radical prostatectomy/pre-radiation therapy staging. 
However, the increased costs of PET compared with other 
imaging methods means that the choice of PET in an 
imaging algorithm must be judiciously considered.

The most well-known PET agent is 18F-fluorodeoxyglucose 
(18F-FDG) which was introduced as a routine clinical 
imaging method in the early 2000s. It has been the mainstay 
of clinical molecular imaging in cancer. However, PCas are 
not particularly avid for 18F-FDG. Recently, several newer 
tracers have been introduced. They are able to target a 
variety of metabolites (e.g., glucose, fatty acids, and amino 
acids), antigens (e.g., prostate-specific membrane antigen 
and prostate-specific stem cell antigen), angiogenesis, 
hypoxia, and gene-based pathways (10). Still, very few of 
these agents are available clinically and even fewer are 
reimbursed (12). The most common PET radiotracers in 
the imaging evaluation of PCa are summarized in Table 1. 

Here, we review the current state-of-art in PET imaging 
in localized PCa staging and risk assessment, pointing out 
the most important achievements and highlighting the 
remaining complexities. 

Table 1 Potential PET tracers for prostate cancer

PET tracer Mechanism Cyclotron requirements

18F-FDG Glucose metabolism Regional

11C/18F-acetate Lipid metabolism On site/regional

11C/18F-choline Lipid metabolism On site/regional

11C-methionine Amino acid transport On site

18F-FACBC Amino acid transport Regional

18F-DCFBC; 18F-DCFPyL; 64Cu/89Zr-J591 PSMA inhibitors/antibodies Regional

68Ga-PSMA PSMA inhibitors/antibodies Generator (cyclotron independent)

18F-FDHT Androgen receptor Regional

18F-NaF Calcium analog Regional

68Ga-Bombesin Gastrin releasing peptide Generator (cyclotron independent)
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18F-fluorodeoxyglucose (18F-FDG) 

FDG is a glucose analog with replacement of the oxygen 
in the C-2 position with 18-fluorine. Its uptake is elevated 
in most primary and metastatic cancers due to malignancy-
related increased glucose uptake due to Warburg physiology 
or aerobic glycolysis that is inherently less efficient than 
oxidative phosphorylation (13). 18F has a half-life of 110 
minutes making it ideal for clinical use and 18F also has 
favorable imaging characteristics. However, its excretion 
into the urinary system poses a problem for pelvic 
malignancies. Although, 18F-FDG shows an excellent 
performance in many malignant lesions, in PCa, this tracer 
is limited due to generally low glucose utilization in PCa 
cells (14-17). Moreover, in 18F-FDG PET/CT studies, the 
tracer showed overlapping uptake in normal, benign and 
malignant tissues resulting in poor specificity (18-20). A 
recent systematic review and meta-analysis of 3,586 men 
with PCa compared the diagnostic accuracy among four 
PET/CT radiotracers (18F-FDG, 11C-choline, 18F-choline 
and 11C-acetate) suggesting diagnostic superiority of 
18F-choline, ranked as the most favorable with the highest 
value of AUC (AUC =0.94; 95% CI: 0.92–0.96), whereas 
18F-FDG was the least favorable (AUC =0.73; 95% CI: 
0.69–0.77) for PCa detection (2). On the other hand, a 
recent review suggests that, 18F-FDG might be helpful for 
restaging purposes in patients with advanced PCa metastatic 
disease. However, evidence for its value in the initial 
staging of PCa remains scant and it is not recommended 
(21,22). Despite its wide availability and use in cancer 
imaging, 18F-FDG PET/CT has low specificity for PCa, 
and consequently, its use is reserved for late stage metastatic 
disease.

11C/18F-acetate

Acetate is a vital part of fatty acid metabolism. It is 
converted by Acetyl-CoA synthetase to Acetyl-CoA, which 
is further converted by fatty acid synthetase (FAS) into 
fatty acids, which are then incorporated into the cellular 
membrane. The increased cell turnover in malignant cells 
results in relatively more uptake in cancers compared to 
normal tissue. Increased acetate uptake due to increased 
FAS activity in cells has been shown to correlate with 
aggressiveness of PCa (23). Acetate can be labeled with 
either 11C or 18F although the most viable tracer by far 
is 11C-Acetate. 11C-acetate is excreted in the pancreas, 
liver and bowel, with relatively minor kidney uptake and 

urinary system excretion (24). In PCa imaging of primary 
tumors, the absence of 11C-acetate in the urinary tract 
is advantageous, especially if local recurrent disease is 
suspected. 

Overall, 11C-acetate has shown some promise in 
advanced PCa detection, but low specificity in evaluating 
localized disease. In a study by Mena et al. (25), 39 patients 
with localized PCa underwent 11C-Acetate PET/CT prior 
to radical prostatectomy to characterize the difference in 
the tracer uptake between PCa lesions, BPH and normal 
prostate tissue. The average SUVmax values were correlated 
to mpMRI findings, whole mount histopathology, 
fatty acid synthase expression and clinical markers. 
Although there was a higher tracer uptake in tumor foci 
compared with unaffected prostate tissue, the difference 
in 11C-Acetate uptake between cancer lesions and BPH 
nodules was not significant, with considerable overlap in 
uptake. Furthermore, on a sector-based comparison with 
histopathology for all lesions >0.5 cm, 11C-Acetate PET/
CT showed much lower sensitivity and specificity compared 
to mpMRI, respectively 61.1% and 80.0% vs. 82.3% and 
95.1%, suggesting low utility of 11C-Acetate PET/CT as an 
independent modality for detecting and staging localized 
PCa. Additionally, no significant correlation was found 
between 11C-Acetate uptake and clinical markers such as 
PSA levels (r=−0.128) or fatty acid synthase expression in 
tumor. Similarly, Oyama et al. (26) studied the potential of 
11C-acetate to image primary and metastatic PCa. In their 
study, 22 patients with PCa underwent 11C-acetate PET 
imaging and the primary PCa lesions were identified in all 
patients, with high sensitivity for detection of metastatic 
PCa lymph nodes (100%) and bone metastases (86%). 
However, there was no analysis of sensitivity for metastatic 
disease as a function of PSA which is a critical index when 
comparing PET agents. In general, primary PCa and 
metastatic sites were detected with higher sensitivity with 
11C-acetate than 18F-FDG. Furthermore, no 11C-acetate 
accumulation in the urine was present (26). Haseebuddin 
et al. (27), reported on 107 biopsy-proven PCa patients 
with intermediate/high risk tumors who underwent staging 
11C-acetate PET/CT before radical prostatectomy (RP). 
They found a sensitivity of only 68% and specificity of 
78% for detection of pelvic lymphadenopathy. Moreover, 
patients with positive PET scans had a 3.3-fold higher risk 
for therapy failure after RP (27).

Recent studies suggest that lipogenesis tracers may be 
useful in the detection of tumor recurrence in patients with 
suspicion of BCR, who had been treated previously with 
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RP or RT. However, only a few studies have investigated its 
role in metastatic PCa. 

18F-labeled acetate has also been reported as a potential 
PCa imaging agent due to its desirable physical properties, 
although experience with this tracer remains limited. 
The Swedish Uppsala University group (28) studied the 
biodistribution of 18F-acetate and 11C-acetate in cynomolgus 
monkeys and one domestic pig. In this study, 18F-acetate 
had protracted blood retention, rapid clearance from 
liver, excretion in bile and urine, and defluorination (i.e., 
high bone uptake). Thus, 18F-acetate is not a functional 
equivalent of 11C-acetate and therefore, is not likely a viable 
clinical imaging agent.

11C/18F-choline

Radiolabeled choline tracers are perhaps the most widely 
available PCa PET agents worldwide and they have been 
broadly, if not deeply, studied in recent years. Choline 
tracers bear a strong resemblance to acetate tracers in their 
performance (29). Choline is a precursor for the biosynthesis 
of phospholipids, which are major components of the cellular 
membrane. Choline binds to choline transporters which 
internalizes it. It is believed, that the biologic basis for the 
accumulation of radiolabeled choline in tumors is, in part, 
due to overexpression of choline kinase which is necessary for 
cellular membrane synthesis (10,30). Though both 11C- and  
18F-choline tracers are similar in principle they vary greatly 
from each other in physical half-life and physiologic 
excretion patterns. 11C-labeled choline has a short half-life 
(20 minutes), and is primarily excreted via the hepatobiliary 
system with only little urinary excretion, which is 
advantageous for the evaluation of the prostate gland (31-33).  
18F-fluorocholine is excreted by the urinary tract leading to 
higher accumulation of the tracer in the bladder, which is less 
favorable for PCa imaging. However, 18F-fluorocholine has a 
longer half-life (110 minutes) which makes it more practical (31).

A wide range of overall sensitivity (73–91%) and 
specificity (43–86%) have been reported for 11C-/18F-
labelled choline derivatives (34). In primary disease, 
specificity is reduced by high uptake of these agents in BPH 
and other benign conditions. However, 11C-/18F-cholines 
are useful in patients with suspected recurrence after first 
line or salvage therapies (34-36), and for that reason the 
FDA approved the use of 11C-choline for BCR evaluation 
in September 2012. The studies that led to this approval 
showed that in patients with BCR, 11C-choline PET/CT 
detected more sites of recurrence than 18F-FDG PET/CT 

and many of these were validated by biopsy or surgery as 
metastases (37). On the other hand, Castellucci et al. (38) 
performed 11C-choline PET in 605 patients evaluated for 
early BCR after RP with a resulting detection rate of only 
28%, likely reflecting a much earlier cohort of recurrence. 
In addition to limited sensitivity there are issues with 
specificity. Suardi et al. (39) reported a 20% false positive 
rate for lymph nodes with 18F-choline PET. However, most 
studies showed that the cholines are useful in the detection 
of skeletal bone metastases (31,40). Overall, the role of 
radiolabeled choline tracers is to detect recurrences in BCR, 
while use in the detection of primary PCa and staging has 
marked limitations. Nevertheless, the cholines, while better 
than no study at all, are not sufficient sensitive or specific to 
warrant routine use. No commercial source for 18F-choline 
is available in the U.S. and 11C-choline is only available at 
selected sites.

Anti-1-amino-3-(18F)-fluorocyclobuate-1-
carboxylic (18F-FACBC)

18F-FACBC (also known as fluciclovine or Axumin) is 
a synthetic isoleucine analog that is taken up by amino 
acid transporters leading to intracellular accumulation. 
Renal excretion is delayed relative to imaging creating a 
favorable imaging “window” wherein there is relatively little 
bladder activity at the time of imaging (41). The normal 
biodistribution of 18F-FACBC is mainly in the pancreas and 
liver, with lesser activity in the bone marrow (42). Similar 
to acetate and choline, 18F-FACBC-PET shows high 
sensitivity for primary PCa but lacks specificity with regard 
to BPH and inflammation (42-48). In a prospective study 
by Turkbey et al. (49) 21 men with localized PCa, BPH, 
and normal prostate tissue were scanned with 18F-FACBC-
PET and MR imaging with histopathology available 
in all patients which was analyzed on a per-lesion and  
per-sector basis. 18F-FACBC PET/CT detected localized PCa 
with a sensitivity and specificity of 67% and 66%, localizing 
dominant prostate tumors with a sensitivity of 90%. However, 
MRI was indispensable as the combined use of 18F-FACBC-
PET/CT and mp-MRI yielded a positive predictive 
value of 82% for tumor localization in the sector-based  
analysis. In a retrospective analysis of Kairemo et al. (42),  
18F-FACBC-PET/CT images of 26 patients were analyzed 
and compared to PSA concentrations and PSA doubling 
times (PDT). There was no statistically significant difference 
in PSA level between the patients with positive and negative 
findings; on the other hand, patients with positive FACBC 
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PET findings showed significantly shorter PDT comparing 
to patients with negative PET indicating that a positive 
FACBC potentially indicates a more aggressive tumor. 
For more advanced disease 18F-FACBC performs similarly 
to 11C-acetate and 11C/18F-choline, however for BCR, 
18F-FACBC seems to be more sensitive than 11C-choline 
based on the sensitivity vs PSA in the BCR setting (48). 
Consequently, 18F-FACBC has been recently approved 
by the FDA for the detection of recurrent PCa (50).  
However, a meta-analysis by Ren et al. (51) of 251 patients 
showed a relatively high false positive rate for 18F-FACBC 
in detecting recurrent PCa, with a pooled sensitivity of 
87% but a specificity of only 66%. Currently, the evidence 
in the literature suggests that 18F-FACBC PET may play 
a limited role in staging of primary PCa, however, with its 
regulatory approval more data will likely emerge especially 
in comparison to PSMA-based agents, discussed next.

Prostate-specific membrane antigen (PSMA)

PSMA is a type II membrane glycoprotein that is 
overexpressed on prostate tumor cells and thus provides 
a rational target not only for diagnosis and monitoring 
but also for targeted therapy. PSMA expression appears 
to correlate with disease aggressiveness (52). A variety of 
ligands targeting PSMA have been developed but they 
all target the enzymatic portion of PSMA and therefore 
mimic the substrate that normally binds to PSMA.  
68Ga-PSMA has been mostly studied in Germany whereas 
18F-DCFPyL has been studied mostly in the United 
States. 68Ga-labeled PSMA HBED-CC (68Ga-PSMA) 
was developed in Germany and has been widely studied 
there. It consists of a targeting moiety and a chelate to 
which is added 68Ga. 68Ga is obtained from generators that 
are on site. At first glance this seems like an advantage 
but it requires that each dose of the conjugate be made 
separately. Moreover, the approximately 70 minutes half-
life of 68Ga means that the agent must be used quickly 
after radiolabeling and likely cannot be distributed from 
a central geographic source. Recent studies demonstrate 
excellent performance of 68Ga-PSMA PET/CT compared 
to conventional imaging including PET with other tracers 
(e.g., 18F-Choline, 11C-Choline) with regard to local staging 
(53-58). 68Ga-PSMA PET/CT has been reported to clearly 
improve detection of lymph node metastases compared 
to morphological imaging for staging primary PCa (55). 
68Ga-PSMA PET/CT had a high specificity of 98% and a 
moderate sensitivity of 56% for LN-detection (59). There 

is considerable tracer uptake seen in other solid tumors 
such as thyroid, colon, kidney, glioblastoma (55,57,60,61) 
and in normal anatomical structures (e.g., coeliac, cervical 
ganglia, salivary glands, kidney). The alternative to the 
Gallium-based PSMA tracers is 18F-DCFPyL which has the 
advantages of being cyclotron produced with a longer half-
life and more favorable energy levels, improving resolution. 
Larger batches of the 18F-PSMA agents can be made once 
during the day and distributed around a metropolitan area 
which has practical importance. However, unlike the 68Ga 
compounds, the 18F-PSMA agents are directly fluorinated 
and there is no chelate. In a prospective study, Rowe et al. (62)  
studied the uptake of a precursor to 18F-DCFPyL, 
18F-DCFBC, and found focal 18F-DCFBC uptake in high-
volume lesions with Gleason score ≥7 while focal uptake 
was rarely seen in small-volume and Gleason score 6 
disease (ρ-coefficient =0.65). Additionally, they observed 
significantly higher 18F-DCFBC uptake in high-grade PCa 
lesions compared to BPH. However, large-scale prospective 
studies are needed to prove the diagnostic efficacy and 
accuracy of this tracer, before implementing in clinical 
practice. 

The true clinical value of PSMA PET/CT lies in its 
much higher sensitivity for recurrent disease. A recent 
meta-analysis involving several 68Ga-PSMA-11 PET articles 
covering 1309 BCR patients reported a summary sensitivity 
and specificity of 80% and 97%, respectively on a per-lesion 
analysis (63). Even patients with very low levels of PSA 
were identified on 68Ga-PSMA-11 PET. In a retrospective 
study Eiber et al. (56) studied 248 men with BCR using 
68Ga-PSMA and detected a malignant lesion in 90%. 
Higher PSA levels and higher PSA velocity were correlated 
with higher tumor detection rates, but no significant 
association was seen with PSA doubling time. Interestingly, 
68Ga-PSMA-11 PET/CT was more frequently positive 
in patients receiving ADT at the time of the scan than in 
patients without such treatment (57). The relationship 
between PSMA expression and ADT is not yet completely 
understood. In preclinical studies, antiandrogens initially 
upregulated PSMA expression (64), but prolonged ADT 
seemed to downregulate PSMA expression over time (65). 
This controversy will require additional study in the near 
future.

There is a general consensus that PSMA is superior to 
the other agents used for PCa in terms of sensitivity and 
particularly specificity although there is a paucity of head-
to-head comparisons. Afshar-Oromieh et al. (53), compared 
68Ga-PSMA and 18F-choline in patients with BCR. Overall, 
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68Ga-PSMA outperformed 18F-choline in terms of detection 
of metastatic lesions. Despite its theoretical advantages there 
are few studies comparing 18F-DCFPyL and 68Ga-PSMA (66).  
PSMA-based tracers show outstanding sensitivity and 
specificity for PCa and among all the novel radiotracers, this 
class of agent is most likely to become universally available in 
the clinic in the next few years (Figure 1).

Fluorine-18-labeled sodium fluoride (18F-NaF)

18F-NaF is an old tracer first approved for clinical use by the 
FDA in 1972 (67). This agent is used exclusively for imaging 
bone metastases and is not specific for PCa. It is mostly 
used in staging of high risk cancers. 18F-NaF-PET/CT  
provides rapid, bone-specific uptake and excellent 
visualization of the axial skeleton compared to 99mTc-MDP 
bone scan. But, 18F-NaF is not a comprehensive PET agent 
and is only capable of detecting bone metastases. In a recent 
prospective study, Apolo et al. (68) evaluated the ability of 
18F-NaF-PET/CT to detect and monitor bone metastases 

over time in 60 patients with advanced PCa, who received 
primary definitive therapy. 18F-NaF-PET/CT detected more 
bone metastases than 99mTc-based bone scans, in particular 
in patients with high metastatic risk without any known 
bone metastases on standard imaging (PSA of ≥10 ng/mL  
or a PSA doubling time of <6 months). The baseline 
number of malignant lesions and changes in SUV on 
follow-up 18F-NaF-PET/CT scans significantly correlated 
with clinical impression and overall survival. For bone 
metastases 18F-NaF compares favorably with other imaging 
agents. Azad et al. (69) concluded that 18F-NaF, 11C-choline 
and 18F-choline PET/CT have equal sensitivities in finding 
PCa bone metastases although the specificity is higher for 
the choline-based agents. However, while sensitive, 18F-NaF 
is criticized for its non-specificity and has not received 
Medicare reimbursement approval in the United States. 
In summary, 18F-NaF-PET/CT is most useful in high-risk 
patients with a negative or equivocal 99mTc-MDP bone scan 
because of its ability to detect occult bony metastatic disease 
(Figure 2).

Dihydrotestosterone analogs (18F-FDHT)

The androgen receptor (AR) is crucial for the growth 
of PCa. Typically, PCa cells require testosterone and its 
derivative dihydrotestosterone (DHT) for growth and 
androgen deprivation therapy (ADT) interferes with tumor 
growth by blocking AR until castration resistant clones 
develop (70). ADT is thus, a first line therapy for patients 
with advanced PCa eventually resulting in castration 
resistant prostate cancer (CRPC) (71). AR overexpression 
is present in the majority of CRPC patients indicating 
there are alternate pathways to activating the AR axis. AR-
targeted imaging with PET can predict AR expression 
levels, and consequently show the potential to image and 
assess the cancer, as well as to detect the therapeutic effect 
of AR-targeted drugs in specific patients. 18F-16β-fluoro-
5α-dihydrotestosterone (18F-FDHT) is chemically similar 
to DHT. In a clinical trial conducted by Larson et al. (72) 
which included patients with advanced aggressive PCa, 
18F-FDHT showed lower sensitivity for PCa detection 
compared to 18F-FDG (86 % vs. 97 %, respectively). 
However, there were lesions seen by both scans, lesions 
seen by on only one and lesions seen by neither. This 
is a tantalizing result that is still unclear in its meaning. 
However, for in vivo estimation of the AR expression in 
patients on ADT, 18F-FDHT may be the better PET tracer 
for the assessment of treatment response (72). To date, there 

Figure 1 A 66-year-old man with metastatic prostate cancer. 18F 
DCFBC PET scan demonstrates metastatic para-aortic and iliac 
lymph nodes with overexpression of PSMA (arrows).
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is limited clinical data regarding the role of 18F-FDHT. 
However, this radiotracer showed utility in the assessment 
of AR blockade with 2nd line anti-androgens (31,73).

Bombesin/gastrin-releasing peptide

Gastrin-releasing peptide (GRP) is a 10-amino acid peptide 
involved in multiple physiological and pathophysiological 
processes. GRP binds to 7-transmembrane G-protein 
coupled receptor which promote tumor growth (74). 
High GRP receptor (GRPR) overexpression is present 

in many different cancers, such as breast, lung, urinary 
tract and prostate. Not all PCas express GRPR equally. 
de Visser et al. reported low GRPR expression levels in 
poorly differentiated PCa (75). However, peptides and 
their receptors present advantages for PET imaging such 
as exceptional stability and rapid clearance from the blood, 
rapid tissue penetration, as well as low immunogenicity, 
which are well suited for both diagnostic and therapeutic 
purposes (76).

Two classes of GRP/bombesin analogues labeled with a 
variety of different PET radioisotopes have been developed, 
GRPR radioagonists and radioantagonists. Prior studies 
have shown high binding affinity of agonists to GRPRs, and 
their subsequent cell internalization was believed to enhance 
the uptake, because the radioactivity was trapped in the 
intracellular compartment. However, other studies proved 
that antagonists are superior to agonists, because of their 
considerably higher binding affinity to the GRPR (77,78). One 
of the most investigated radioantagonists for PCa imaging 
is statine-based JMV594 (DPhe-Gln-Trp-Ala-Val-Gly-His-
Sta-Leu-NH2), first designed by Llinares et al. (79) and then 
modified. Moreover, labeling antagonists with 64Cu, 68Ga 
and 18F led to optimization of pharmacokinetic properties. 
Overall, studies have shown high efficiency of antagonists 
in the detection of primary PCa, while for bone metastases 
and BCR, the detection rates were much lower (74,80-82).  
However, more clinical data is needed on the use and 
efficacy of GRP targeted imaging in combination with PET 
in patients with PCa compared to PSMA based agents.

Summary/conclusions

Early diagnosis and accurate staging of clinically significant 
PCas are the most pivotal factors determining outcome. 
Because 18F-FDG performs poorly in PCa numerous 
PET agents have been developed to identify primary 
tumors, stage them, detect recurrence after treatment and 
monitor metastases. The clinical use of these agents in 
PCa is being investigated, however, it is very difficult to 
compare different agents as patient populations and scanner 
variability limit comparisons and it is difficult to combine 
2 or more PET agents in one study due to the expense and 
radiation exposure. Despite the considerable limitations, 
PET seems to be useful for diagnosis and staging of known 
or suspected primary PCa with high Gleason scores, in the 
detection of BCR in locally recurrent or metastatic disease 
in patients with rising PSA levels, in monitoring response to 
therapies and in prognostication. The role of PET imaging 

Figure 2 A 60-year-old man with metastatic prostate cancer. 
18F NaF PET demonstrates focal uptake corresponding to bone 
metastasis but also areas of benign degenerative disease.
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in patients with PCa is likely to expand particularly in 
improving initial staging and in more accurate localization 
of sites of recurrence both of which may enable more focal 
therapies for recurrence. However, most radiolabeled agents 
are still in the early stage of clinical evaluation and therefore 
it is difficult to comment on which agent is the most useful 
for imaging of primary disease and risk stratification. 
Moreover, the expense of such agents will slow their 
development in an era of medical cost containment.

In summary,  18F-FDG, the most common PET 
radiotracer is generally limited in the diagnosis and staging 
of clinically organ-confined PCa, however, it may be able to 
indicate the aggressiveness of disease. Similarly, radiolabeled 
acetate and choline tracers as well as 18F-FACBC, are 
equally useful in imaging locally recurrent or metastatic 
disease in men with biochemical relapse, but their ability 
to detect primary PCa showed marked limitations. PSMA 
is a more sensitive and specific radiotracer with a high 
sensitivity for early recurrent disease. Dihydrotestosterone 
analogs have a more limited role in detecting AR and effects 
of androgen blockage. Finally, GRP targeted PET imaging 
has shown high efficiency in the detection of primary PCa, 
while the sensitivity for bone metastases and BCR was 
much lower. On the other hand, in recent bone metastases 
seeking studies 18F-NaF showed superiority, comparing 
to standard imaging, in detecting occult bone metastases, 
in particular in high-risk patients with PCa. Still, more 
clinical data is needed to prove the efficacy of these PET 
tracers. Additional studies for existing PET tracers and 
the development of other novel radiopharmaceuticals are 
expected in the future as it is clear that the ideal agent has 
not yet been developed.
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