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DNA damage in human spermatozoa is a conundrum. 
We do not know where it is induced, why it is induced, 
how it is induced, how to measure it or what it means for 
fertility or for the health and wellbeing of the offspring. 
The paper by Agarwal et al. (1) represents an extremely 
comprehensive capture of our current understanding with 
respect to measurement methodologies, clinical association 
and diagnostic implications. However, it is inevitably 
impacted by our lack of understanding concerning the 
etiology of DNA damage and the manner in which such 
damage is ultimately processed by the oocyte and early 
embryo. Moreover, the key relationship between DNA 
damage in human spermatozoa and the mutational/
epimutational load subsequently carried by the offspring is 
still a matter for conjecture. We do know that as men age, 
the spontaneous mutation rate in their children increases 
in a linear fashion (2) presumably as a consequence of age-
dependent damage to the DNA in their spermatozoa. If 

we can demonstrate that DNA damage in the male germ 
line is associated with genetic or epigenetic changes in 
the progeny then we shall have gone a long way towards 
making the case for conducting routine assessments 
of DNA damage in spermatozoa, as recommended in 
Agarwal’s article (1). 

Methodology

The review at the heart of this commentary (1) has 
beautifully summarized and presented the various techniques 
that are available to measure DNA damage in human 
spermatozoa, paying attention to the nature of the DNA 
damage being measured, the chemical underpinnings of the 
respective techniques and the potential clinical relevance 
of the measurements made. The authors rightly point 
out that the list of methodologies they describe either 
measure pre-existing DNA damage in the spermatozoa 
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(Halo test, TUNEL) or damage induced or revealed on 
exposure of the gametes to very high (Comet) or very 
low (SCSA) ambient pH. They also correctly emphasize 
the importance of assays that measure the efficiency of 
DNA packaging and compaction such as the aniline 
blue or chromomycin A3 staining methodologies. 
Many authors have pointed out the vulnerability of 
poorly remodelled sperm chromatin to DNA damage 
particularly when the damage is oxidatively induced (3).  
Indeed, in a fascinating experiment of nature, marsupial 
spermatozoa are much more vulnerable to oxidative DNA 
damage than their eutherian counterparts precisely because 
their protamines lack the cysteine residues needed to 
compact and protect sperm chromatin through the creation 
of disulphide bridges (4). 

Two-step hypothesis 

Reflecting on the importance of chromatin compaction is 
the aetiology of DNA damage in mammalian spermatozoa, 
we have proposed a two-step hypothesis for how such 
damage might occur in our own species (5). This hypothesis 
posits that the first stage in the etiology of DNA damage is 
a defect at the spermatid stage of germ cell differentiation 
leading to a defect in the chromatin remodelling process 
that accompanies spermiogenesis. This generates a 
vulnerable cell that, in the second step, succumbs to a free 
radical attack that influences the structure and integrity of 
the sperm nuclear DNA. Such an oxidative attack could 
occur at any time during the life of a spermatozoon from its 
differentiation during spermiogenesis (6) to its maturation 
and storage in the epididymis (3,7). Moreover, as Agarwal 
et al. (1) point out, the source of the oxidative stress could 
be anything from a specific clinical condition such as the 
presence of a varicocele, to age, obesity, smoking and 
environmental exposure to toxicants (8).

Importance of oxidative stress 

Central to the two-step hypothesis is the important role 
played by oxidative stress in the etiology of DNA damage 
in human spermatozoa (5), reactive oxygen species 
(ROS) attack sperm DNA in several different ways. 
Firstly, an oxidative attack on sperm DNA can lead to the 
formation of oxidative base adducts such as 8-hydroxy-2’-
deoxyguanosine (8OHdG). In responding to such damage 
spermatozoa can only call upon the first enzyme in the base 

excision repair pathway, 8-oxoguanine DNA glycosylase,  
OGG-1 (9). This glycosylase cleaves the oxidized base out 
of the DNA duplex to generate a corresponding abasic site 
that destabilizes the ribose-phosphate backbone leading 
to a β-elimination or a ring opening reaction of the ribose 
unit and a consequential strand break. If this limited DNA 
repair pathway does not complete its task, then 8OHdG 
residues persist in both the spermatozoa (10) and (because 
the oocyte is poorly endowed with OGG1) well into S-phase 
of the first mitotic division following fertilization (9). The 
significance of such persistence is that 8OHdG residues 
are highly mutagenic, potentially causing an increase in the 
mutational load carried by the embryo (11) particularly, 
but not exclusively, GC-AT transversions (12). Similarly, 
oxidative stress in the germ line can result in the formation 
of lipid aldehyde adducts on DNA involving compounds 
such 4-hydroxynonenal and 4-hydroxyhexenal, both of 
which are also powerfully immunogenic (13,14) and could 
be responsible for increasing the mutational, as well as the 
epimutational, load carried by the offspring (15). 

The associations between oxidative stress in the germ 
line, DNA damage in spermatozoa and genetic/epigenetic 
mutational changes in the offspring that potentially impact 
the latter’s health trajectory are clearly critical for the 
future of sperm DNA damage testing in male patients. 
The observed increases in mutational load associated 
with children as a function of their fathers’ age (2) is an 
example of such a mechanism-in-action which resonates 
with abundant evidence linking paternal age with oxidative 
DNA damage to spermatozoa (16) and the impact of 
paternal age on a range of pathologies in the offspring 
including dominant genetic diseases such as achondroplasia 
to neurodevelopmental disorders such as autism, bipolar 
disease or spontaneous schizophrenia (11,17). Similarly, 
there is a clear link between the high levels of oxidative 
DNA damage observed in the spermatozoa of male smokers 
and the significantly increased risk of cancer seen in their 
offspring (18). Oxidative stress in spermatozoa has also been 
linked with an increased risk of recurrent miscarriage (19) 
which could again be due to genetic/epigenetic changes in 
the zygote, subsequent and consequent to increased DNA 
damage in spermatozoa.

Conclusions

This volume captures much of the current thinking around 
the nature of DNA damage in spermatozoa, how this 
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damage can be measured and how such measurements 
should be deployed in a clinical setting. Nevertheless 
one might add to the list of methods used to detect DNA 
damage in spermatozoa, the analysis of 8OHdG lesions for 
three major reasons: (I) measurement of oxidative DNA 
may reflect the potential impact of the male germ line 
on the mutational load carried by the embryo; (II) these 
mutations, whether they are genetic or epigenetic are likely 
to have a significant impact on the health and wellbeing 
of the progeny and (III) if oxidative damage to the sperm 
DNA is responsible for inducing genetic/epigenetic changes 
in the offspring that impact the latter’s health then there are 
important therapeutic possibilities to explore in the form of 
appropriate antioxidant therapy (20). 
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