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Introduction

The inability to conceive a child is a distressing reality for a 
significant number of couples worldwide. After 12 months of 
unprotected intercourse, it is estimated that approximately 
10–15% of couples fail to conceive offspring (1-3). Male 
factor infertility contributes to 50–60% of overall infertility 
but is solely responsible in only 20% of couples. Male factor 
infertility can be due to identifiable hormonal or anatomical 
etiologies that may be reversible or irreversible. However, 
a significant portion of men presenting with infertility have 

no underlying identifiable cause—or one that continues 
to elude our diagnostic capabilities. In reality, this remains 
an astounding figure with idiopathic infertility comprising 
25–50% of men presenting with fertility challenges (2,3).

The literature regarding the use of empirical medical 
therapies for men with hypogonadism and/or idiopathic 
infertility remains inconclusive (1). The fact that there is no 
current clear consensus on the management of idiopathic 
oligospermia, for example, likely reflects our failure to fully 
comprehend and define the precise etiologies underlying 
idiopathic male infertility (4). With few exceptions, none of 
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the empiric therapies used to treat idiopathic male infertility 
have been shown to be effective in repeat, randomized, 
controlled studies (3). Nevertheless, prior to the initiation 
of hormonal therapy for the treatment of male factor 
infertility, a careful work-up is imperative to rule-out any 
reversible causes. 

In this review article, we will assess the literature 
regarding correlations between aberrations in a patient’s 
hormonal milieu and their subsequent impact on fertility. 
Along with bringing to light any reported relationship 
between such hormones and infertility, we also seek to 
discuss the potential impact of correcting these deviations 
and the methods currently available to providers. We 
admit that some of the data on the role of these hormones 
and treatments in male fertility is either sparse and/or 
conflicting. Whereas our primary purpose is to define 
our current state of the science, in doing so, we hope to 
delineate potential future research or treatment strategies 
to ultimately aid the reproductive capacity of these patients. 
Please refer to Table 1 for a reference of the indications 
and side effects of the treatments discussed in this review. 
Furthermore, the preferred doses and regimens prescribed 
by the senior author are also included in Table 1.

Clomiphene citrate (Clomid, CC)

CC is a selective estrogen receptor modulator (SERM) 
that is found in a racemic mixture of two isoforms—
enclomiphene and zuclomiphene (2). This class of 
medications competitively binds to the estrogen receptors 
on the hypothalamus and pituitary gland thereby negating 
the negative feedback imposed by estrogen. Luteinizing 
hormone (LH) secretion is subsequently increased resulting 
in more testosterone production by the testes (9). The 
reduced negative inhibition upon the hypothalamus and 

pituitary gland results in enhanced follicle-stimulating 
hormone (FSH) secretion subsequently resulting in 
increased spermatogenesis. Since CC relies on increasing 
FSH, it will not be effective in patients with an elevated 
FSH level or in patients lacking a post-treatment FSH  
surge (2).

CC has not been approved by the Food and Drug 
Administration (FDA) for administration in men. The use of 
CC was originally approved for the treatment of ovulatory 
dysfunction in women; however, many studies have established 
the safety and efficacy of off-label use of CC for male infertility 
and hypogonadism (10). Recent surveys by the American 
Urological Association have shown that estrogen antagonists 
are the most prescribed medical agents for empiric medical 
therapy for idiopathic male infertility (11). The optimal 
dosing of CC has been recommended in doses ranging from 
12.5 to 400 mg/day with the ability to administer lower 
doses attributed to its half-life of 5 days. Several dosing 
regimens have been suggested including 100 mg 3 times 
weekly with dosing schedules starting at a low dose of 25 
to 50 mg every other day subsequently increasing to 50 mg 
daily to optimize outcome (1). CC’s effect on hormonal 
levels or semen analysis parameters is not immediate with 
the first improvement tending to be an increase in percent 
motility (1).

The fact that studies evaluating the efficacy of CC date 
back several decades unveils its potential as an effective 
therapy for male infertility. In ten patients with idiopathic 
oligospermia and ten volunteers with normal semen 
parameters, Masala et al. found that 100 mg of daily CC 
resulted in marked increases in plasma luteinizing hormone 
releasing hormone (LH-RH) levels followed by significant 
increase in testosterone levels. However, no significant 
differences were seen in the hormonal levels between those 
with idiopathic oligospermia and those with normal semen 

Table 1 Indications, dosing, and potential adverse effects for idiopathic non-obstructive male-factor infertility

Medication Indication Recommended dosing (*, dosing of senior author) Adverse effects

Human chorionic 
gonadotropin

Hypogonadotropic 
hypogonadism

Range: initial dose 3,000+75 IU twice a week (5); 
5,000 IU 3 times per week (6); *1,500–3,000 IU  
3 times per week

Injection site pain, 
gynecomastia, hyperglycemia, 
headache, depression

Clomiphene citrate Hypogonadotropic 
hypogonadism

Range: 25–400 mg; 100 mg 3 times per week, titrate 
up (1); *25 mg daily

GI distress, dizziness, hair loss, 
gynecomastia, weight gain

Anastrozole T/E ratio <10 1 mg/day (7,8); *0.5–1.0 mg daily, based on T/E ratio Elevated liver enzymes 
(reversible), decreased libido, 
headaches

T/E, testosterone-to-estradiol; GI, gastrointestinal.
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parameters (12).
In a prospective study conducted by Ross et al., 53 

patients received high-dose, alternate-day CC therapy 
(100 mg 3 times per week). Overall, a positive response 
rate of 66% and a pregnancy rate of 26% were observed 
with significant surges in gonadotropins and testosterone 
seen in responders. Moreover, it was found that more 
than 50% of patients responded within the first 3 months 
of treatment with the rest of the cohort responding after  
6–15 months (13). The goal of achieving pregnancy was 
also observed in 8 of 20 patients (40%) in another study in 
which men treated with a 6-month trial of intermittent low-
dose CC therapy (14). In a prospective, randomized trial, 
Micic and Dotlic randomized 101 oligospermic men with 
low to normal FSH levels to receive treatment with 50 mg 
of CC daily for 6 to 9 months. Significant improvements in 
semen volume, sperm density and motility were observed 
in the 56 men randomized to CC therapy versus the 45 
controls. Seven pregnancies were observed in the treatment 
group versus zero in the control group (15).

CC has also been assessed against other hormonal 
therapies such as gonadotropin releasing-hormone 
analogues (GnRHa) as a standalone therapy for male factor 
infertility. Matsumiya et al. prospectively studied the efficacy 
and adverse effects of GnRHa and CC therapy for treatment 
of idiopathic normogonadotropic oligoasthenozoospermia 
(INOA). Forty-four patients with INOA were randomly 
allocated to treatment with GnRHa or CC. Overall, 
23 INOA patients underwent GnRHa therapy with  
15 microgram of diluted buserelin acetate given once a 
day intranasally and 21 INOA patients were treated with 
50 mg of CC daily by oral administration. Treatment was 
well-tolerated amongst both groups; however, compared to 
baseline semen parameters, those treated with the GnRHa 
analogue experienced significant (P<0.05) improvements 
in mean sperm density and mean sperm motility after  
3 months of therapy while those treated with CC did not 
experience any significant changes in semen parameters (16). 

The use of estrogen antagonists for treatment of 
idiopathic male infertility has been supported by two 
separate meta-analyses. A Cochrane review of 10 studies 
and 738 men by Vandekerckhove et al. assessed the efficacy 
of CC or tamoxifen in the treatment of idiopathic oligo 
and/or asthenospermia. After limiting the review to the five 
studies that randomized subjects, positive improvements 
in testosterone levels were identified; however, the overall 
pregnancy rate was 15.4% compared to a spontaneous 
rate of 12.5% in control groups. The odds increased 

to 1.56 when all ten trials were included (17). A meta-
analysis reviewing a total of 11 randomized-controlled 
trials conducted by Chua et al. found the use of estrogen 
antagonists resulted in statistically significant increases 
in pregnancy rate compared with controls (P=0.0004) 
along with significant increases in sperm concentration 
(P=0.001) and per cent sperm motility (P=0.03). The most 
significant beneficial effects (P=0.003) were identified in 
subgroup analysis in those receiving 50 mg daily dosing, 
however. Furthermore, significant improvements in sperm 
concentration and motility were identified only within 
the 50 mg daily dosing subgroup (11). It should be noted 
that Clomid was the SERM administered in only 5 of the 
11 studies reviewed. Moreover, there was inconsistency 
in dosing, which ranged from 25 to 50 mg per day for 
treatment durations lasting 3–12 months. Despite some 
encouraging data reported via these meta-analysis, a 
subsequent study published by Patel et al. assessing the 
safety and efficacy of 50 mg every other day dosing of 
CC on 47 infertile, hypogonadic men demonstrated no 
significant improvements (P=0.09) in sperm parameters 
after treatment. As CC use is an off-label therapy for 
improving fertility in hypogonadal men, parameters for 
ideal patient selection remain elusive and have not been 
well-defined. 

CC has also shown efficacy when administered prior 
to sperm retrieval procedures. In a multicenter study that 
assessed the impact of CC on semen and surgical testicular 
sperm extraction (TESE), Hussein et al. titrated treatment 
with CC to achieve testosterone levels between 600 and 
800 ng/dL. A total of 42 patients with non-obstructive 
azoospermia (NOA) were included in the analysis after 
azoospermia had been confirmed by a previous testicular 
biopsy. After CC therapy, 64.3% of patients demonstrated 
sperm in their semen analyses ranging from 1 to 16 million 
sperm/mL and sufficient sperm for extraction was identified 
in all patients (18). The improvement in microdissection 
TESE was further demonstrated in another study 
spearheaded by Hussein et al. that concluded that patients 
receiving therapy with CC had a 20–25% greater chance of 
identifying sperm on micro-TESE compared to those not 
receiving treatment (19). 

CC is generally well tolerated with common side effects 
including gastrointestinal distress, dizziness, hair loss, 
gynecomastia and minimal weight gain. Visual disturbances 
occur in about 1.5% of patients with symptoms such as 
blurred vision, photophobia and diplopia, which are all 
reversible with cessation of medication (2,20). Moreover, 
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a retrospective study of 363 hypogonadal men receiving 
treatment with CC or testosterone replacement therapy 
(TRT) found that the prevalence of polycythemia to be 
much less in men treated with CC than TRT with similar 
improvements in serum T (21). Furthermore, another study 
of hypogonadal and/or infertile men found no changes in 
hematocrit levels as well as no changes in prostate-specific 
antigen during treatment with CC (22). 

Certainly the most significant adverse effect and reason 
to prompt pause in initiating therapy with CC are reported 
paradoxical reductions in semen quality after treatment. 
Pasqualotto et al. described a case report of three patients 
sent to an infertility clinic for evaluation of azoospermia 
after the use of CC. Prior to treatment with CC, each 
patient was known to have severe oligospermia with FSH 
levels within normal limits. Treatment duration with CC 
ranged from 3–6 months. After being instructed to stop CC 
therapy for three months, sperm was present in all follow-
up semen analyses (23).

Aromatase inhibitors (AIs)

AIs may be used in men with non-obstructive infertility 
to address the imbalances in testosterone and estrogen 
levels that affect spermatogenesis. As previously discussed, 
estrogen exerts negative feedback on the pituitary and 
hypothalamus to decrease LH and FSH and negatively 
affect spermatogenesis (24). Estrogen may also directly 
inh ib i t  spermatogenes i s  by  down-regu la t ion  o f 
spermiogenesis related-genes and inducing spermatocyte 
apoptosis through estrogen-receptors 1 and 2 (25).

Aromatase is a cytochrome P450 enzyme that irreversibly 
converts androgens to estrogens in various tissues including 
the testis, liver, brain and adipose (26,27). In the testis, 
aromatase is localized to the Leydig cells (28). AIs can 
selectively increase endogenous testosterone levels without 
increasing circulating estrogens (29,30). Moreover, AIs 
can be categorized as steroidal or non-steroidal. Steroidal 
AIs cause irreversible enzyme inhibition by mimicking 
androstenedione whereas non-steroidal AIs mimic 
substrates to cause reversible inhibition (31).

The utility of AIs arises from finding that a subset 
of patients with idiopathic male-factor infertility have 
abnormal testosterone-to-estradiol (T/E) ratios (32). 
Pavlovich et al. compared the serum hormonal levels in 
63 infertile men to 40 fertile men to identify significant 
differences in the T/E ratio. It was discovered that men 
with infertility and fertile men had T/E ratios of 6.9 versus 

14.5 (P<0.01), respectively (32). As such, a T/E ratio of 10 
was suggested as the lower limit of normal. 

Early studies evaluated the efficacy of testolactone in 
the treatment of idiopathic male infertility with normal 
hormonal profiles. In 1989, Clark and Sherins treated  
25 men with 2 grams per day of testolactone in a 
randomized double-blind placebo-controlled cross-over 
trial (33). A significant (P<0.01) decrease in sex hormone-
binding globulin of 30% was observed with a corresponding 
36% increase in free testosterone levels (P<0.01), Moreover, 
FSH, LH, and 17α-hydroxyprogesterone all experienced 
significant (P<0.05) increases by 20%, 15%, and 90%, 
respectively. However, no changes were found in total 
testosterone or estrogen levels nor in sperm parameters or 
pregnancy rates (33). Pavlovich et al. demonstrated that in a 
subset of 45 infertile men with low T/E ratio, testolactone 
at daily doses of 100–200 mg was able to significantly 
correct the T/E ratio (5.0±0.3 to 12.7±1.2, P<0.01). Semen 
analyses of a further subset of 12 men showed significant 
increases in sperm concentration (16.1 to 28.9 million, 
P=0.03) and motility (27.1% to 45.3%, P<0.01) (33). Of 
note, testolactone is no longer available for clinical use in 
the United States (27). 

Further investigations studied the efficacy of AIs at 
lower doses, which overall showed improvements in semen 
parameters in select patients with low T/E ratios. Raman 
and Schlegel reported favorable effects on spermatogenesis 
with treatment of testolactone and anastrozole. One 
hundred and forty subfertile men with abnormal T/E ratios 
were treated with either 100–200 mg/day of testolactone 
or 1 mg/day anastrozole. Both groups had improvements 
in T/E ratios, sperm concentration and sperm motility 
index. Interestingly, on subset analysis, anastrozole was 
not found to be more efficacious in the treatment of 
obese men compared to men of normal weight (34). This 
phenomenon lead some to hypothesize that the majority 
of aromatase activity arises from within the testicles and 
not via peripheral conversion (27). In 2017, Shoshany et al. 
reported a retrospective study of 86 subfertile men with low 
T/E ratios treated with 1 mg/day anastrozole. Improvement 
in T/E ratio (6.98±0.33 to 34.5±6.5) was observed 
in 95.3% of men. However, improvements in sperm 
concentration and motile counts were only demonstrated 
in men with oligospermia but not those with azoospermia, 
cryptozoospermia, or normospermia at presentation (7).

Similar improvements in T/E ratio, sperm concentration, 
and sperm motility were seen with treatment with letrozole. 
Saylam et al. treated 17 azoospermic and 10 oligospermic 
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men with 2.5 mg letrozole daily for greater than  
6 months (35). T/E ratios increased in all patients after 
treatment. Sperm counts and motility were increased 
for oligospermic men following treatment with 2 of  
10 patients subsequently able to achieve pregnancy during 
the trial period. In a prospective, non-randomized study 
of 29 infertile men with low serum T/E ratios, treatment 
with letrozole or anastrozole were found to increase serum 
T as well as semen parameters including concentration, 
morphology and motility (8).

The effects of AIs on spermatogenesis have also been 
investigated. In a single case report of nonobstructive 
idiopathic azoospermia, daily 2.5 mg letrozole for 4 months 
was able to convert a patient with hypospermatogenesis to 
active spermatogenesis proven by testicular biopsy (36). 
Although pre-treatment estrogen levels were not available 
for the study, testosterone, LH, and FSH all observed to 
increase at 1 month following treatment. Furthermore, the 
efficacy of letrozole to induce spermatogenesis was further 
supported by two limited case series. Saylam et al. was able 
to show spermatozoa in the ejaculate of 4 of 17 azoospermic 
men after 6 months of treatment with letrozole although 
13 patients remained azoospermic after treatment (35). In 
a smaller study of four patients with NOA, Cavallini et al. 
demonstrated that just 3 months of therapy with letrozole at 
2.5 mg/day was able to improve both T/E ratios and induce 
spermatozoa in the ejaculate (37). 

In a randomized double-blind comparison trial, Helo  
et al. investigated 26 men with hypogonadism and infertility 
to receive CC or anastrozole. Significantly greater increases 
T were identified in men receiving CC though anastrozole 
resulted in significantly larger increases in T/E ratios. Aside 
from the differences in the hormonal profiles, no significant 
differences in semen parameters were identified between 
the groups (38).

AIs are well tolerated at low doses. Side effects occur in 
less than 10% of patients and are mild. The most finding 
is a transient elevation of liver enzymes, which resolves 
with cessation of therapy (32,34). Decreased libido has 
been reported (26), as well mild headaches that did not 
require discontinuation of therapy (7). Additionally, there 
is a possible risk of decreased bone density due to AI  
treatment (39).

Human chorionic gonadotropin (HCG)

The use of HCG for the treatment of male infertility 
is most commonly applied to the treatment of patients 

presenting with hypogonadotropic hypogonadism 
(HH). The mechanism of action of HCG involves its 
action as an analogue of LH and its subsequent role in 
maintaining and/or increasing intratesticular levels of  
testosterone (40). Several studies with small numbers 
of subjects have reported its efficacy in restoring 
spermatogenesis in patients with HH (9,41,42). 

In a 30-year retrospective study, Miyagawa et al. assessed 
treatment outcomes of HH with HCG/human menopausal 
gonadotropin (HMG). Thirty-six male patients with 
primary (81%) and secondary (19%) HH were identified 
and treated with initial doses of 3,000 IU of HCG and 
75 IU of HMG twice a week. Pre-treatment testicular 
volume was found to be the only significant predictor 
of treatment response defined as sperm production. 
Specifically, men with a pre-treatment testicular volume 
of 7.5±3.5 versus 1.6±0.9 cc were 35% more likely to have 
sperm production after a mean treatment duration of  
56 months (43). Similarly, Yang et al. published their 10-
year experience in successfully using HCG, HMG or HCG/
HMG to treat men presenting with HH. In this study, it 
was found that a greater percentage of patients treated with 
HCG/HMG combination therapy had improvements in 
testicular volumes versus those treated with HCG alone 
(76% versus 50%, respectively). Moreover, of the patients 
who experienced testicular growth, approximately 86% 
of patients treated with HCG/HMG ultimately achieved 
spermatogenesis compared to 81% in those treated with 
HCG alone (42). 

The consideration of pre-treatment testicular volume 
prior to administration HCG/HMG in patients presenting 
with infertility and HH of any etiology was further 
supported by a retrospective study by Farhat et al. in  
87 men presenting with congenital or acquired HH of 
various etiologies. Pre-therapy testicular volume was a 
significant (P<0.0001) predictor of response to therapy with 
responders found to have a mean testicular volume of 9 cc 
compared to non-responders who had a mean volume of 
5.7 cc. However, even in well-selected patients, pregnancy 
rates after treatment were still modest (41). 

Positive results have been demonstrated with HCG-
based hormonal stimulation in men with NOA undergoing 
sperm retrieval by micro-TESE. Shiraishi et al. studied 
therapy with 5,000 IU HCG 3 times weekly for 3 months 
in 28 men who had a previous negative attempt at sperm 
retrieval by micro-TESE. After treatment, it was found 
that hormonal therapy significantly increased (P<0.05) the 
chances of sperm retrieval at the time of second micro-
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TESE compared to men who did not receive treatment. 
Sperm were retrieved in 6 men (21%) who had undergone 
hormonal treatment whereas no sperm were retrieved in 
the control group (5). In a study of 68 men with non-mosaic 
Klinefelter’s syndrome, Ramasamy et al. found that sperm 
retrieval rates during micro-TESE did not depend on the 
preoperative administration of HCG, CC or AIs. Rather, 
it was observed that patients with a resultant testosterone  
≥250 ng/dL had a 22% higher sperm retrieval rate compared 
to patients with testosterone levels <250 ng/dL (6).

Overall, in treating infertility, HCG therapy is effective; 
however, cost of therapy precludes regular and widespread 
utilization (2). Moreover, HCG is typically only effective 
when serum FSH, LH and/or testosterone levels are low or 
are in low normal ranges (44). 

Prolactin (PRL)

While PRL has long been known to be the hormone 
responsible for mammary gland development and 
lactation in females, understanding its role in the male 
has been elusive. PRL is mainly expressed and secreted 
by the anterior pituitary lactotroph cells. PRL secretion 
is primarily under tonic inhibitory control by the 
hypothalamus through dopamine acting via D2 receptor on 
lactotrophs (45). Once secreted, the physiologic processes 
affected by PRL are vast and include mammary gland 
development, initiation and maintenance of lactation, 
immune modulation, osmoregulation and behavioral 
modification (46).

The role of PRL in male health is still widely unknown 
but there has been data to suggest that PRL positively 
modulates several aspects of testicular function. PRL 
receptor expression has been demonstrated in Leydig, 
Sertoli and in germ cells. PRL can affect steroidogenesis by 
modulating the expression of LH receptors, or by regulating 
the activity of steroidogenic enzymes (47,48). Disturbances 
in spermatogenic processes was demonstrated by Micic et al. 
who found that serum FSH levels in hyperprolactinemic 
infertile men were significantly higher compared to infertile 
men without hyperprolactinemia and healthy, normal 
fertile men (49). Furthermore, high seminal PRL levels 
have also been found to negatively impact the functional 
capacity of sperm (50). In an animal model study, Binart  
et al. demonstrated that fertility parameters as well as body 
and reproductive organ weights were unaffected in PRL 
receptor knockout mice (48). PRL has also been shown 
to have a potential impact on sexual function including 

effects on ejaculation, libido and perception of orgasmic 
experiences (51-53). 

The correlation between PRL and infertility is still 
being investigated and by no means conclusive. The 
goal of achieving euprolactinemia in men undergoing 
infertility studies has demonstrated varied outcomes with 
Nishimura et al. demonstrating that in ten men with serum 
PRL levels twice the upper limit of normal, no changes 
in LH, FSH, testosterone or estradiol concentrations 
or semen parameters were identified before and after 
treatment with bromocriptine (54). Conversely, Mancini  
et al. found that treatment with bromocriptine significantly 
improved sperm counts in 5 of the 8 men presenting with  
oligozoospermia (55). This small-cohort data conflicts with 
a later study published by Okada et al. who investigated the 
effects of hyperprolactinemia on sperm function in 264 men  
presenting with semen abnormalities and discovered that 
no correlation between abnormal semen analyses and 
hyperprolactinemia existed. Furthermore, no changes in 
sperm concentration, motility or morphology were found 
after normalization with serum PRL levels (56). 

Those  wi th  hypoprolact inemia  were  s imi lar ly 
investigated by Ufearo et al. who found that production of 
an adequate number of morphologically normal sperm in 
males may require adequate concentrations of PRL in the 
blood. In the study, withdrawal of human prolactin (hPRL) 
or metoclopramide in men with hypoprolactinemia resulted 
in recurrence of baseline semen abnormalities namely 
reduced sperm concentration and poor morphology (57). 

Overall, the data regarding PRL and its role in male 
infertility remains inconclusive. What does appear to be 
more obvious, however, is that routine measurements 
of serum PRL in infertile men without symptoms of 
hyperprolactinemia likely offers little value (58).

Thyroid hormones

Infertile men with hyperthyroidism commonly present 
with decreased libido, erectile dysfunction, premature 
ejaculation or signs and symptoms of increased estrogen, 
such as gynecomastia or spider angiomas. Laboratory work-
up may demonstrate increase in serum steroid-hormone 
binding globulin, increased testosterone with a normal free 
testosterone, increased total and free estradiol, increased 
progesterone and increased FSH and LH response to 
exogenous GnRH (59,60). Sertoli cells have been shown 
to express thyroid hormone receptors (TRs) and thyroid 
hormones also influence Leydig cell development and 
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steroidogenesis. These findings suggest that thyroid 
hormones may sustain different populations of germ cells. 
The clinical manifestation of these observations have been 
seen in hyperthyroid and hypothyroid men who had a lower 
proportion of morphologically normal sperm (59,61). 

In a study of 25 male patients with active Graves’ 
disease and 10 normal men, Abalovich et al. demonstrated 
the deleterious effects of hyperthyroidism on semen 
analyses with most changes in semen parameters being 
corrected when euthyroidism was established in these  
patients (62). Similarly, Krassas et al. found that the 
only semen parameter noted to be significantly different 
compared to euthyroid controls was mean motility, which 
was lower in hyperthyroid males (28%±8% vs. 57%±7%; 
P<0.01). The hyperthyroid men experienced a significant 
improvement in motility after treatment (28%±8% vs. 
45%±7%; P<0.05) (63). 

The literature regarding the effect of hypothyroidism 
on male semen parameters is scant with Griboff et al. 
demonstrating an association with decreased libido and 
erectile dysfunction in a small case series (64,65). In one 
study involving 24 human male patients with documented 
hypothyroidism, impaired (P<0.001) semen parameters 
including poorer sperm count, morphology and motility 
were observed in those suffering from hypothyroidism 
compared to normal males (66). 

It is evident that hyperthyroidism and hypothyroidism 
have well-described effects on semen parameters. However, 
the likelihood that thyroid dysfunction is the sole cause of 
infertility in affected males is rare (67). Furthermore, studies 
have supported that screening for thyroid dysfunction in the 
male population of couples presenting with infertility is low 
yield and not routinely recommended (68,69).

Future considerations

Several issues have surfaced recently that will likely 
provide clinicians with new treatment challenges. For 
instance, there has been significant interest in restoring 
spermatogenesis after TRT. It has been reported through 
a recent survey that approximately 25% of urologists have 
utilized exogenous testosterone to treat patients presenting 
with infertility associated with low testosterone (4,70). 
Thus, a rather significant proportion of urologists have 
directly contributed to the unfavorable effects of TRT 
on spermatogenesis. Moreover, testosterone usage has 
markedly increased due to new forms of supplementation, 
improved consumer advertis ing and awareness of 

symptomatic improvement in men receiving TRT (71). 
Outside the setting of TRT for male infertility, another 
significant source of exogenous testosterone use has been 
in the arena of male contraception (72,73). However, 
regardless of the initial reason for receiving exogenous 
testosterone, adverse long-term spermatogenic outcomes 
associated with TRT have presented a challenge for male 
infertility specialists. The prevalence of obesity continues to 
have a profound impact on our healthcare system along with 
a larger cohort of such patients seeking treatment for male 
infertility (2). The link between varicoceles and fertility is 
still being explored with initial data seemingly supporting 
surgical intervention. This section addresses these issues 
that appear to be the future talking points and/or dilemmas 
of our ever-evolving field.

TRT and spermatogenesis

In a large multivariate analysis review of 30 studies, Liu  
et  a l .  establ ished the notion that  hormonal  male 
contraceptive regimens are reversible within a predictable 
time course. Specifically, it was discovered that median 
times for sperm to recover to thresholds of 20, 10 and  
3 million per CC were 3.4, 3.0 and 2.5 months, respectively. 
Perhaps the most important aspect of the study was the 
reported probability of 100% recovery to 20 million sperm 
per CC at 24 months (74). In another study exploring 
recovery of spermatogenesis after exogenous T use, Kolettis 
et al. started 22 men presenting with a history of infertility 
and exogenous T usage on medical recovery therapy 
utilizing CC or HCG and/or FSH based on the clinical 
judgment of the providers. Moreover, an additional 16 men 
were followed up after T cessation only. Patients’ age was 
34 years on average with a median duration of T use of  
24 months. Ultimately, 15 of 22 men given medical 
treatment and 16 of 17 men given no treatment other than 
T cessation had sperm return to the semen. Furthermore, 
final sperm concentration did not differ between groups. 
Interestingly, 21% of men in this study did not recover 
spermatogenesis after cessation or rescue treatment likely 
due to underlying spermatogenic failure rather than a 
permanent deleterious effect induced by exogenous T  
use (71). Wenker et al. reported results of therapy with 
HCG in 49 men with a history of exogenous testosterone 
and subsequent severe aberrations in sperm production. 
These individuals were placed on combination therapy, 
which included 3,000 units of subcutaneous HCG 
administered every other day supplemented with CC, 



S360

  Transl Androl Urol 2018;7(Suppl 3):S353-S366tau.amegroups.com© Translational Andrology and Urology. All rights reserved.

Khourdaji et al. Frontiers in hormone therapy for male infertility

tamoxifen, anastrozole or recombinant FSH. After 
therapy, follow-up semen analyses identified return of 
spermatogenesis and improved counts for azoospermic 
men and for men with severe oligospermia, respectively. 
On average, spermatogenesis was identif ied after 
4.6 months of therapy with a mean first density of  
22.6 million/mL (75). Kohn et al. recently published that 
increasing age and duration of exogenous testosterone use 
significantly reduced the likelihood of recovery of sperm in 
the ejaculate after rescue therapy with HCG and SERMs 
based on a criterion of a TMC of 5 million sperm, at 6 
and 12 months (76). It is clear that patients presenting 
with infertility and concurrent T use should be counseled 
to immediately cease all use of T. Moreover, a thorough 
discussion regarding the likelihood of recovery and the risks 
and benefits of medical rescue therapy should be offered.

Enclomiphene citrate (Androxal, EC)

EC is a SERM that is similar to CC but differs in the 
absence of the cis isomer, zuclomiphene, found in CC (77). 
There has been interest in the use of EC in the treatment 
of hypogonadism and oligospermia due to its improved and 
pure estrogen antagonism compared to CC, which is found 
as a mixture of isomers with both antagonistic and agonistic 
mechanisms (78). 

In a 2013 proof-of-principle study, Kaminetsky and 
colleagues evaluated the use of EC in the treatment of 
secondary hypogonadism in men previously treated with 
topical T and found that EC increased T and sperm counts 
with evidence of improved endogenous T production due to 
appropriate changes in LH and FSH levels (79). This proof-
of-concept study was subsequently applied to a follow-up 
study of men with secondary hypogonadism in which the 
efficacy of treatment with enclomiphene versus 1% topical 
T gel was evaluated. In this investigation, all enrolled in the 
study were naïve to topical T. Overall, it was found that EC 
increased morning serum T, estradiol and LH similar to 
those obtained with topical T gel along with preservation of 
sperm counts. Specifically, regardless of 12.5 or 25 mg EC 
dosing, men maintained significantly greater total sperm 
counts (P=0.004 and P=0.012, respectively) compared to 
treatment with topical T (78). 

Preliminary data involving EC shows promise but 
requires further investigation with randomized-controlled 
studies with the ultimately goal of securing FDA approval 
for the treatment of hypogonadism and/or male infertility.

Obesity and infertility

With the rapid rise in the obesity rate worldwide, the effect 
of obesity on male infertility has been a topic of interest. 
This increase in obesity has paralleled reports of rising rates 
of poor sperm quality and male infertility (80). Deriving 
direct associations between obesity and infertility is colluded 
by the several factors that are influenced by and may 
already be present within the obese patient presenting with 
concerns about fertility. Potential culprits that stymie an 
obese patient’s fertility potential include alterations in their 
hormonal profile such as decreased testosterone and sex 
hormone binding globulin (SHBG) and increased estrogen, 
body temperature, overall response to inflammation 
and oxidative stress. Moreover, various confounding co-
morbidities that are often present in those with obesity such 
as insulin resistance and vascular disease may all contribute 
to limited fertility potential (81,82). 

Evidence suggests that there is an increased prevalence 
of azoospermia and oligospermia in obese men (OR, 2.04; 
95% CI, 1.59–2.62) (83). Moreover, obesity has been found 
to contribute to a reduction in sperm concentration by up to 
21.6% as compared to men of normal weight (84,85). The 
association between obesity and motility and morphology 
are inconclusive; while some studies found body mass index 
(BMI) to negatively affect motility and morphology, others 
have found no difference (81,84-87). Obesity is associated 
with increased fragmentation of sperm DNA (87,88). In 
a 3-year multicenter study of 330 patients, Dupont and 
colleagues found increased DNA fragmentation in obese 
men compared to normal weight men, which persisted after 
adjusting for age and tobacco use (88).

It thus stands to reason that weight loss should 
subsequently  improve such aberrat ions in sperm 
concentration and quality. No studies to date have reported 
an association between weight loss and improvement in 
birth rates in infertile couples with an obese male partner. 
Weight loss achieved by low-calorie diet and behavioral 
modifications, however, has been shown to improve both 
testosterone levels as well as SHBG (89,90).

Hormonal changes and sperm parameters have been 
studied in patients who have lost weight by undergoing 
bariatric surgery. Reis et al. assessed fertility in 20 morbidly-
obese men over a 24-month period. It was found that those 
that underwent lifestyle modification followed by gastric 
bypass did not have significant changes in sperm quality 
at any time point over the course of 2 years though there 
was an improvement in sexual function as well as increased 
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serum free testosterone, total testosterone, and FSH (91). 
El Bardisi et al. was able to demonstrate improvement 
in sperm concentration in those that were oligospermic 
or azoospermic prior to sleeve gastrectomy (P<0.05) 
along with significant increases in serum testosterone  
(P<0.001) (92). In a prospective double-armed study 
comparing semen parameters in men undergoing gastric 
bypass versus non-operative management, Samavat  
et al. demonstrated improvements in progressive/total 
sperm motility and number; however only semen volume 
and viability were found to have sustained significant 
improvements (P<0.05) after surgery (93). 

As the prevalence of male obesity continues to rise, it 
is clear that there is a link between obesity, derangements 
of sexual hormones and semen parameters. However, the 
precise etiology is not well established and still requires 
considerable research. In their review, Meldrum et al. 
suggest that epigenetic studies may help us arrive to an 
enhanced understanding of the consequences of obesity 
on reproductive health (94). While associations between 
BMI and male infertility are currently being established, 
expanding our knowledge of the implications of obesity, as 
a disease, should prove to aid our ability in guiding these 
patients through the hopeful process of conceiving a child. 

Hypogonadism and varicocelectomy

Despite the fact that over 35% of subfertile males have an 
identifiable varicocele (95), the notion that varicocelectomy 
may improve hypogonadism remains controversial with 
conflicting results regarding improvement of serum 
testosterone status-post surgery (96).

Hsiao et al. discovered that microsurgical varicocelectomy 
resulted in significant increases in serum testosterone levels 
regardless of the grade of the varicocele. In this retrospective 
study, 83% of men experienced a mean improvement in 
testosterone of 109.1±12.8 ng/dL after a mean follow-
up of 7 months (97). These results corroborated the 
results of study by Zohdy et al. that found significant 
improvements in serum total testosterone levels (P<0.0001) 
after varicocelectomy. The mean improvement in serum 
testosterone in these patients was 71±35.6 ng/dL (98). In a 
meta-analysis of seven combined studies and 712 patients, 
Chen et al. discovered that males experienced a significant 
improvement (P<0.00001) in mean serum testosterone 
after undergoing a varicocelectomy. Interestingly, this 
improvement was significantly more pronounced in 

hypogonadal males compared to eugonadal or untreated 
males (P<0.00001). Whether these improvements in serum 
testosterone levels translate to improved symptoms in 
hypogonadal men is not well-established.

It does appear that varicocelectomy has desirable effects 
on semen parameters and testosterone levels; however, 
the indication of varicocele correction in the setting of 
hypogonadism is still not durably established without more 
randomized-control trials being done. 

Growth hormone (GH)

In development, GH is important in the timing of  
puberty (99) and gonadal size (100). GH and its mediator 
insulin-like growth factor-1 (IGF-1) are thought to have 
gonadotropic effects, although the exact mechanisms are 
unclear. A series of studies of azoospermic men have shown 
that GH secretion in response to various stimuli such as 
arginine, clonidine, GHRH may be impaired in infertile 
men (101-103). Men with abnormal sperm parameters also 
have lower levels of serum IGF-1 compared with men with 
normal sperm parameters (104). 

In animal studies, treatment with GH improves 
spermiogenesis. GH-deficient rats that are treated with GH 
show improvements in sperm concentration, morphology 
and motility (105). The spermatozoa of bulls treated with 
GH have improved motility after freezing and thawing and 
have higher rates of artificial insemination (106). However, 
the potential fertility benefits of GH in human subjects have 
not yet been demonstrated in large randomized trials. 

A small observational study of ten men with idiopathic 
oligospermia (<10 million/mL) found that recombinant 
GH therapy may increase sperm concentration and total 
motile spermatozoa (107). Unfortunately, this result was 
not reproducible by Lee and colleagues who found no 
difference in sperm count in response to subcutaneous GH 
injections (108). Ovesen et al. treated nine asthenospermic 
and nine oligospermic males with GH for 12 weeks. Sperm 
motility was increased during the treatment period for both 
groups but there were no improvements in sperm count 
during treatment. 

The small size and observational nature of these studies 
preclude our ability to make recommendations regarding 
the use of GH in treatment of male fertility. Thus far, it 
appears that GH may favorably affect sperm motility in 
patients with asthenospermia, but further investigation is 
needed.
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Conclusions

Present literature regarding the endocrine management 
for male infertility lacks rigorous data to provide useful 
tools for the urologist’s armamentarium. That said, a few 
overarching themes exist. Modulations in sex hormone 
levels may improve semen parameters in the appropriately 
selected patient and agents such as SERMS, AIs and HCG 
are generally well tolerated. Correction of PRL, thyroid 
and GH levels may help in those that have abnormalities in 
semen parameters pertaining to those specific hormones. 
Obesity negatively affects fertility through multiple 
mechanisms and is an area of great potential for a growing 
number of patients. The desired outcome of pregnancy 
for the infertile couple is difficult to measure as a direct 
outcome of endocrinologic intervention. However, this 
must be attempted in multicenter controlled-randomized 
trials in order to appropriately characterize the true 
potential of our interventions.
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