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Introduction

Kidney disease is associated with substantial morbidity 
and mortality, emphasising the importance of diagnosis 
and monitoring. Establishing the presence of kidney 
disease can be difficult, due to the many aetiologies, and 
the assays’ ability to identify the disease at the earliest 
possible occurrence. The cause may be pre-renal, as seen 
with hypovolaemia; intrinsic renal disease, such as diabetic 
nephropathy; and post-renal, due to an obstruction, such 
as benign prostatic hyperplasia. To this end, many different 
biochemical markers exist, predominately in blood and 
urine, which can be used as markers of renal function or 
renal injury. Other markers may also be measured in kidney 
disease in order to assess the effect of kidney function on 
pathophysiological processes.

Some markers of renal function are used to determine 
glomerular filtration rate (GFR). Despite the kidney 
performing a wide array of functions, GFR is considered 
to be a robust indicator of renal function (1). It is defined 
as the volume of plasma that can be cleared of a particular 

analyte per unit time. The ideal marker of GFR is a 
substance that is endogenously produced by the body at 
a relatively fixed rate, freely filtered at the glomerulus, 
without being secreted or reabsorbed by the tubules, and 
does not undergo extrarenal elimination (2). For example, 
urea is seen as a poor marker of GFR, as it is produced 
at variable rates, undergoes marked reabsorption by the 
tubules, and its level is influenced by many other conditions, 
such as liver disease (3).

The kidneys are responsible for many roles essential 
to life, such as filtering the blood of metabolic wastes 
and toxins, endocrine functions, and maintaining the 
composition of the extracellular fluid (ECF). Assessing these 
functions individually can be difficult and expensive, so a 
versatile marker of kidney function is desirable. Creatinine 
is used to stage chronic kidney disease (CKD), along with 
urine albumin content if the abnormalities have persisted for 
longer than 3 months (4), and acute kidney injury (AKI) (5).  
Exogenous substances, such as inulin and radioisotopic 
markers, provide the most accurate estimation of GFR 
(6,7), but have a number of disadvantages; they are time 
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consuming procedures, not routinely available, and possible 
radiation exposure (8). An endogenous marker that can 
circumvent these limitations is desirable.

Plasma biomarkers of renal function

These are markers that can be measured in a plasma (or 
serum) sample in order to give a numeric value that either 
directly indicates renal function, or can be inserted into a 
formula that estimates a parameter related to renal function, 
such as estimated GFR (eGFR). 

Creatinine

Creatinine is the most widely available and commonly used 
biomarker of renal function. It is derived from creatine, 
which is used in muscles as a quick-acting store of energy. 
Creatine undergoes spontaneous, irreversible conversion 
to its anhydride form, creatinine. While creatinine is freely 
filtered and minimally reabsorbed, 20–30% is also secreted 
by the proximal tubule (9), thus overestimating the creatinine 
and underestimating the eGFR, but this is somewhat offset in 
the Jaffe method by the non-creatinine chromogens (Table 1).  
In addition to these multiple methodological interferents, a 
further limitation of using creatinine to determine GFR is 

evidenced by the curvilinear relationship between creatinine 
and GFR, which makes it prone to not being able to detect 
mild to moderate reductions in GFR clearly (1)—if the 
reference interval of creatinine is 50–100 µmol/L, and a 
patient has an initial result of 50 µmol/L and follow-up 
result of 100 µmol/L, there GFR will have halved, despite 
their creatinine being within the reference interval. This 
emphasises two key points regarding creatinine—eGFR 
should be used where possible to track renal function (see 
formula section), and comparing a patient’s values to their 
previous values is more important than comparing a patient’s 
values to a reference interval.

The most widely used method to determine creatinine 
level is the Jaffe reaction and its variations (14), based on 
the detection of colour change when creatinine reacts 
with alkaline picrate. Whilst it is relatively inexpensive 
and the most widely used, it is liable to a number of 
common interferents, such as ketones (positive interferent) 
and bilirubin (negative interferent) (15), refer to Table 1. 
Furthermore, these interferents are often very difficult to 
remove without compromising the specimen. Analysing 
platforms used in the laboratory use aqueous calibrators 
that do not have consistent levels of these interfering 
chromogens in them, creating biases between laboratories 
and instruments of up to 20% (16).

Other  methods  used  to  de termine  c rea t in ine 
concentration include the various enzymatic methods, and 
chromatographic methods. Enzymatic methods, typically 
used in point of care testing, are routinely more expensive, 
despite being less associated with interferents (although 
not immune) than the Jaffe method (17). They typically 
use hydrogen peroxide in their reactions, so may be liable 
to interference from an antioxidant, such as vitamin C. 
Chromatographic methods are more accurate than the 
Jaffe methods, but are not widely available, have a long 
turnaround time, and require specialised instrumentation 
and labour. The differences between methods and between 
calibrators, and patient samples (non-commutability) limits 
the transference of results between laboratories.

Cystatin C 

Cystatin C is a marker of renal function that offers 
potential advantages over creatinine. It is a small protein 
(approximately 13 kDa) produced by all nucleated cells, 
so is less dependent on muscle mass, although it may be 
increased in hyperthyroidism, corticosteroid use, and rapid 
cell turnover (18,19). Cystatin C is typically measured 

Table 1 Creatinine interferences using the Jaffe method

Creatinine interferences

Substances causing positive creatinine interference in the 
Jaffe reaction

Ascorbic acid (10)

Pyruvate (10)

Protein (10)

Glucose (10)

Creatine (10)

Various cephalosporins (10)

Acetoacetate (11)

Fluorescein (12)

Substances causing negative creatinine interference in the 
Jaffe reaction

Dopamine/L-DOPA/methyldopa (13)

Bilirubin (10)

Haemoglobin F (10)
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using either a turbidimetric or nephelometric immunoassay 
technique. The method for cystatin C typically has less 
interferences associated with it, relative to the creatinine 
methods, but being an immunoassay, is still potentially 
liable to heterophilic antibodies (20). Nephelometric and 
turbidimetric techniques are also interfered by turbidity 
of the assay, such as in hypertriglyceridaemia (21). The 
method is automated, and although many times more 
expensive to run than creatinine, it is cheaper than other 
routinely available analytes, such as 25-hydroxyvitamin 
D or B-type natriuretic peptide (22). Cystatin C values 
between assays are not standardised, so values cannot be 
compared between methods (23). While studies are yet to 
conclusively demonstrate a clinical benefit with routine 
testing of cystatin C over creatinine, cystatin C may have 
clinical utility in certain clinical scenarios, such as patients 
with conditions affecting muscle mass, and in patients with 
eGFR values between 60–90 mL/min/1.73 m2 without 
albuminuria, in order to utilise it as a more sensitive marker 
for CKD. Due to its shorter half-life, serum levels of 
cystatin C also change more quickly than creatinine (24). 
Cystatin C is able to detect AKI earlier than creatinine in 
critically ill patients (25).

eGFR

eGFR can be calculated with the use of multiple formulas, all 
associated with their own potential setbacks. These typically 
use endogenous biomarkers, and adjust for certain patient 
variables such as weight (eGFR increases with weight if the 
creatinine of cystatin C levels remains constant), gender 
(men have a higher eGFR than women if the creatinine 
or cystatin C level is the same), age (eGFR decreases with 
age), and race (adjustments may be needed depending 
on race) (26). Since these formulas principally rely on 
creatinine or cystatin C, any potentially incorrect results 
will also produce errors in eGFR calculation. Historically, 
the Cockcroft-Gault equation was used to assess renal 
function, but its use has been limited these days to assisting 
with medication dosing initiation and adjustment (27,28). 
Its use has been superseded in the laboratory by equations 
derived from studies linking creatinine concentration, along 
with gender and age, to eGFR, corrected for body surface 
area. The Modification of Diet in Renal Disease formula 
(MDRD) was recommended for use in laboratories until 
2012, when guidelines suggested switching to the CKD-
EPI formula (29). The MDRD formula was derived from 

data using patients with established kidney disease, which 
was not applicable to patients with healthy kidney function, 
and as a result, underestimate eGFR in patients with a 
normal eGFR >90 mL/min/1.73 m2 (30). The CKD-EPI 
formula has found to be more accurate across the range of 
eGFR (28,30). Limitations of these formulas include that 
they can only be used in adults greater than 18 years old and 
racial differences may exist (29,31). The Schwarz formula is 
a potential eGFR calculator that can be used in a paediatric 
population, although care may be needed in its application 
to certain ethnic groups (31,32). Despite this, there are 
still potential limitations to the use of eGFR to assess renal 
function. Using eGFR equations can be problematic in 
AKI, as the equations assume a steady state of creatinine (23).

A number of other emerging serum and plasma 
markers may offer clinical value, such as beta-trace protein 
(prostaglandin D2 synthase) (33), symmetric dimethyl 
arginine (34), alpha-1-microglobulin (A1M) (35), and beta-
2-microglobulin (36). Creatinine clearance, which requires 
a timed urine collection, urine creatinine and corresponding 
plasma creatinine, which is an inexpensive alternative to the 
eGFR, but has its own limitations, such as inconvenience 
for the patient with collection, and inaccuracies in the urine 
collection time (1).

Urinary biomarkers of kidney disease

Urinary biomarkers offer potential advantages over blood 
biomarkers due to the first manifestations of kidney injury 
appearing in the tubular cells, and subsequently the urine 
in the lumen (25). They are therefore more sensitive to 
changes in renal function, typically showing abnormal 
results within the first day of renal compromise. 

Neutrophil gelatinase-associated lipocalin/lipocalin-2 
(NGAL)

NGAL can be measured in both plasma and urine. The 
potential advantage of urine is that acute kidney damage 
results initially in the damage to renal tubules (25). This 
addresses one of the major limitations of serum creatinine, 
which does not increase to a level reflective of the renal 
impairment in the early stages (8). NGAL exists in many 
tissues, including the kidney. In animal models, it is 
upregulated by the kidney very early on after the onset of 
kidney injury (37). However, it is typically low in patients 
with stable CKD. Urinary NGAL exists in multiple 
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forms, depending on whether it is released from tubule 
cells or neutrophils in the circulation. This contributes 
to the variation between different assays, as the different 
immunoassays use different antibodies to detect the 
NGAL. The monomeric form is released by the damaged 
renal tubules, while the dimeric form is the major form 
released by neutrophils. Hence, it is this monomeric form 
that correlates most closely with GFR (37). This requires 
specific immunoassays, as systemic release from neutrophils 
may cause increases in NGAL levels independently 
of kidney injury. In addition, leucocyturia also has the 
potential to cause significant elevations in urinary NGAL. 
Patients over 60 years of age have been found to have 
slightly higher urinary levels compared to younger patients, 
as have women compared to men, even when creatinine 
ratio is determined (38). This compromises the utility of 
plasma NGAL in detecting AKI in patients with severe 
sepsis. Various assays exist for the measurement of NGAL 
in urine and plasma, including chemiluminescent, particle 
enhanced turbidimetric, and enzyme linked immunosorbent 
assay (ELISA) methods (39).

Kidney injury molecule-1 (KIM-1)

KIM-1 is another marker of AKI that has potential clinical 
utility when measured in plasma and urine. It has been 
identified as an indicator of AKI, with urinary KIM-1 
showing significant elevation within 24 hours, well before 
significant increases in serum creatinine are noted (40). This 
is due to KIM-1 being a direct marker of renal injury, rather 
than its relationship to renal function and filtration (41). 
Elevation of KIM-1 particularly associated with ischaemic 
kidney injury (42). It is present in damaged proximal tubule 
apical membranes, and is cleaved by metalloproteinases 
into the lumen. It is not present on the proximal tubule 
epithelial cells in the absence of disease, so levels in the 
urine are correlated with renal tubule damage. Urinary 
KIM-1 also has utility in CKD, with levels correlating to 
fibrotic changes in the kidneys (40). KIM-1 measurement in 
the blood may also have utility, as injured tubule cells lose 
polarity, and the cleaved KIM-1 may enter the circulation. 
Indeed, raised levels of KIM-1 in the blood have been 
associated with acute kidney disease due to renal ischaemia, 
toxic nephropathy, and diabetic nephropathy. No significant 
interference to KIM-1 has been identified (42,43). Methods 
to measure KIM-1 include electrochemiluminescent 
immunoassay (44) and ELISA (45).

Urinary interleukin-18 (IL-18)

Urinary IL-18 is a urinary marker of AKI. It is expressed by 
monocytes, macrophages, and proximal tubular epithelial 
cells, and may be associated with increased infiltration of 
white blood cells into the renal parenchyma (46). Its utility is 
in identifying acute tubular necrosis (ATN), being particularly 
elevated in this disorder, while not being markedly elevated in 
other renal disorders (47). It should also be noted that IL-18  
may also be raised in a number of nonrenal pathologies, such 
as myocardial infarction and pulmonary disease (46). Recent 
studies have looked at the combination of urinary KIM-1 and 
IL-18 to assess their predictive ability for AKI in combination 
(40). Methods used to measure IL-18 include immunoassays, 
such as ELISA (46).

Tissue inhibitor of metalloproteinases 2 (TIMP2) and 
insulin-like growth factor binding protein 7 (IGFBP7)

TIMP2 and IGFBP7 are involved in the cell cycle, both 
being involved in cell arrest during the first gap phase (G1), 
with their upregulation coinciding with the early stages of 
cell injury (48). They are a relatively new urinary biomarker 
of kidney injury, and thus lack a lot of the evidence of other 
biomarkers. The performance of these biomarkers is better 
when they are combined to form the product (TIMP2 × 
IGFBP7), with TIMP2 found to be a better marker of in 
patients with AKI induced by sepsis, and IGFBP7 superior 
in post-surgery patients (25). Studies have highlighted the 
ability of the TIMP2 and IGFBP7 urinary biomarkers to 
identify AKI within hours of occurring (49). However, 
further research is needed to further define the utility of 
this earlier diagnosis in the clinical setting. Indeed, studies 
suggest that this earlier recognition of AKI may not limit its 
progression. A further limitation of the (TIMP2), (IGFBP7) 
product is that it is increased in diabetics, and further 
research is needed to fully support its implementation in a 
clinical setting (50). TIMP2 and IGFBP3 can be measured 
in urine with a sandwich immunoassay technique (51).

These urinary markers are associated with a number of 
associated limitations. They are generally more expensive 
than their routinely available counterparts. In addition, 
they are not routinely available across analytical platforms. 
Furthermore, they are not standardised between different 
assay manufacturers and laboratories, so results are not 
comparable unless done at the same laboratory with the 
same method.
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Urinary albumin and protein

Urinary albumin and protein have the potential to both 
indicate the presence of kidney disease, and cause kidney 
disease. Debate still exists over whether to perform 
albumin or protein levels in urine (52). Looking just for 
albumin risks missing the presence of tubular or overflow 
proteinuria, but albumin has been found to correlate more 
closely with kidney disease progression in diabetes (53),  
as well as glomerular disease in hypertension (54). Often, 
the choice of which to use will come down to the clinical 
scenario. For example, albumin should be used in diabetes 
mellitus to assess for microalbuminuria, while proteinuria 
is recommended in preeclampsia workup (55). Unless 
a total protein level is specifically required, urinary 
albumin levels are seen as clinically superior (56). It must 
be noted that there are causes of albuminuria other than 
kidney disease, such as upright posture, heart failure, and 
urinary tract infection. Thus, spot urines upon waking 
are recommended, with a urinary albumin:creatinine 
ratio used. Note there are gender specific cut-offs, and 
positive results should be confirmed, with two out of 
three positive results within a month being consistent 
with albuminuria (8). In the laboratory, urinary albumin is 
typically analysed using a sensitive immunonephelometric 
method, turbidimetric, although dipstick, electrophoresis, 
and liquid chromatography do exist (57). Differences exist 
within and between methods, in part due to the presence 
of different fragments and modifications of albumin being 
detected heterogeneously by different assays (58). Protein is 
potentially analysed using a number of methods, including 
colorimetric, electrophoretic, or nephelometric assays (59). 
Like urinary albumin, differences in results exist between 
these methods, even related methods like the dye-binding 
assays Coomassie Brilliant Blue and Pyrogallol Red-
molybdate, highlighting the need for a common calibrator, 
or standardisation program, between methods (57).

Proteins less than 5 kDa are typically completely 
filtered, proteins larger than this but smaller than albumin  
(<66 kDa) are typically partially filtered, and proteins larger 
than albumin are typically retained (60). Small proteins 
such as A1M, is mostly filtered at the glomerulus, but 99% 
is reabsorbed by the proximal tubule cells in health (61). 
If tubular function is compromised, the A1M:creatinine 
ratio in urine will increase. Albumin, while also typically 
99% reabsorbed by the proximal tubule cells in health, 
is also largely prevented from entering the glomerular 

filtrate in health, being retained by the glomerulus. Its 
presence in urine, typically expressed as its creatinine ratio, 
indicates significant glomerular damage. Urine transferrin 
can also be used to this effect (62). Urinary analysis for 
immunoglobulins may also be done as a marker of distal 
tubule leakage due to infection or inflammation, although 
severe glomerular proteinuria or haematuria may also cause 
an increase (63). A protein selectivity index may be used 
as a tool to see where the injury is in the nephron, but is 
generally seen to not be useful (8).

The presence of protein in urine is not linked exclusively 
to kidney disease. Overflow proteinuria occurs when 
levels of small proteins in plasma are filtered and exceed 
the tubules’ capacity for reabsorption. Such proteins may 
include myoglobin (seen with muscle damage), Bence Jones 
proteins (seen in plasma cell neoplasms and amyloidosis), and 
lysozyme (seen in leukaemias) (64). However, the presence 
of these proteins in high concentrations within the tubule 
lumen is linked to kidney disease. In healthy individuals, the 
predominant protein found within urine is the acidic protein, 
Tamm-Horsfall glycoprotein, which is secreted by the tubules.

Markers of renal tubular function

Damage of the renal tubulointerstitial component is 
important to consider in renal pathophysiology, as 
it typically manifests without significant glomerular 
damage, increased serum creatinine, or reduced eGFR, 
and are evidenced through overt proteinuria (65). Indeed, 
chronic renal disease has been found to be more closely 
correlated by the extent of tubulointerstitial disease than 
glomerular function markers (66). The various causes 
of tubulointerstitial disease include various medications, 
heavy metals, metabolic disorders, renal infections, and 
autoimmune diseases (67). Since the injury affects the 
tubules directly, markers are seen in urine.

A1M

A1M is a lipocalin protein freely filtered at the glomerulus, 
due to its molecular weight of 26 kDa (68). It is almost 
completely (99%) reabsorbed at the proximal convoluted 
tubules, so high levels in urine suggest proximal tubular 
injury or compromised function (65). Its stability at 
low pH seen in urine adds to its utility as a marker of 
renal tubular injury. It is typically determined using an 
immunonephelometric method (69).
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Retinol binding protein (RBP)

RBP is a 21 kDa protein that is involved in vitamin A 
transport systemically, and is otherwise cleared by kidney 
when vitamin A and transthyretin are not bound. It 
is broken down and reabsorbed by the proximal renal 
tubule cells in health (65). Studies have not shown that 
RBP has any superior clinical utility to A1M (70,71). 
Immunonephelometric methods are typically used to 
quantify RBP.

Beta-2-microglobulin

Beta-2-microglobulin is a protein of the light chain portion 
of the major histocompatibility complex class I, it is freely 
filtered at the glomerulus, with a molecular weight of 
11.8 kDa. Elevated urinary levels are linked to proximal 
tubular injury (72). It has particular clinical utility in 
detecting tubular injury related to heavy metal exposure. 
Immunometric methods are typically used. Care must 
be taken to ensure the specimen is not exposed to acidic 
conditions (pH <6.0) for long periods (70).

N-Acetyl-β-D-glucosaminidase

N-Acetyl-β-D-glucosaminidase is a lysosomal enzyme 
found at high levels in the proximal tubule, and is released 
into urine upon injury to the proximal tubule cells (73). 
Methods to determine levels include an enzymatic assay (74). 
While it is a sensitive marker of tubular injury, it has yet to 
be shown to have an advantage over other markers of renal 
tubular function (8).

Glutathione-s-transferase (GST)

GST is a cytoplasmic enzyme that occurs at a high level in 
the renal tubular cells, and leaks out with damage. One of 
the possible utilities in using urinary GST was identifying 
the α-GST isoenzyme (proximal renal tubule specific) and 
π-GST isoenzyme (distal renal tubule specific) to localise 
the tubule defect, but studies have not shown a clear 
demarcation for specific tubule localization (75). Enzymatic 
immunoassay methods may be used to determine their 
levels.

Liver-type fatty acid binding protein (LFABP)

LFABP is a 15 kDa protein that is produced by renal proximal 

tubules, and its expression is proportionally increased in 
tubulointerstitial disease (65). Methods to measure LFABP 
are include immunoassays, such as ELISA (66).

Urinary cystatin C

Urinary cystatin C, in contrast to its role as a marker 
in serum of glomerular function, has potential utility 
as a marker of tubular damage, with urinary elevations 
consistent with tubular dysfunction, as compared with 
normal levels seen in glomerular dysfunction (76). Its level 
in urine is also correlated with AKI (77).

Most of these markers in urine are typically offered with 
24-hour collections, or in spot collections. Twenty-four-
hour urines may require an additive to preserve the analyte 
during the collection period. Spot urines may be used 
to offer faster turnaround, preserve analyte stability, and 
are typically easier for the patient. When spot urines are 
used, the analyte is typically presented as its ratio to urine 
creatinine, as urine creatinine excretion is typically constant 
between days in an individual, and can differentiate between 
dilute and concentrated urine specimens. A setback in using 
urine creatinine ratios is that creatinine is dependent on 
muscle mass, so creatinine excretion will differ between 
genders, body habitus, and extremes of age.

Indirect markers of renal function

Many biochemical analytes are affected by changes in renal 
function, whether it is due to reduced production by the 
kidneys, reduced clearance, or altered physiology. Some 
biochemical markers are particularly useful to monitor 
in renal disease, due to their diagnostic, therapeutic, or 
prognostic utility.

Fibroblast growth factor 23 (FGF23)

FGF23 is a phosphatonin molecule produced predominantly 
by osteoblast bone cells.  It is stimulated by PTH , 
phosphate, calcitriol, and a cleavage product of Klotho (78). 
FGF23 promotes renal phosphate wasting by binding to 
the Klotho-FGF receptor complexes in the proximal renal 
tubule. This promotes phosphate wasting. It also suppresses 
1-alpha-hydroxylase in the kidney, suppressing calcitriol 
production and hence phosphate absorption from the 
gastrointestinal system. FGF23 increases very early on in 
CKD, and increases to proportionately greater levels with 
the degree of CKD present. This increase is independent 
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of FGF23 clearance by the kidneys (79). FGF23 is 
typically measured using an automated chemiluminescent 
immunoassay. Care must be taken when results are 
compared between different testing platforms, as some will 
have antibodies to the intact FGF23 (iFGF23), while others 
will have antibodies directed against the C-terminal peptide 
fragments of FGF23 (cFGF23) (78). Result correlation 
between these two assays is weak. FGF23 may be elevated 
by many nonrenal conditions such as fibrous dysplasia, 
tumour-induced osteomalacia, and hereditary rickets (80).

Many  b iochemica l  parameter s  a re  commonly 
abnormal in renal disease, reflecting the kidney’s role 
in functions other than plasma filtration. Some of these 
biochemical parameters may be increased, such as uric 
acid, chromogranin A, and amylase; while others may be 
decreased, such as calcitriol, erythropoietin, and ionised 
calcium. Some biochemical parameters are typically 
monitored in renal disease, including those seen in Table 2. 

Conclusions

Markers of kidney disease tend to be restricted by a few 
common limitations. Firstly, many are not widely available, 
with testing being limited to certain methods, analysers 
and manufacturers. This limits their utility in being used 
to routinely monitor kidney disease. In contrast to most 
analytes, creatinine is widely available, and relatively specific 
for renal function. This is in contrast to the urinary markers, 
many of which are new and unfamiliar to clinicians, 
relatively costly, and lack the demonstrated clinical 
benefit over current methods to fully justify their wide 
implementation. Another difficulty is the heterogeneity 
between the different markers and their ability to detect 
different pathologies and influence outcomes. Diagnosing 
AKI or CKD stage may be done differently between the 
studies, limiting the ability to directly compare different 
biomarkers and studies to one another.
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