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Introduction

Kidney cancer is of the fifteen most common cancers in 
both men and women worldwide, with roughly 400,000 new 
diagnoses in 2018 (1-3). It also accounts for approximately 
175,000 deaths per year worldwide (2,4). There are many 
types of kidney cancer, including renal cell carcinomas 
(RCC), urothelial carcinomas, sarcomas, and Wilms 
tumors, where RCC make up 85% of diagnoses (5). To 
enhance clinical tools and be predictive of patient responses 
to treatments, preclinical models are often used. Currently, 
human cancer cell lines are often used for cancer growth 
hypothesis development and testing and in vivo drug testing 
(6,7). However, the minimal predictive capacity relative to 
clinical trials makes them less effective than required for 
some studies (8). A more advanced and frequently used 

technique that overcomes this is to utilize patient-derived 
xenograft (PDX) models in animals. 

The PDX model is not new but has consistently 
demonstrated correlation between responses found in 
the model system and the clinic (8). The first successful 
heterotransplantation of a human tumor sample into 
mice occurred in 1969, using colon cancer and athymic 
nude mice (9). However, this model has been expanded 
to include a variety of cancer types, such as colorectal, 
melanoma, pancreatic adenocarcinoma, lymphoma, 
sarcoma, gastric, RCC, and many more (10). The model 
offers many advantages, such as the ability to maintain 
histology, quick procedure time, and feasibility for 
researchers. The underlying hypothesis of the PDX model 
is that it will retain key characteristics of the donor tumor 
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through successive mouse-to-mouse passages (8). PDX 
models better preserve the genomic integrity and tumor 
heterogeneity observed in patients better than cell line 
models (11).

Prevalence/importance

RCC account for 2–3% of all malignant diseases in adults. 
This disease is more prominent among men, particularly 
those in their sixties and seventies (12). The highest 
incidence rates are in Northern and Eastern Europe, 
North America, and Australia. Some of the most common 
risk factors include smoking, obesity, hypertension, and 
maintenance dialysis (13). RCC occurs predominantly in 
male patients with a median age of 64 years old at diagnosis. 
RCC is the most common solid neoplasm of the adult 
kidney and has a high potential for developing metastatic 
spread (14). Approximately 25–30% of RCC patients have 
metastatic disease at presentation, and 30–40% of patients 
develop metastases after the initial diagnosis. The 5-year 
survival rate of patients with metastatic disease is less than 
10%, partly because RCC metastases become resistant to 
current therapies (15,16).

Among the five types of kidney cancers, the most 
prominent form, RCC, contain three main sub-types—
clear cell RCC (ccRCC), papillary, and chromophobe, 
plus approximately 13 other subtypes (17). ccRCC are the 
most common sub-type, and account for roughly 70% of 
all kidney cancers (1,12,17-19). It can be caused by the 
loss or mutation of the von Hippel-Linadu (VHL) tumor 
suppressor gene (12,18,20-22). ccRCC is identified by a 
clear cytoplasm with nested clusters of cells, surrounded by 
a dense endothelial network (18). Papillary RCC (pRCC) 
are the second most common type of RCC (12,18,23). 
pRCC can present as either a sporadic or inherited disease 
due to a high incidence of chromosome 7 trisomy or 
tetrasomy (24). Histologically, pRCC display basophilic 
cellular cytoplasms and can have foamy histiocytes (12,18). 
The chromophobe RCC are rare and are due to complete 
chromosomal loss, such as of chromosomes 1, 2, 6, 10, 
13, 17, and 21 (12,18). This carcinoma is characterized by 
cells with mostly empty cytoplasms, perinuclear clearing, 
low mitotic rate, and a low risk of developing metastatic 
tumors (12,18). 

Recently, another type of RCC, clear cell papillary 
RCC, have been identified. These types of RCC have been 
shown to be associated with end-stage renal disease. They 
often present as a solitary mass and may exist with other 

renal tumors. The tumor is usually well circumscribed with 
variable architectural patterns. The tumor cells have clear 
cytoplasms and the nuclei are characteristically situated 
away from the basement membrane in a linear fashion (25).

Xenograft models 

The development of small animal models that can mimic 
human RCC treatment responses is important in order 
to evaluate novel clinical drugs or test new therapeutic 
treatments (26). The following will discuss the various types 
of xenograft models.

Traditional xenograft models 

Traditional xenograft models are those that utilize 
established cell lines for implantation into animals (3). 
Cell lines are a cost-effective method of studying cancer, 
due to the indefinite lifespan, ease of maintenance, genetic 
manipulability, and similar gene expression patterns with 
primary human tumors (27). They are used to study the 
effects of genetic manipulations or of drug treatments 
on tumor development. They are also often transfected 
with fluorescent or bioluminescent expression proteins to 
continuously monitor growth with non-invasive imaging 
machines. Overall, they provide an effective method of 
studying tumor growth in vivo (8).

Some of the most commonly studied RCC cell lines 
include RP-R-01, RP-R-02, ACHN, Caki-1, Renca, and 
OS-RC-2 (28-33). Like other cell lines, these originated 
from different RCC samples, and therefore have various 
morphologies. While these models are useful for measuring 
responses to treatments, there are limitations. One main 
limitation is the ability to predict activity of specific cancer 
types in clinical trials (8). There is also an issue with the 
selection of cell lines available—most established cell lines 
are from aggressive tumors and are not as representative 
of the complex tumor heterogeneity seen in the clinic (8), 
and cell line modes are often unable to successfully capture 
tumor heterogeneity (34).

PDX models

PDX models are created when a patient’s cancerous tumor 
is implanted into immunodeficient mice (Figure 1) (10). A 
critical requirement for any xenograft model to have clinical 
relevance is that it should faithfully replicate the original 
patient tumor for subsequent studies (35).
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Methods

The type of mice that are used in PDX models are non-
obese diabetic (NOD) severe combined immunodeficiency 
(scid) mice. The use of scid mice helped establish the PDX 
model, as they have a depressed innate immunity, including 
lack of T and B cells, reduced NK cell and macrophage 
activity, abnormal dendritic cell development, and lack of 
hemolytic complement (36). The immunocompromised 
characteristics are key, as they do not reject implanted 
human cells (37). NOD/scid mice are more receptive of 
primary solid tumors than nude or scid mice. 

When establishing a new mouse model with a patient 
sample, pieces of primary or metastatic solid tumors, 
maintained as tissue structures, are collected by surgery or 
biopsy procedures. If solid tissue samples are unavailable, 
cell suspensions from blood or from digestion of tumors 
into single-cell suspensions can be used (Figure 1) (10).  
These samples are ready to be implanted but can often 
be co-injected with other cell types or enhancers. 
Some tumors are combined with basement membrane 
extracellular matrix proteins (such as Matrigel) which 
encourage the growth of tumors (38). Some studies have 
reported co-injecting tumors with fibroblasts, stromal 
cells, or endothelial cells (11,39,40).

There are two main methods of implantation used for 
the PDX model: heterotopic and orthotopic. Heterotopic 
implantation is a common and quick method and provides 
an easy way to track tumor development (10). The 
most common forms of heterotopic implantation are 
subcutaneous (usually on the dorsal region of mice) and 
intravenous (11,41,42). Orthotopic implantation into the 
organ of origin of the tumor is a slower process and may 
require ultrasound examinations or bioluminescent imaging 
to confirm tumor growth (37). Renal cancers, such as 
primary patient tumor samples, can be implanted into the 
kidney or under the renal capsule, to increase engraftment 
success rates (Figure 1) (21,34).

Advantages

The PDX model offers many advantages for translational 
oncological studies (Table 1). The process of implantation is 
minimally invasive for the animal and can be done directly 
from digested portions of real human samples. This allows 
for examination of the effects of various treatments and 
conditions from a single biopsy (43). Moreover, samples of 
the implanted tumor are viable for subsequent passages of 
the tumor to new mice (44).

One of the most easily identifiable advantages of the 

Figure 1 Patient-derived xenograft models for renal cell carcinoma.
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PDX model is the ability of tumors to display similar 
heterogeneity in mice as they do in humans (30). This 
allows for more specific predictions in clinical models, and 
for fidelity of the results. Moreover, cytogenetic analysis of 
the models demonstrates significant levels of conservation 
of the genetic composition of patient tumors, adding to 
the confidence of the model (45). The preservation of the 
histology, gene expression, DNA copy number alterations, 
mutations, and treatment responsiveness in trials establishes 
the PDX model as a good option for renal cancer mouse 
studies (34). Researchers can be confident in their models 
as tumor growth occurs in a physiological relevant setting 
of oxygen, nutrients, and hormones (11). Orthotopic 
implantation methods offer the most similar environments 
to mimic human conditions, which provides a translational 
advantage (8,10). Overall, this model offers potential for 
personalized precision medicine (36).

RCC are especially well suited for PDX models (41). 
The tumors are generally large, and rarely treated with 
chemotherapy, therefore the behavior and genetics of the 
mass are similar to the original composition, and unaffected 
by exposure to DNA damaging agents (41,45). Previous 
examples of implanted RCC have demonstrated preserved 
histology and karyotypes of the patient tumors (41).

Disadvantages

While PDX models have been effective models for many 
studies, there are associated disadvantages. The ability 
to overcome these challenges could provide even more 
advanced preclinical models (Table 1).

One challenge is in the nature of NOD/scid mice. Due 
to their suppressed immune system, they are susceptible to 

thymic lymphomas, which can develop as early as three to 
four months of age. This can be problematic considering 
their already short lifespan of roughly eight to nine months. 
It should be noted, however, that males develop these 
tumors at lower rates than females, and can be preferable 
for longitudinal studies (36). Also, these mice cannot be 
used in immunotherapy experiments due to the fact that 
they lack an intact immune system. 

Another issue of the PDX model is the low engraftment 
rate. Roughly 20% of localized primary tumors are 
successfully grafted subcutaneously. When metastatic tissue 
is grafted in immunodeficient mice, there is about an 80% 
success rate for RCC (46). Similarly, the tumors might 
not metastasize the same way in mouse models as they did 
in patients, meaning there are some lost developmental 
patterns of the disease. 

A third concern with this model is the loss of the primary 
tumor’s original characteristics. Heterotopic implantation 
poses challenges, such as the potential for the primary 
tumor’s biology to be affected (41). Similarly, this model can 
experience the replacement of human tumor stroma in the 
primary grafted tumor by murine stroma after successive 
passages (46). While PDX orthotopic models may 
better mimic metastatic patterns, they present their own 
challenges. Generally, it is the more expensive and more 
difficult procedure (37).

Examples of established PDX models

Many researchers use PDX models to study the effects 
of drugs and tumor sensitivities to treatments. Alongside 
surgery, radiation therapy and immunotherapy, molecular-
targeted therapy is one of the principal treatment options 

Table 1 Comparison of traditional vs. patient-derived xenografts 

Pros and cons Traditional xenografts Patient-derived xenografts

Advantages Cell lines are cost effective (8) Primary tumor samples can be used for implantation (8)

Effective method of studying tumor growth in vivo (11) Implanted tumor is viable for subsequent passages (35)

Use to study effects of genetic manipulations of drug 
treatments and tumor development (11)

Conservation of genetic composition of patient tumors (17)

Offers the potential for personalized precision medicine (8)

Disadvantages Minimal ability to predict activity in specific cancer 
types, relative to clinical trials (11)

Expensive and more challenging procedure (8)

Majority of established cell lines are from aggressive 
tumors and are not representative of the clinically 
complex tumor heterogeneity (11)

Low engraftment rate (8)

Potential loss of the primary tumor’s original characteristics (17)



Patel et al. PDX models for RCCS160

  Transl Androl Urol 2019;8(Suppl 2):S156-S165 | http://dx.doi.org/10.21037/tau.2018.11.04© Translational Andrology and Urology. All rights reserved.

for patients with kidney cancer (47). There are currently  
7 drugs that have been approved for the treatment of all 
types of RCC (14). Some of the most common include: 
sunitinib, everolimus, cabozantinib, and temsirolimus. 
These have all been studied using PDX models. 

Sunitinib 

Sunitinib, or Sutent, is a multikinase inhibitor that has 
shown success in patients with metastatic kidney cancer. 
Various tyrosine kinase receptors within the cancer cells, 
such as vascular endothelial growth factor receptors 
(VEGFRs) 1, 2, and 3, and platelet derived growth factor 
receptor (PDGFR) alpha and beta, become inhibited, 
limiting growth and subsequent cell divisions (48,49). 
Sunitinib is also unique, as it can minimize intracellular 
blood vessel growth, reducing oxygen supply to the cancer 
cells (50-52). Worldwide, this drug is an approved first 
line treatment for metastatic RCC in patients with an 
intermediate to good prognosis (53). 

Researchers at the University of Texas Southwestern 
Medical Center and Illumina Cambridge Ltd., studied 
the drug responsiveness of RCC in a PDX model. To 
begin, 94 tumor samples were implanted orthotopically, 
to eventually form 16 stable patient-derived tumor-
graft lines, each of which was passaged at least twice. 
The histology and gene expression of these tumors were 
maintained throughout the experiment, as determined 
by both unsupervised hierarchical clustering analysis 
and bidirectional Sanger sequencing. The study began 
by implanting 20 mice with a 64 mm3 sized fragment of 
tumor for each of 8 tumor-graft lines. Drug administration 
began when the tumor sizes averaged 250–300 mm3. 
Three to five mice were allocated to one of four treatment 
groups: sunitinib, sirolimus, erlotinib, or a vehicle control. 
For 28 days, tumors were measured twice weekly. The 
amount of drug administered was adjusted based on weekly 
mouse weight variations. Overall, 122 mice were studied 
in the drug trials. It was observed that the ccRCC PDX 
model growth was substantially inhibited by sunitinib 
and sirolimus. This study also tested an investigational 
agent in clinical development, dovitinib, which may have 
shown more potent inhibition of tumor-graft growth than 
sunitinib and sirolimus (41). This finding is consistent 
with clinical responses of sunitinib (6). 

Sunitinib was initially approved by the Food and Drug 
Administration because of a high response rate (roughly 
40% partial response) but it is susceptible to resistance 

(46,50,51). Researchers in France aimed to develop a 
strategy to overcome resistance by testing if the resistance 
was transient and if it could be overcome by increasing 
the dose (31). Currently, the recommend dose of sunitinib 
for patients with advanced RCC is 50 mg orally, once a 
day, for four weeks (50,51). Two patient-derived ccRCC 
tumor-graft lines were used for this experiment. RP-
R-01 and RP-R-02 were patient tumors that originally 
responded to sunitinib treatment, but eventually developed 
drug resistance. One mm3 samples of these tumors, from 
mice that had previously had the tumor passaged to them, 
were subcutaneously implanted into control and treatment 
groups for this study (n=20). Treatment groups received 
40 mg/kg sunitinib for five days on, two days off, by oral 
gavage. Once tumors established resistance, the dose was 
increased to 60 mg/kg, and then 80 mg/kg upon secondary 
resistance. Despite dose escalation, mice did not show 
signs of drug toxicity. There were no vascular changes or 
incidence of necrosis upon histopathological assessment of 
liver tissues (31). One important finding from this study is 
the changes in expression of methyltransferase EZH2 at 
the time of resistance, which is often modified in various 
cancers (31,54). Moreover, when EZH2 was inhibited, 
there was an increase in the anti-tumor effect of sunitinib 
in vitro (31). A major challenge to improving treatment 
and management of ccRCC is resistance to receptor 
tyrosine kinase inhibitors (RTKi). However, EZH2 can be 
a target for therapeutic intervention in sunitinib-resistance 
ccRCC, as well as a predictive marker for RTKi response 
in this disease (54). 

Systemic sunitinib treatment has also been shown to 
reduce tumor dendritic cell Stat3 activity. This transcription 
factor was studied in mice injected with the cell lines,  
786-O, RCC4, and Renca. This study found that sunitinib 
inhibits tumor Stat3 and that it induces tumor cell death as 
early as one day post treatment. Thus, the effectiveness of 
sunitinib in kidney cancers was validated in this study (55). 

Everolimus 

When a patient has previously undergone treatment for 
advanced kidney cancer, and has failed to respond to 
sunitinib, a second line of treatment is everolimus (56). 
Everolimus, marketed as Afinitor, is a serine-threonine 
kinase inhibitor of mTOR, mammalian target of rapamycin 
kinase that controls cell growth, division, and cell 
metabolism (57,58). This drug was approved within the past 
ten years and is often used in conjunction with lenvatinib, a 
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multiple kinase inhibitor that works against VEGFRs 1, 2, 
and 3 (57,59).

Larkin et al. studied the use of this drug in a PDX 
model. Murine RCC, which expressed luciferase, were 
orthotopically implanted into female BALB/c mice. Tumor-
bearing mice were placed into various treatment groups: 
PBS (vehicle control), sunitinib, sunitinib then sorafenib, 
or sunitinib then everolimus. In vivo bioluminescence signal 
tracking occurred weekly, to assess tumor-derived luciferase 
activity and to determine when to switch to the second 
drug, as appropriate. Mice were treated with the second 
drug when they reached a bioluminescence signal level that 
was equivalent to the half maximal signal of the control 
group (60). As expected, the animals treated with sunitinib 
had an increasing bioluminescence signal that occurred at 
a slower rate than that of the PBS group. However, when 
animals were switched to sorafenib, the luciferase activity 
stabilized. There was a notable decrease in in vivo luciferase 
signaling upon the switch to everolimus, which suggested a 
reduction in tumor volume. Another important finding was 
that the group that later received everolimus had a reduced 
primary tumor and metastatic tumor incidence rate (60).

Cabozantinib 

Cabozantinib, marketed as Cabometyx, is a small-molecule 
tyrosine kinase inhibitor and an inhibitor of MET, and 
was approved for advanced RCC treatment within the 
past three years. MET, also known as the N-methyl-N'-
nitroso-guanidine human osteosarcoma transforming gene, 
is a proto-oncogene encoding a receptor tyrosine kinase 
c-MET for hepatocyte growth factor (HGF) (61). Similar 
to everolimus, this treatment is best suited for patients with 
advanced RCC who have previously had anti-angiogenic 
therapy (23,62). While it can be effective, it does have 
significant side effects that require a reduction in dose for 
more than half of patients (62).

Researchers at Stanford University School of Medicine 
were interested in the drug’s ability to inhibit tumor 
growth and metastasis in PDX models. This study utilized 
a new PDX model with a unique pRCC sample, which 
had a specific activating mutation of MET. The tissue 
used for this study was implanted under the renal capsule 
of immunodeficient mice and was passed through seven 
generations of mice. One unique finding from this study was 
that some mice had metastasis to the lung, which mimics 
the patient’s tumor exactly. Eventually, mice with sufficiently 
sized tumors were divided into control and treatment 

groups, where the treatment groups received 30 mg/kg of 
cabozantinib per day by oral gavage for 21 days. Overall, 
tumor volume decreased four-fold, compared to the control 
group, and MET activity was reduced (23). 

Temsirolimus and Sapanisertib 

Temsirolimus, a drug that is marketed as Torisel, is also an 
inhibitor of mTOR. One of the significant pathogenetic 
features of kidney cancers is the upregulation of hypoxia 
genes by mTOR (52,63). Temsirolimus arrests kidney 
cancer cells in G1 phase and inhibits tumor angiogenesis 
through the reduction in synthesis of vascular endothelial 
growth factor (64).This treatment has been on the market 
for roughly a decade, and was the first mTOR inhibitor 
approved for cancer therapy (63,65). Temsirolimus is 
indicated for the first-line treatment for poor prognosis 
metastatic kidney cancer (66). 

MLN0128, or Sapanisertib, is a second-generation, ATP-
competitive, mTOR inhibitor that has been shown to have 
stronger effects on tumor suppression than temsirolimus 
(67,68). mTOR is composed of two complexes, TORC1 
and TORC2, which are both inhibited by Sapanisertib (69).  
This presents the possibility of tumor cell apoptosis and 
minimizing cell proliferation. While this drug is still 
currently in phase I and II clinical trials, it promises to be 
a more potent alternative to temsirolimus. So far, this drug 
has shown success in antitumor activity for breast cancer, 
prostate cancer, B-cell leukemia, and RCCs (68). Ingels et al. 
developed a patient-derived tissue slice graft (TSG) model 
from three fresh primary RCC specimens to study the 
effects of MLN0128. The samples were implanted under 
the renal capsule into immunodeficient mice. Randomly, 
mice were treated with a placebo, temsirolimus, or, 
MLN0128. Temsirolimus was administered once a week at 
10 mg/kg by intraperitoneal injection, while MLN0128 was 
administered daily by oral gavage at 1 mg/kg. MLN0128 
consistently suppressed primary RCC growth in three TSG 
cohorts for up to 2 months, whereas temsirolimus only 
inhibited growth of TSGs in one of two cohorts tested 
before resistance developed (67).

Conclusion and future directions

Among various pre-clinical models for RCC, PDX models 
are a better choice for testing therapeutic approaches for 
patients. PDX models have been used to study different 
treatment modalities in kidney cancers. The main treatment 
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that is currently used is sunitinib. There has been extensive 
use of PDX models to study sunitinib which has allowed 
researchers to understand the mechanism by which sunitinib 
works. There have also been advances in understanding 
the effects of sunitinib on the genetic level. The second 
line treatment for RCC is everolimus. Everolimus has been 
studied in murine models and has been shown to effectively 
reduce tumor size. Other drugs that have been studied 
using PDX models include cabozantinib, temsirolimus 
and Sapanisertib. The use of PDX models allows for quick 
stratification of various treatments. Another reason why 
PDX models are used is that they are able to retain tumor 
heterogeneity in mice. Despite this advantage, current PDX 
models cannot be used to test therapies such as immune 
checkpoint inhibitor therapy.

Future models, including humanized mouse models for 
immunotherapies (70), and mouse avatar models that use 
patient-derived tumor carry mice, will identify the best 
chemotherapeutic choice for a particular cancer patient (71). 
In a recent study, RCC mouse models were first generated 
orthotopically then added allogeneic human peripheral 
blood mononuclear cells to evaluate the efficacy of antibody 
targeting the carbonic anhydrate IX protein in RCC. This 
study demonstrated that the antibody inhibited cancer 
growth by priming T-cell activity (72,73). Avatar models can 
be used to generate personalized treatment for cancer. They 
allow for the generation of individualized mouse xenografts 
and a platform for therapeutic decision making (71,73). 
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