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Introduction

Androgen receptor (AR) is a classic steroid hormone 
receptor that is critical for prostate cancer development and 
progression. In its unbound conformation, AR is located 
primarily in the cytoplasm in complex with heat shock 
proteins, cytoskeletal proteins, and other chaperones (1-5). 
These proteins also enable modulation of AR conformation 
for efficient ligand binding (6,7). When androgen binds 
AR, AR forms a homodimer, undergoes a conformational 
change, and interacts with additional proteins that facilitate 
its nuclear translocation (8-10). Once in the nucleus, 

AR binds to the androgen response elements (AREs) on 
promoter/enhancer regions, recruits coregulators, and 
forms the transcriptional machinery for AR-regulated gene 
expression (10). This AR-signaling pathway, known as 
the genomic pathway, relies on AR nuclear translocation 
and AR-DNA binding for cel l  proliferation. The 
genomic pathway is thought to occur over several hours 
and is characterized by increased expression of specific  
AR-regulated genes (Figure 1).

However, studies have shown a rapid and reversible 
AR signaling that occurs within minutes and results in 
regulation of prostate cancer cell proliferation (11-13). This 
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AR-signaling pathway, known as the non-genomic pathway, 
requires neither AR nuclear translocation nor AR-DNA 
binding. Instead, cytoplasmic AR signaling may function 
through mitogen-activated protein kinase (MAPK) signaling 
cascades, converging on extracellular signal-regulated kinase 
(ERK) activation (14,15). Treatment of AR-positive prostate 
cancer cells with 5α-dihydrotestosterone (DHT) leads to 
increased ERK-1/2 phosphorylation within 5 minutes in a 
dosage-dependent manner (13) (Figure 1).

While non-genomic AR signaling has thus far been 
shown to primarily require MAPK/ERK activation, cell 
signaling can also occur without ERK activation. Non-ERK  
pathways involve activation of mammalian target of 
rapamycin (mTOR) via the phosphatidyl-inositol 3-kinase 
(PI3K)/Akt pathway or involvement of plasma membrane, 
G protein coupled receptors (GPCRs) and the sex hormone 
binding globulin receptor (SHBGR) that modulate 
intracellular Ca2+ concentration and cyclic adenosine 
monophosphate (cAMP) levels, respectively (16,17). 

In addition, non-genomic AR signaling may be mediated 
by a membrane-bound AR that can regulate intracellular 
Ca2+ concentration and membrane ion channels (18,19). 
Studies with bovine serum albumin (BSA)-bound DHT, a 
compound that is unable to penetrate the plasma membrane, 
show a dose-dependent suppression of the PI3K and MAPK 
pathways (20). These data indicate that non-genomic AR 
signaling may suppress proliferation via membrane-bound 
AR (21) or activate proliferation via cytoplasmic AR.

Finally, recent data indicates that the non-genomic AR 
signaling may regulate genomic AR signaling and that the 
non-genomic and genomic AR signaling may work together 
to coordinate gene regulation in prostate cancer cells. In 
this manuscript, we provide a comprehensive review of non-
genomic AR signaling with an emphasis on the established 
role of MAPK/ERK in prostate cancer cell proliferation. 
Clinically, understanding of these non-genomic AR 
signaling pathways is important, as they may represent 
potential mechanisms of resistance to AR antagonists. 

Figure 1 Genomic and non-genomic AR signaling in prostate cancer cells. (A) Genomic AR signaling. After binding with the activated form 
of androgen, 5α-dihydrotestosterone (DHT), AR undergoes a conformational change and translocates to nucleus. In the nucleus, AR binds 
to the androgen response elements (AREs) on promoter/enhancer regions, recruits coregulators, and forms the transcriptional machinery 
for AR-regulated gene expression; (B) Non-genomic signaling. Activated AR in the cytoplasm can interact with several signaling molecules 
including the phosphatidyl-inositol 3-kinase (PI3K)/Akt, Src, Ras-Raf-1, and protein kinase C (PKC), which in turn converge on mitogen-
activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) activation, leading to cell proliferation.
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AR antagonists including casodex and flutamide have no 
effect on non-genomic AR signaling, as evidenced by ERK 
phosphorylation in the presence of these drugs (13). Thus, 
elucidation of non-genomic AR signaling pathways may 
enable development of novel agents to inhibit all forms of 
AR signaling in prostate cancer.

ERK-1/2 mediated non-genomic AR signaling

The MAPK/ERK signaling cascade is important in 
regulating diverse biological functions including cell survival, 
motility, and proliferation, which are essential to prostate 
carcinogenesis (22). Aberrant activation of kinases in this 
pathway is frequently reported in human cancer (23-25).  
Studies of DHT-responsiveness in prostate cancer cells in our 
lab and others show evidence of ERK-1/2 phosphorylation 
within 1-2 minutes of DHT treatment and peak levels 
of ERK-1/2 phosphorylation within 5-10 minutes.  
Activated ERK-1/2 then translocates to the nucleus and 
directly interacts with and phosphorylates transcription 
factors (TFs), such as nuclear ETS domain-containing 
Elk1 (26-28). Elk1 transcriptionally regulates immediate 
early genes (IEGs) such as c-fos (26,29), which coordinately 
regulates the expression of several genes involved in cell 
proliferation (26,27). This response is AR-dependent as no 
effect was observed in AR-negative PC-3 prostate cancer 
cells (13). Thus, while ERK phosphorylation occurs within 
minutes and serves as a measurable response of non-genomic  
activation, the molecular processes involved in cell 
proliferation occur over several hours and days.

DHT-induced ERK activation in prostate cancer cells may 
be mediated via multiple pathways, including the PI3K/Akt, 
Ras-Raf, and protein kinase C (PKC) pathways. Extensive 
evidence suggests AR associates with plasma membrane lipid 
rafts that facilitate AR activation of these pathways (30).  
AR activation of the PI3K/Akt pathway involves direct 
interaction of AR with the p85α regulatory subunit of 
PI3K (31), while the activation of the Ras-Raf pathway 
may involve the sequential activation of Ras, Raf and MEK 
kinases and may be dependent on the formation of an 
AR-Src complex (29,32). Importantly, Src or scaffolding 
proteins like proline-, glutamic acid-, and leucine-rich 
protein-1 (PELP1) may modulate the interaction of AR 
with Akt (31,33). PKC activation of ERK may involve 
modulation of intracellular Ca2+ concentration (13). 
Furthermore, ERK and Src are calcium-dependent kinase 
cascades suggesting AR could directly regulate them via 
mobilization of intracellular Ca2+ levels (32,34). Each of 

these AR signaling pathways can result in ERK activation 
and represent redundancy that ensures a proliferative 
response to DHT. Further, crosstalk between AR-mediated 
signaling cascades suggests a complex network of signals 
that converge on ERK phosphorylation. Each of these 
pathways is individually discussed in detail below.

PI3K/Akt/PTEN pathway

Ligand binding induces AR to directly interact with the 
p85α regulatory subunit of PI3K, resulting in the activation 
of the PI3K/Akt pathway (31). PI3K phosphorylates Akt 
(also known as PKB), a subfamily of serine-threonine 
protein kinases. Akt expression is frequently observed to 
be elevated in human prostate, ovarian, and breast cancers 
(35-37). The PI3K/Akt pathway activates the MAPK/
ERK cascade and is regulated by phosphatase and tensin 
homolog (PTEN). PTEN, a protein phosphatase that 
dephosphorylates phosphatidyl-inositol (3,4,5)-triphosphate 
(PIP3) thereby inhibiting PI3K induced activation of Akt 
(38,39), is one of the most commonly lost tumor suppressors 
in prostate cancer (40-42). PTEN loss of function often 
results in constitutively active Akt and may result in chronic 
activation of the proliferative genes.

The PI3K/Akt pathway activates mTOR and forkhead 
box protein O1 (FOXO1) and the MAPK/ERK cascade. 
Kinase inhibitors and dominant negative mutants of 
PI3K disrupt DHT-mediated activation of ERK and have 
supported a central role for the PI3K/Akt pathway in 
non-genomic AR signaling (13). Further, DHT-mediated 
activation of PI3K/Akt is AR-dependent (31,32,43). 

Src pathway

Several studies have also implied the importance of Src in 
AR activation of kinase signaling cascades (17,32,43). In its 
inactivated conformation, interaction of the Src homology 
2 (SH2) and Src homology 3 (SH3) domains causes 
autoinihibition of Src. AR interacts with the SH3 domain of 
Src relieving its autoinhibition and resulting in Src activation 
of the adaptor protein, Shc, a known upstream regulator 
of the MAPK pathway (44-46). AR-Src complexes may be 
noted in immunoprecipitation assays resulting in activation of 
Shc (29,43). Inhibition of the Src/MAPK pathway decreases 
DHT-induced ERK-1/2 phosphorylation (47).

In addition to Src-mediated direct activation of the 
ERK1/2 signaling cascade, Src may also activate the 
expression of receptors such as the insulin-like growth 
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factor 1 receptor (IGF-1R) (47). Activated AR can also 
directly regulate IGF-1 gene expression as the IGF-1 
promoter contains two AREs (48). However, data from 
quantitative RT-PCR studies shows expression of IGF-1R 
may be independent of AR-DNA binding. While the exact 
mechanism is not clearly elucidated, induction of IGF-1R 
expression appears to depend on Src/MAPK activation. 
Inhibition of the Src/MAPK pathway decreases IGF-1R 
expression and decreases ERK1/2 phosphorylation (47). 
IGF-1 signaling has been shown to promote prostate cell 
proliferation, migration, and tumor angiogenesis, resulting 
in prostate carcinogenesis and cancer progression (49).

Further, IGF-1 signaling can subsequently activate the 
PI3K/Akt pathway in prostate cancer cells (49). Increased 
IGF-1R binding of IGF-1 results in activation of the 
PI3K/Akt pathway, which can then regulate the action of 
proteins like mTOR and FOXO1. These processes activate 
multiple pathways including the Src/MAPK pathway 
early, subsequently IGF-1 pathway and later the PI3K/
Akt pathway being temporally activated, ensuring a robust 
proliferation response to DHT.

Ras-Raf pathway

The Ras-Raf pathway is comprised of the Ras family of 
small GTPases and their downstream interaction of Raf 
kinase proteins. The Ras-Raf pathway is part of the larger  
Ras-Raf-MEK-MAPK-ERK signaling cascade that ultimately 
results in phosphorylation of the kinases ERK-1/2 (25,50,51). 
Dominant negative constructs of Raf-1 abrogated the 
DHT-induced ERK-1/2 but also reduced basal activity, 
which may have been present from residual hormone in the 
culture medium (13). 

PKC pathway

Studies with PKC inhibitors indicate that AR utilizes PKC 
as a mediator of MAPK/ERK pathway activation (13,17,52). 
PKC kinase activity is regulated by both modulation 
of intracellular Ca2+ concentrations and diacylglycerol 
(DAG) binding to PKC itself (53). Mechanisms of non-
genomic AR-mediated regulation of Ca2+ concentration 
appear to be cell-type dependent (11,54). Ca2+ could be 
released via internal stores and/or through influx from 
extracellular space. Interestingly, these mechanisms may 
not be blocked by AR antagonists (54). The etiology for cell 
type differences may indicate a role for cell type-specific AR 
cofactors (54). These findings also hint at the association 

of cytoplasmic AR or membrane-bound AR with plasma 
membrane receptors such as GPCRs or ion channels that 
may modulate intracellular Ca2+ ion concentration resulting 
in PKC activation. 

Plasma membrane lipid rafts

AR in the plasma membrane may mediate DHT-induced 
activation of the PI3K/Akt, Ras-Raf, and PKC pathways (30). 
Non-cytoplasmic AR may be localized to the membrane 
and/or specialized liquid-ordered micro-domains within 
the lipid bilayer of the plasma membrane that are enriched 
with sphingolipids, caveolins, Src family kinases, G 
proteins and signaling mediators called “lipid rafts” (55,56). 
Several observations support the existence of and role for  
non-cytoplasmic AR in mediating non-genomic AR 
signaling. First, AR has been detected in the membrane and 
in lipid rafts. Cell membrane binding sites for androgens 
have been identified in several different cell types including 
rat osteoblasts (57), rat vascular cells (58), murine RAW 
264.7 and IC-21 macrophages (19,59), murine splenic T 
lymphocytes (18), human prostate cancer cells (20,60), 
as well as in human prostate carcinoma cells (61). In  
PC3-AR cells, both AR and EGFR are found within plasma 
membrane lipid rafts (62). Co-localization of AR with 
caveolin-1 was found within lipid rafts of human aortic 
endothelial cells in response to testosterone treatment (33).  
Studies, using DHT-BSA, a large plasma membrane-
impenetrable compound, showed binding of DHT to the 
membrane (18,19,63). Secondly, AR has been detected 
in complexes with multiple members of the lipid rafts. In 
caveolin-rich lipid rafts, a direct interaction was noted 
between caveolin-1 and a conserved nine-amino acid 
motif in the ligand-binding domain (LBD) of AR (30,64). 
AR forms a DHT-sensitive complex with the serine-
threonine kinase Akt1 in caveolin-negative lipid rafts 
and mediates a non-genomic signal independently of Src 
and PI3K to activate Akt (65). Thirdly, androgens induce 
a rapid rise in intracellular Ca2+ concentration that can 
be blocked by pertussis toxin or by phospholipase C 
(PLC) inhibitor indicating a membrane-binding site for 
androgens that may be in close association with a GPCR 
(57,59,66). Finally, DHT-induced signaling cascades 
namely the Ras-Raf (67,68), MAPK/ERK (69,70), adenylyl 
cyclase (71), and PI3K(72), pathways have been shown 
to be enriched in lipid rafts. While specific membrane 
receptors, GPCR30 and membrane progesterone receptor 
(mPR), have been identified for estrogen and progesterone, 
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respectively (73,74), to date, a membrane AR has not yet 
been purified or cloned. A clear understanding of the 
functional importance of non-cytoplasmic AR-mediated 
(membrane-bound or lipid raft) non-genomic signaling is 
lacking. 

NonERK-mediated non-genomic AR signaling

Non-genomic AR signaling may occur without ERK 
participation through either PI3K/Akt/mTOR pathway 
activation or changes in intracellular Ca2+ concentration 

that result in activation of kinases such as PKA. For 
example, AR interaction with its p85α PI3K regulatory 
subunit may induce Akt-mediated phosphorylation 
of phosphatidylinositol-4,5-bisphosphate (PIP2) to 
generate the second messenger PIP3 (75,76), which then 
activates downstream signaling pathways important in cell 
proliferation (77). Alternatively, AR-directed Akt activation 
may result in FOXO1 phosphorylation resulting in its 
retention in the cytoplasm and subsequent degradation 
(78,79). In addition, liganded AR physically interacts with 
FOXO1 and impairs FOXO1-DNA binding ability and its 

Figure 2 ERK and non-ERK mediated non-genomic AR signaling. ERK mediated non-genomic AR pathways are highlighted in solid line 
arrows. (I) AR interacts directly with the p85 regulatory subunit of phosphoinositide 3-kinase (PI3K) and activates Akt pathway. (II) AR 
interacts with Src resulting in Src activation of the adaptor protein, Shc, a known upstream regulator of the MAPK pathway. (III) AR interacts 
with Ras-Raf leading to sequential activation of Ras, Raf1 and MEK kinase converging on the phosphrylation of ERK. (IV) AR also utilizes 
PKC as a mediator of MAPK/ERK pathway activation. PKC kinase activity can be regulated by intracellular Ca2+ concentrations. Intracellular 
Ca2+ concentration may be modulated through plasma membrane G protein-coupled receptors (GPCRs), the sex hormone binding globulin 
receptor (SHBGR) and by a membrane-bound AR via up-regulation of cyclic adenosine monophosphate (cAMP) levels. Activated MAPK/ERK 
translocates to the nucleus, directly interacts with and phosphorylates transcription factors (TFs), such as Elk1, which coordinately regulates 
the expression of several genes involved in cell proliferation. Non-ERK mediated non-genomic ARpathways are highlighted in dash line 
arrows and include (V) PI3K/Akt/mTOR or (VI) forkhead box protein O1 (FOXO1) pathway activation. Akt activation may result in FOXO1 
phosphorylation resulting in its retention in the cytoplasm and subsequent degradation. In addition, AR interacts with FOXO1 and impairs 
FOXO1 DNA binding ability and its ability to mediate pro-apoptotic pathways. (VII) Non-ERK signaling can also occur through activation of 
kinases such as protein kinase A (PKA), whose activation is regulated by intracellular Ca2+ concentration.
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ability to mediate pro-apoptotic pathways. Finally, Increased 
intracellular Ca2+ concentration and increased level of 
cAMP induced by GPCR or SHBGR also activate protein 
kinase A (PKA) (67,68), which then enhances prostate 
cancer cell proliferation (17,69).

Critically, each of these pathways is also capable of 
activating ERK1/2. This suggests that a number of signaling 
cascades may be activated in tandem with the MAPK/
ERK pathway to induce proliferation (Figure 2). Crosstalk 
between these pathways further amplifies the signal and 
ensures that the cell responds to androgenic stimulation.

Crosstalk between genomic and non-genomic 
pathway

ERK has been shown to enhance AR transcriptional 
activity through the direct phosphorylation of AR and 
its coregulators (13). This autocrine loop could present a  

non-genomic mechanism to control AR transcriptional 
activity and could be important in cell adaptation to low 
androgen environments. 

Non-genomic AR signaling mediated by induction of 
cAMP and PKA activation may involve SHBGR (80,81). 
DHT-SHBG also enhances AR transcriptional activity via 
phosphorylation of AR and AR coregulators facilitating 
their binding to AR (17). Thus, PKA can enhance prostate 
cancer cell proliferation and AR transcriptional activity even 
at very low levels of androgen (17,67,82). Thus, some of the 
non-genomic AR actions mediated by second messenger 
activation may influence the AR genomic responses (54) 
(Figure 3).

Implications in prostate cancer

Second-generation anti-androgens including MDV3100 
and ARN-509 competitively target the activation of 

Figure 3 Crosstalk between genomic and non-genomic AR pathways. Non-genomic AR signaling may regulate genomic AR signaling. ERK 
has been shown to enhance AR transcriptional activity through the direct phosphorylation of AR and its coregulators. The non-genomic and 
genomic AR signaling may work together to coordinate gene regulation in prostate cancer cells.
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AR, its nuclear translocation and its genomic activity 
(68,69). However, non-genomic AR signaling that 
functions through cytoplasmic AR may still be active in 
MDV3100 treated prostate cancer cells. Prior studies have 
indicated that DHT-mediated non-genomic activation of  
ERK-1/2 in prostate cells are insensitive to anti-androgens 
specifically hydroxyflutamide and casodex (13). Thorough 
evaluation of the non-genomic AR axis is mandatory in 
assessing the effect of drugs targeting AR signaling in 
prostate cancer (13).

Conclusions

The existence of rapid, non-genomic AR signaling is 
incontrovertible. AR non-genomic regulation functions 
through the activation of intertwined complex signaling 
cascades resulting in expression of proliferative genes and 
responses. Non-genomic AR signaling may act to modulate 
genomic AR signaling and enable a coordinated, sustained 
and vigorous response to androgenic stimuli. Non-genomic 
AR signaling may represent a potential mechanism of 
resistance to anti-androgens.
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