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Introduction

Urethral stricture (US) is a narrowing of the urethra that is 
associated with fibrotic scarring. Effective treatment of US 
is challenging and, therefore, a subject of major concern in 
the field of urology. Various surgical options are available 
for the treatment of US, including urethral dilatation, 
internal urethrotomy, and urethroplasty (1-4). Anti-
fibrotic drugs and growth factors have also been used in 

the treatment of US (5,6). However, these surgical options 
and adjunctive treatments can result in complications and, 
furthermore, the stricture inevitably recurs. As such, current 
modalities for the treatment of US are ultimately of little 
therapeutic benefit.

Mesenchymal stem cells (MSCs) represent an attractive 
solution for the promotion of tissue repair and regeneration 
(7-9). In recent years, MSCs have been used to modulate 
fibrosis, apoptosis, inflammation, and ischemia at sites 
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of injury, resulting in enhanced tissue healing (10,11). 
Excessive fibrosis and reduced angiogenesis are associated 
with the pathogenesis of US. The potential for MSCs to 
suppress US by decreasing fibrosis has been documented 
extensively (12). However, the poor viability of MSCs 
after transplantation, possibly as a consequence of the 
unfavorable microenvironment of the repair site, limits 
their therapeutic potential in the treatment of this disease.

Many investigators have suggested that MSC exosomes 
can function as complex paracrine factors that mediate 
many of the functions of the cells from which they are 
derived (13-15). In particular, there is increasing evidence 
that exosomes derived from bone marrow mesenchymal 
stem cells (BMSCs) have potential utility in the treatment of 
tissue and organ fibrosis (16,17). BMSCs-derived exosomes 
(BMCSs-Exos) play important roles in the regulation of 
a variety of biological processes. It has been shown that 
BMSCs-derived extracellular vesicles have a protective 
effect against ureteral injury-associated fibrosis in rats (18). 
It is therefore possible that BMCSs-Exos may have clinical 
utility in the treatment of US. In this study, we analyzed the 
antifibrotic effects of local injection of BMSCs-Exos on the 
quality of urethral tissue repair in a rat model of US.

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/tau-20-833).

Methods

Isolation and culture of rat BMSCs

Eight Sprague Dawley (SD) rats were used for the isolation 
of BMSCs. Animals and procedures used in this study were 
approved by Animal Care and Use Committee at Shanghai 
Children’s Medical Center, Shanghai Jiao Tong University 
School of Medicine (Shanghai, China). The document ID 
is SCMCIACUC-K2019025. BMSCs were isolated from 
rat bone marrow as described previously (19). Briefly, bone 
marrow was flushed from the tibias of rats and mononuclear 
cells then isolated from the bone marrow suspension by 
Ficoll density gradient centrifugation. The mononuclear cell 
pellets were resuspended in alpha-modified Eagle’s medium 
containing 10% fetal bovine serum. The cells were then 
cultured in T-75 flasks at 37 ℃ in a humidified atmosphere 
containing 5% CO2. After 48 h, the non-adherent cells were 
discarded and the adherent cells were further expanded until 
the culture was approximately 80% confluent. After three 
generations, the BMSCs were harvested and characterized. 

All BMSCs used in this study were between passage 3 and 5.

Isolation and identification of BMSCs-Exos

Once BMSCs cultures reached 80–90% confluency, flasks 
were washed three times with PBS and the cells then 
cultured in Mesen Gro hMSC medium for an additional 
48 h. The resulting conditioned media was collected 
and exosomes then isolated as described previously (20). 
Briefly, the culture medium was subjected to a preclearing 
centrifugation step at 1,000 × G for 15 min to remove 
cellular debris, and then subjected to ultracentrifugation 
at 100,000 × G for 2 h to obtain a pellet containing the 
exosomes. The pellet was resuspended in 200 μL of PBS 
and this exosome suspension was then subjected to vacuum-
assisted filtration using a 0.22-μm PES filter. The filtered 
suspension was then centrifuged at 1,500× G for 30 min 
using a 100-kDa molecular weight cutoff hollow fiber 
membrane (Millipore, Billerica, MA, USA), and then passed 
once more through a 0.22-μm PES filter. The total protein 
concentration of the exosome sample was determined 
using the Micro Bicinchoninic Acid Protein Assay Kit 
(Pierce). Exosomes were used immediately for downstream 
experiments. Transmission electron microscopy and western 
blotting were used to evaluate the quality of exosome 
samples.

US model and treatment

Forty-five male SD rats (weighing between 200 and 230 g) 
were used in the US animal study. The rats were randomly 
divided into three groups, each consisting of 15 animals. 
These included a sham group, a US group, and a US + 
BMSCs-Exos group. The surgical procedures used in the rat 
US model were performed as described previously (12). On 
the day of surgery, a urethral support tube was administered 
to rats anesthetized with pentobarbital sodium. After 
administration of the indwelling urethral support tube, 
the ventral skin of the penis was cut to expose the urethra. 
Then, 100 μL of saline containing 1 μg human recombinant 
TGF-β1 (PeproTech, NJ, USA) was injected locally into 
the urethral wall. Rats in the sham group received a saline-
only injection to the urethra. After injection, the rats of the 
US and US + BMSCs-Exos groups received four partial 
incisions to the urethral wall with a 23G needle. The 
urethral support tube was then removed, and the skin of the 
penis sutured. BMSCs-Exos (200 μg in 100 μL saline) or 
saline (100 μL) control were then injected into the urethral 
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wall on the following day. All rats underwent an ultrasound 
examination at 4 weeks after surgery. Penile and urethral 
tissues were harvested for histology, immunohistochemistry, 
and gene expression analysis after the animals were 
euthanized.

Micro-ultrasound assessment

Rats were anesthetized by isoflurane inhalation at 4 weeks 
following injury, and micro-ultrasound then performed to 
evaluate stricture of the urethra using a Vevo 2100 Imaging 
System (VisualSonics Inc. Canada). The procedure was 
repeated three times by the same examiner who was blinded 
to treatment allocation.

Histology and immunohistochemistry

Urethral specimens were harvested, fixed and further 
processed for histology and immunohistochemistry. 
Hematoxylin-eosin (H&E) and Masson’s trichrome staining 
were used to evaluate the effects of BMSCs-Exos on the 
degree of urethral stenosis and fibrosis. The urethral 
fibrosis score was evaluated as described previously (21). 

Immunohistochemical staining with anti-rat von Willebrand 
Factor (vWF) antibody (Santa Cruz Biotechnology, CA) 
was performed to evaluate the structure of the epithelium.

Gene expression

Gene expression changes in urethral t issues were 
determined using real time PCR (RT-PCR). Total RNA 
from tissues was extracted using an RNeasy mini kit (Qiagen, 
Hilden, Germany). Total RNA isolation, cDNA synthesis, 
and gene expression assays were performed as described 
previously (22). Normalized gene expression data were 
calculated using the 2ΔCT formula. Gene expression values 
were normalized to the reference gene glyceraldehyde-3-
phosphate dehydrogenase (GAPDH).

The expression of angiogenesis related genes encoding 
vascular endothelial growth factor (VEGF), endothelial 
nitric oxide synthase (eNOS), and basic fibroblast growth 
factor (bFGF), and fibrosis-associated genes encoding Col I, 
Col III, fibronectin, and elastin, were analyzed by RT-PCR. 
PCR primer sequences for the amplification of target genes 
are listed in Table 1.

Statistical analysis

All values are expressed as means ± standard deviation. 
Group data were compared by analysis of variance 
(ANOVA) followed by Bonferroni’s multiple comparison 
tests. Statistical analysis was performed using the SPSS 
11.0 statistical package. P values <0.05 were considered 
statistically significant.

Results

Characterization of BMSCs and BMSCs-Exos

As shown in Figure 1A, the third generation BMSCs 
were spindle-shaped. In the flow cytometric analysis 
(Figure 1B), BMSCs exhibited high levels of markers 
CD44 and CD90 (66.6% and 99.59% respectively), and 
very low levels of markers CD11b and CD34 (0.01% 
and 3.51% respectively). Third generation BMSCs were 
successfully differentiated into adipogenic, osteogenic and 
chondrogenic cells (Figure 1C). As shown in Figure 2A,  
high levels of the characteristic marker proteins CD9, 
CD63 and HSP70 were detected by western blotting. 
Besides, the BMSCs-Exos were cup-shaped particles with 
a diameter of 50–150 nm (Figure 2B and C).

Table 1 Rat primers used for qRT-PCR analysis.

Gene Primer sequence

COL1a1 F: 5’- CCGGACTGTGAGGTTAGGAT -3’  
R: 5’- AACCCAAAGGACCCAAATAC -3’

COL3a1 F: 5’- AACGGAGCTCCTGGCCCCAT -3’  
R: 5’- ATTGCCTCGAGCACCTGCGG -3’

elastin F: 5’- AAAACCCCCGAAGCCCTATG-3’  
R: 5’- TCACTTTCTCTTCCGGCCAC -3’

fibronectin F: 5’- GATTCTTCTGGCGTCTGCAC-3’  
R: 5’- GCCCCGGAACATGAGGATAG-3’

VEGF F: 5’-GCAGAAGGAGGAGGGCAG-3’  
R: 5’- CACCAGGGTCTCGATTGGAT-3’

bFGF F: 5’-CGCACCCTATCCCTTCACAGC-3’  
R: 5’- CAGCCTTCCACCCAAAGCAGT -3’

eNOS F: 5’- TGACCCTCACCGATACAACA -3’  
R: 5’- CGGGTGTCTGATCCATGC -3’

GAPDH F: 5’- TGACTCTACCCACGGCAAGTTCAA-3’  
R: 5’- ACGACATACTCAGCACCAGCATCA-3’

bFGF, basic fibroblast growth factor; eNOS, endothelial nitric 
oxide synthase; VEGF, vascular endothelial growth factor; vWF, 
von Willebrand factor; GAPDH, glyceraldehyde-3-phosphate 
dehydrogenase.
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Figure 2 Characterization of BMSC-Exos. (A) western blotting was used to confirm the expression of BMSCs-Exos specific markers.  
(B) representative transmission electron microscopy image of BMSCs-Exos. (C) particle size distribution. Scale bar: 0.5 μm.
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Figure 1 Characterization of BMSCs. (A) flow cytometric analysis of BMSCs surface markers. (B) morphology of BMSCs. (C) adipogenic, 
osteogenic, and chondrogenic differentiation potentials of BMSCs. Scale bar: 100 μm.
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Figure 3 Rat US model. (A) penile of rat. (B) administration of the indwelling urethral support tube. (C) injection of human recombinant 
TGF-β1. (D) site of penile injuries.

Animals 

The local administration of TGF-β1 (Figure 3) and BMSCs-
Exos had no adverse effects on the overall well-being of 
rats. There were also no statistically significant differences 
in the weight of animals among the three treatment groups 

during the experimental period.

Micro-ultrasound

We conducted micro-ultrasound analysis 28 days after 
urethral injury to evaluate the effects of treatments on 
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Figure 4 Representative micro-ultrasound images of injured penile urethras at 4 weeks after injury. (A) longitudinal sections. (B) cross-
sections. cs = corpus spongiosum; u = urethral lumen.

urethral morphology. As shown in Figure 4, micro-
ultrasound analysis revealed obvious urethral stricture in 
rats of the US group, while these changes were essentially 
absent in rats of the US + BMSCs-Exos group.

Histological analysis

Next, we investigated the effects of BMSCs-Exos on 
urethral stricture by H&E and Masson’s trichrome 
staining at 4 weeks post-implantation. Histological analysis 
of urethral tissue cross-sections revealed significant 
submucosal fibrosis with densely packed collagen fibers 
in US rats (Figure 5). However, there was only mild 
submucosal urethral fibrosis in rats treated with BMSCs-
Exos. Immunohistological analysis of vWF staining 
suggested that the epithelium and the muscle layer were not 
fully formed in the US group. In the BMSCs-Exos group, 
the urethral mucosa showed an improved histological 
appearance with a well-formed epithelium (Figure 6).

Gene expression

Our RT-PCR analysis (Figure 7) also confirmed high levels 
of gene expression for fibrosis-related markers such as Col 
I, Col III, fibronectin, and elastin, in the penile midshaft 
tissues of rats in the US group. BMSCs-Exos treatment 
significantly decrease the expressions of these fibrosis-

related genes, when compared with the US group (P<0.05). 
Next, we investigated the effect of BMSCs-Exos on the 
expression of angiogenesis-related genes, including VEGF, 
eNOS, and bFGF. Increased levels of eNOS and bFGF 
expression were detected in the penile midshaft tissues of 
BMSCs-Exos-treated rats, when compared with rats of the 
US and sham treatment groups (P<0.05).

Discussion

US is a fibrotic process associated with extensive 
collagen synthesis within the epithelium and surrounding  
tissues (23). Management of US is complex and represents 
a major concern in urology. Tissue fibrosis is the main 
etiopathological factor in urethral stricture development. 
Marked fibrosis following urethral injury has been 
identified as a key factor in US development (24). Anti-
fibrotic medication therefore provides a potential 
therapeutic strategy for the treatment of US (5). Previous 
studies have found that BMSCs-Exos treatment improves 
the quality of tissue repair by inhibiting fibrosis and 
scar formation (25-27). However, the effects of BMSCs-
Exos on the formation of US have not previously been 
elucidated.

In order to investigate the effect of BMSCs-Exos on 
urethral fibrosis, urethral tissues were collected for H&E 
and Masson’s trichrome staining at 28 days-post tissue 
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Figure 5 The results of histological evaluation for US at 4 weeks after injury. (A) The HE staining of urethral tissue cross-sections.  
(B) Masson’s trichrome staining of urethral tissue cross-sections. (C) Fibrosis score was significantly lower for the rats in the BMSCs-Exos 
group compared with other groups (n=8 donors). Bars: 500 μm, magnification: ×10. Data are represented as mean ± SD. *P<0.05.

injury. Extensive collagen deposition was observed in the 
submucosal connective tissue of rats in both US groups. 
Disorganized collagen fibers were also evident in the 
healing urethra of US rats. Our micro-ultrasound analysis 
revealed varying degrees of bulbar urethral narrowing in US 
rats. However, the application of BMSCs-Exos to the site of 
urethral injury had a protective effect on rat US. Our H&E 
and Masson’s trichrome staining also demonstrated the 
antifibrotic properties of BMSCs-Exos in rat US. Moreover, 
our immunohistochemical analysis of vWF expression also 
suggested that administration of BMSCs-Exos improves the 
formation of the epithelium post-injury.

Ischemia is believed to contribute to the progression of 
urethral stricture through its inhibitory effects on tissue 
repair and promotion of excessive scar formation (28). 

Several studies have showed that the exogenous application 
of BMSCs-Exos can enhance wound healing by inducing 
angiogenesis (29-31). In this study, we investigated the 
angiogenic potential of BMSCs-Exos in our rat model of 
US. Our experiments revealed that the local administration 
of BMSCs-Exos significantly increased the expression of 
angiogenic genes, such as eNOS, bFGF, and VEGF, in the 
healed urethral tissues of US rats. Previous studies have 
also shown that iNOS and eNOS can exert antioxidative 
and antifibrotic effects that promote improved tissue repair 
(32,33). Our PCR results therefore suggest a role for NOS 
in mediating the antifibrotic properties of BMSCs-Exos 
towards US.

In this study, we successfully applied a rat model of US to 
examine the potential therapeutic effects of BMSCs-Exos. 
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Figure 6 vWF immunofluorescence staining results. The urethral mucosa showed an improved histological appearance with a well-formed 
epithelium In the BMSCs-Exos group. Magnification: ×40.

Figure 7 The expression of angiogenesis-related genes (eNOS, VEGF, and bFGF.) and fibrosis-related genes (Col I, Col III, fibronectin, 
and elastin) in the penile midshaft tissues of rats (n=8 donors). Data are represented as mean ± SD. *P<0.05.

Our pathological examination confirmed the narrowing 
of the urethral lumen and excessive fibrotic scarring of 
the injured urethra that are hallmarks of US. Extracellular 
matrix and collagen deposition is a major characteristic 
of scar and fibrosis formation. In this study, we examined 

mRNA expressions levels of Col I, Col III, fibronectin, and 
elastin, known regulators of fibrosis. Our RT-PCR analysis 
revealed that Col I, elastin, and fibronectin expression levels 
were significantly elevated in the penile midshaft tissues of 
rats in the US group. However, the local administration 
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of BMSCs-Exos to injured urethral tissues inhibited the 
expression of these fibrosis-related genes, a finding that is 
consistent with those of our histological analysis. 

It is important to highlight some limitations associated 
with the present study. Firstly, only one dose of BMSCs-
Exos was used for the prevention of US. Future studies will 
need to evaluate the dose-dependent effects of BMSCs-
Exos in the treatment of US before the potential translation 
of this therapy into the clinical setting.  Secondly, the long-
term effects of BMSCs-Exos on US were not assessed. 
Again, future studies focusing on the longer-term effects 
of this treatment strategy are warranted. A final limitation 
is that we have not address the molecular mechanisms 
responsible for mediating the suppressive effects of 
BMSCs-Exos towards US. A better understanding of the 
regulatory pathways by which BMSCs-Exos inhibit urethral 
fibrosis will facilitate the future development of therapeutic 
approaches for the effective prevention of US. However, 
in spite of these limitations, we believe that our study 
highlights the therapeutic potential of BMSCs-Exos in the 
clinical treatment of US.

In summary, we have found that BMSCs-Exos have a 
protective effect against fibrosis in a rat model of US. The 
ability of BMSCs-Exos to suppress fibrosis during urethral 
repair highlights the potential for the translation of this 
method into the clinical setting for the treatment of US.
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