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Introduction

Chronic bladder ischemia is a potential risk factor for the 
development of lower urinary tract symptoms (LUTS) and 
has been associated with co-existing cardiovascular disease 
and cardiovascular disease risk factors (1-3). A meta-analysis 
by Gacci et al. concluded that men with moderate to severe 

LUTS are at increased risk of having a major cardiac  
event (4). Because of this association, investigators have 
examined the role of chronic pelvic ischemia in the 
development of LUTS in both pre-clinical and clinical 
studies (5,6).

Indeed, studies of pelvic ischemia have led to a new 
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understanding of a possible etiology of LUTS and have 
identified novel treatment targets (7-13). However, a 
recent review focuses on the lack of mechanistic treatments 
as current therapies are mainly focused on improving 
symptoms, rather than addressing the underlying 
pathophysiology (14). In this regard, a mechanistic 
proposal postulates that pelvic ischemia leads to progressive 
deterioration of detrusor muscle function, presenting 
initially as detrusor overactivity (DO) and ultimately leading 
to detrusor underactivity (DU) (15-18).

However, because chronic ischemia may lead to 
irreversible structural damage to the detrusor muscle, 
there is a pressing need to study the pathophysiology of 
acute ischemia to identify reversible points where potential 
interventions could restore both structure and function. 
This is especially true because of the strong association of 
LUTS with other comorbid conditions including erectile 
dysfunction, anxiety, depression, as well as the financial and 
personal burdens that come with a lifetime of symptom 
management (14).

Therefore, the aim of this project was to develop an ex-
vivo porcine model to help define the duration of acute 
ischemia leading to measurable changes in bladder function 
and determine at what points those changes are still 
reversible with the restoration in flow. 

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/tau-20-669).

Methods 

All porcine bladders and tissue utilized in these experiments 
were obtained from local abattoirs and do not require 
approval by the institutional animal care as they are not 
laboratory animals.

Bladder harvest and preparation

Porcine bladders were obtained from local abattoirs. As 
previously described, immediately after slaughter, the entire 
urinary tract and vasculature was removed en bloc, from 
kidneys to urethra, and cold perfused with Heparinized 
Krebs Henseleit (KH) solution (19). After removal of the 
kidneys and excess tissue, the ureters, bladder, urethra and 
vasculature were then placed into a physiologic solution, 
3-(N-morpholino) propanesulfonic acid (MOPS) based 
buffer and transported on ice to the lab for use within  
48 hours. Bilateral superior vesical arteries were identified, 
cannulated with polyethylene cannulas, and secured with 
2-0 silk ties (Figure 1). Branching vessels and both ureters 
were suture ligated to limit perfusate leakage (Figure 1). A 
16 Fr drainage catheter and a 7 Fr T-DOC® single sensor 
air charged bladder catheter (for filling and intravesical 
pressure monitoring, Laborie Inc., Mississauga, Ontario) 
were placed into the urethra (Figure 1). The filling catheter 
was connected to an Aquarius TT urodynamics system 
(Laborie Inc., Mississauga, Ontario) for infusion and 
pressure monitoring. The catheters were secured with an 
occlusion clip that prevented leakage. A catheter plug was 
placed into the 16 Fr catheter to prevent drainage until 
desired. 

Isolated bladder set-up and perfusion

As previously described, isolated bladders were placed 
into a customized heated, humified chamber to replicate 
physiologic conditions (19-22). Perfusate was administered 

Figure 1 Ex vivo porcine bladder in custom built heated chamber 
with bilateral superior vesical arteries cannulated via aortic stump 
to allow for perfusion of oxygenated, heated KH. Bilateral ureters 
are suture ligated. Infusion catheter and drainage catheter secured 
in place with occlusion clip which also prevents leakage of bladder 
volume during the experiment. 
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through bilateral vesical arteries via an in-line Transpac IV 
pressure transducer (ICU Medical, Clemente, CA) with flow 
monitored by an in-line ultrasonic flowmeter (IUF-1000, 
Radnoti LLC, Covina, CA). The KH buffer was gassed 
with 95%/5% O2/CO2. The Aquarius TT was used for data 
acquisition with intravesical infusion set at 50 mL/min for 
all fills, and all fills were to a volume of 250 mL. Following 
fills, bladders were actively voided via a contraction induced 
by infusion of 50 mL of potassium-enriched (110 mM KCl) 
solution via the bilateral super vesical cannulas at a rate 
of 25 mL/min and flushed with 50 mL of KH at a rate of  
25 mL/min using a programmable infusion pump (Harvard 
Apparatus, Holliston, Massachusetts). Each contraction was 
induced isovolumetrically until peak pressure was achieved 
after ~2 min, and then the bladder was emptied by releasing 
the drainage catheter plug to simulate voiding. 

Ischemia protocol

Bladders were placed in the humidified chamber (Figure 1) 
and perfused bilaterally with warm, oxygenated KH buffer 
at 4 mL/min for 15 minutes, as in previous studies (19,21). 
Then two pre-experiment fill-empty cycles were performed 
to equilibrate the bladders and ensure viability. Following 
the first pre-experiment fill, the bladder was passively 
drained, and following the second pre-experiment fill, the 
bladder was actively voided via an induced contraction as 
previously described (19). Bladders were then subjected to 
four consecutive fill-active void cycles with varying degrees 
of ischemia as follows: Fill 1—control (4 mL/min), Fill 
2—partial ischemia (2 mL/min), Fill 3—global ischemia  
(0 mL/min) and Fill 4—reperfusion (4 mL/min). An 
isovolumetric wait period was included between the end of 
filling and the induction of the voiding contraction. In one 
group of bladders, the degrees of ischemia were held for  
15 minutes (15 min group) and in another group the 
degrees of ischemia were held for 30 minutes (30 min 
group). 

Pressure data collection

For each contraction during the urodynamics ischemia 
protocol, passive pressure was measured at the end of the 
wait period immediately before the contraction, and the 
peak total pressure was measured during the contraction. 
Active pressure was calculated as the difference between 
the total and passive pressures. Pressure data from all fills 

were normalized to the control fill, as the perfusion rate of  
4 mL/min fill approximates physiologic perfusion. Pressure 
values were normalized by calculating the ratio of each 
passive, total and active to the value of the control fill.

Statistical analysis

Two-tailed paired Student’s t-tests were used to compare 
normalized pressure values, and a P value of <0.05 denotes 
statistical significance. 

Results 

A total of 19 bladders were used including 8 bladders for 
the 15-minute ischemia protocol and 11 bladders for the 
30-minute ischemia protocol. This included 6 male pigs 
and 2 female pigs in the 15-minute group and 6 male pigs 
and 5 female pigs in the 30-minute group. All pigs were of 
mixed breed, with main breed percentages from Yorkshire, 
Hampshire, Duroc, and Guinea Hog breeds. All pigs 
weighed between 215–375 lbs. prior to slaughter, with a 
mean weight of 340 lbs. 

15-minute ischemia protocol (Figures 2,3)

In the 15-minute ischemia protocol (Figures 2A,3A), 
the normalized passive pressure increased by 21% with 
partial ischemia (P=0.02) and 39% with global ischemia 
and returned to baseline during reperfusion (112% 
recovery, P=0.20). Normalized active pressure decreased 
by 11% during partial ischemia (P=0.03) and 23% with 
global ischemia (P=0.02), and returned to baseline 
during reperfusion (102% recovery) (P=0.73). However, 
normalized total pressure remained unchanged throughout 
partial ischemia, global ischemia, and reperfusion (P>0.05). 

30-minute ischemia time (Figures 2,3)

In the 30-minute ischemia protocol (Figures 2B,3B), 
the normalized passive pressure remained unchanged 
throughout partial ischemia, global ischemia, and 
reperfusion (P>0.05). However, the normalized active 
pressure decreased by 30% with partial ischemia (P<0.001) 
and 61% with global ischemia (P<0.001) and demonstrated 
only a partial recovery of 72% during reperfusion (P=0.02). 
The normalized total pressure decreased by 18% with 
partial ischemia (P<0.001) and decreased 34% with global 
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ischemia (P<0.001) and demonstrated partial recovery to 
82% (P=0.36).

Discussion 

The key findings of this investigation were that, in the 
perfused whole porcine bladder, the duration and degree of 
acute ischemia affects the detrusor contractile function in 
different ways. Specifically, a shorter duration of ischemia 
(15 min) leads to an increase in passive pressure and a 
corresponding decrease in active pressure. The result 
is that total pressure is unchanged and can be viewed as 
a compensated phase. In contrast, a longer duration of 
ischemia (30 min) leads to decreases in both passive and 
active pressure. The result is that total pressure drops and 
can be viewed as a decompensated phase. These findings 
are consistent with the hypothesis that ischemia-induced 
voiding dysfunction may be a progressive phenomenon, 
where partial or short-duration ischemia can increase 
detrusor muscle stiffness (i.e., increase passive pressure) 

leading to compensated voiding, but with increased LUTS, 
as has been demonstrated in rat models (16,23). Then, 
as the duration or severity of ischemia progresses, this 
compensatory mechanism may fail, resulting in underactive 
bladder (UAB).

One mechanistic explanation for ischemia-induced 
voiding dysfunction is that decreased blood flow can lead to 
detrusor muscle damage through the generation of reactive 
oxygen species (ROS). In a study by Kirpatovsky et al., 
four hours of acute urinary retention was induced in rats. 
Examination of bladders immediately and 24 hours after 
retention demonstrated reduced blood flow with increased 
levels of ROS in the muscle and mucosa which persisted 
through the study. This increase in ROS paralleled changes 
in urinary symptoms with a significant increase in the 
frequency and amplitude of spontaneous contractions 
as well as detrusor tone. Likewise, in bladder strips, the 
effects of acute urinary retention manifested as significantly 
decreased contractile force (24). Additionally, acute ischemia 
in detrusor strips has been shown to increase the tone of 
the detrusor muscle, which is reversed with reperfusion. 
Interestingly, this increase in muscle tone was shown to be 
blocked with anticholinergics, which has been theorized to 
suggest a relationship between acute ischemia and increase 
local acetylcholine release (25).

At the cellular and genetic levels, the effect of ischemia 
has been examined by inducing acute unilateral ischemia in 
the rabbit bladder at time periods ranging from 1 hour to 
7 days. Changes were identified on both the ischemic and 
non-ischemic sides of the bladder, with increased alterations 
seen on the ischemic side. These changes, including DNA 
synthesis, protein synthesis, and increased expression of 
early response genes such as c-fos and c-jun were similar 
to those observed after outlet obstruction and bladder 
overdistention (26). In vivo, two hours of bilateral pelvic 
ischemia in a rabbit bladder showed a significant decrease 
in contractile responses with alterations in Rho-kinase and 
smooth muscle regulatory proteins which further decreased 
after reperfusion (27). These results were in agreement 
with an older study investigating the effects of 1 hour of 
bilateral ischemia in the rabbit bladder, which showed a 
48% reduction in contraction force (28).

Increasingly, porcine models are being used as a model 
to examine human physiology. This has been seen most 
well known in cardiac models, but has also been used in 
gastrointestinal models as well as pulmonary models (29-33). 
Recently this model has been used in the Urologic world 
to model bladder physiology and to be better understand 

Figure 2 Normalized total (blue line), passive (orange line) 
and active (grey line) pressures during physiologic perfusion, 
control (4 mL/min), partial ischemia (2 mL/min), global ischemia  
(0 mL/min), and reperfusion (4 mL/min). Time periods were held 
for 15 min (A) and 30 min (B). *, P<0.05.
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pathology (19-21,25,34,35). In previous porcine strip 
studies, it has been shown that the lamina propria also 
contracts, in conjunction with the detrusor muscle. The 
urothelium and lamina propria respond to prostaglandins, 
like the detrusor muscle, as well as serotonin (34,35). This 
model measured the total contraction, without examining 
the exact contribution of detrusor vs. lamina propria 
or urothelium, however the majority of the contract is 
sustained by the detrusor.

Limitations of the current study include the relatively 

small sample size, use of male and female pigs, and 
the recognition that in vitro porcine bladders may not 
faithfully represent the human condition. These bladders 
were obtained from two abattoirs, so there could be some 
variability in the pig diet prior to slaughter. However, all 
bladders were harvested by study authors immediately 
after slaughter in order to standardize handling and 
experimentation. In addition, the bladders were perused 
with KH solution, which may not have the same effects 
as whole blood. Bladders were used between 24–48 hours 

Figure 3 Urodynamics tracing of (A) 15-minute ischemia time. The rise in passive pressure is demonstrated with the decrease in active 
pressure and the maintenance of total pressure. The passive and active pressures return to baseline with reperfusion. Urodynamics training 
of (B) 30-minute ischemia time. The passive pressure remains constant while the active pressure and total pressure decrease. The active 
pressure and total pressure make an incomplete recovery with reperfusion. 
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after harvest. The time variability may be a confounding 
factor. To account for this, all bladders underwent two pre-
study fill-void cycles to ensure the baseline contractility 
of the bladder is at the same magnitude as previously used 
bladders. However, the porcine bladder model represents 
an excellent approximation of the human bladder with 
easy ability to manipulate vascular inflow, and the results 
demonstrate a mechanistic progression from a compensated, 
overactive phase of acute ischemia to a decompensated, 
underactive phase of acute ischemia. 

Conclusions

A whole porcine bladder model demonstrated different 
phases of decompensation during acute ischemia. With 
15 minutes of ischemia, there is a compensated overactive 
phase where increases in passive pressure are offset by 
decreases in active pressure. However, with progression 
to 30 minutes of acute ischemia, there is a decompensated 
UAB phase where both passive and active pressures are 
decreased. This model provides a mechanistic explanation 
for the theoretical progression from overactive to UAB and 
provides rational targets for the study of future therapies 
aimed at ischemia-mediated voiding dysfunction. 
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