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Introduction

Mast cells (MCs) develop from hematopoietic precursors 
in response to stem cell factor (SCF) the ligand of the 
CD117 (KIT) tyrosine kinase receptor. Precursors then 
migrate from the blood into all tissues where they acquire 
their tissue-specific phenotype, influenced by the local 
microenvironment (1).

MCs are best known for causing allergic reactions when 
activated through exposure to an antigen (allergen) that 
crosslinks allergen-specific immunoglobulin E (IgE), already 
bound to the high affinity Fc epsilon receptor 1 (FcεRI) (2).  
MCs can also be activated by anaphylatoxins (C3a, C5a), 
hormones, physical stimuli (pressure and temperature 
changes), as well as cytokines and neuropeptides (3) such as 
corticotropin-releasing hormone (CRH), neurotensin (4),  
and substance P (SP) (5). MCs express receptors for diverse 

ligands (6), including toll-like receptors (7) that can be 
activated by bacterial and viral products (8). MC stimulation 
can be enhanced by SCF and IL-33 (9), which together 
with SP, induce vascular endothelial growth factor (VEGF) 
release (5) and act as “sensors of cell injury” (10). Each 
MC contains about 500,000 secretory granules filled with 
numerous biologically active molecules (11).

MC stimulation leads to secretion of numerous 
vasoactive, muscle contracting, neurosenzitizing and 
proinflammatory mediators (3,12). In particular, histamine 
causes muscle concentration, exocrine gland secretion and 
vasodilation; it also activates the hypothalamic-pituitary 
adrenal (HPA) axis (13), as does MC-derived IL-6 (14) 
and CRH (15). In fact, MCs have been implicated in the 
regulation of HPA axis both in the brain (16), and its 
equivalent in the skin (17,18).

MCs can secrete the content of individual granules (19)  
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or individual mediators, such as serotonin, selectively without 
degranulation (20). MCs can also communicate with neurons 
by transgranulation (21) or undergo “polarized” exocytosis of 
proteolytic enzymes at surface sites called “antibody-dependent 
degranulation synapse” (22). MCs can also secrete nanovesicles 
(exosomes) (23) containing many different biologically 
active molecules (24), in a manner that may be guided by 
antigens embedded in their phsopholipid envelope (25).  
Such exosomes could participate in immune (26,27) and 
neuropsychiatric diseases (28,29).

The ability of MCs to secrete some mediators selectively (30),  
permits MCs to participate in diverse processes without causing 
allergic or inflammatory reactions (12). For instance, we showed 
that IL-1 can stimulate selective release of IL-6 (31) and so 
did SCF (32). We also showed that CRH stimulated selective 
release of VEGF (33) and so did prostaglandin D2 (PGD2) (34), 
all without any degranulation. Taken together, available data 
suggest that MCs are capable of releasing a panoply of molecules 
that may participate in many pathophysiological processes 
such as innate immunity (1,35), autoimmunity (36), and 
neuroinflammation (37), but may also have immunomodulatory (38) 
functions.

Effect of stress

Emotional stress is the most common trigger of symptoms 
in patients with systemic mastocytosis, characterized by 
increased number and degree of activation of MCs (39). 
In one case, symptoms worsened with stress and there was 
elevated serum CRH levels, with bone marrow MCs express 
CRHR-1 (40). MCs (15) and other immune cells (41) can 
produce CRH (42). Amazingly, even corticosterone has 
been localized inside MC secretory granules (43). 

It is not well understood how animals “smell danger” 
or are attracted to their mates through odors since 
the olfactory nerve does not connect directly to the 
hypothalamus. We and others reported that stimulation of 
nasal MCs leads to activation of the HPA (44-46) driving 
the organism into a fight-or-flight mode. Recently olfactory 
and taste receptors were identified in subpopulations of 
human circulating leukocytes (47). MCs may turn out to 
also express such receptors since brain MCs were reported 
to be influenced by chemosensory cues associated with 
estrus induction (48).

Surprisingly, MC numbers and reactivity have been 
reported to undergo daily rhythmic variations (49) and the 
reactivity of individual MCs was further shown to follow 
a “circadian clock” (50,51). In this context, it is of interest 

that mast cell behavior is affected by the pineal through 
the expression of melatonin receptors and MCs release 
melatonin, themselves (52).

Excessive stress can lead to pathological outcomes in 
various tissues (53). Stress has been reported to induce 
inflammatory change in rat bladders (54), as well as selective 
release of VEGF (55), effects that are absent in MC deficient 
mice (56). Acute stress (57,58) and locally secreted CRH (59) 
activated MCs (53,59) leading to neurogenic inflammation 
with subsequent chronic nerve sensitization (60).

MCs (15), immune cells (41), human endometrium, 
intrauterine pregnancy tissues (61,62), and local nerve 
endings (42) can produce CRH (42). We reported high levels 
of CRH and tryptase in products of conception from women 
with habitual spontaneous abortions (63). Maternal stress has 
been also linked to preterm delivery (64) and high levels of 
CRH expression has been reported for placenta, decidua 
and fetal membranes, where it induces prostaglandin 
production and promotes labor (65). The decidua of women 
with high levels of stress have also been reported to have 
high number of tryptase-positive MC (66), as also reported 
in aborted deciduas (67). Endometriosis tissue has also been 
associated with high number of activated MCs (68), which 
were shown to be increased in response to stress which 
exacerbated endometriosis in a rat model (69).

Genitourinary MCs

MCs are present in animal and human bladder (70,71), 
prostate (72-75), uterus (76-79), penis (80,81), vagina 
(76,82) and placenta (83). However, their role in these 
tissues is unknown especially since they are not known 
to undergo allergic reactions. Uterine MCs are increased 
during pregnancy and may be important for reproductive 
processes (84,85). MCs can release muscle contracting 
and vasodilatory substances that could contribute to 
clitoral enlargement and uterine contractions (78,86,87).  
IgE-independent MC activation has been reported to 
augment contractility of guinea pig (88), mouse (89) and 
human (86) myometrium. Activation of MCs also leads to 
angiogenesis in the rat uterine cervix during pregnancy (90). 
MC degranulation also modulates cervical contractility as 
shown in the guinea pig (91).

Current evidence from clinical and laboratory studies 
confirms that MC play a central role in the pathophysiology 
of bladder pain syndrome/interstitial cystitis (BPS/IC) 
(92,93) and possibly prostate hyperplasia (74) and sterile 
prostate inflammation (73). Damaged or dysfunctional 
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urothelial cells produce cytokines, such as SCF, that can 
stimulate proliferation and/or activation of MCs (71). In fact, 
MCs are increased in the detrusor of BPS/IC (71,94-97),  
and are maximally activated by SCF (98,99) and nerve 
growth factor (NGF), which is increased in patients with 
BPS/IC (100). We have shown that CRH activates rat 
bladder MCs (101) and CRH is involved in signaling in 
feline bladder urothelial cells (102). In fact, CRH has been 
considered a mediator of emotional influences on bladder 
function (103).

Effect of sex hormones

Human MCs express estrogen receptors (104) activation 
of which increase MC stimulation (105,106). Estradiol 
also induced MC migration into the uterus and their 
degranulation (107). Treatment of mice with leutinizing 
hormone (LH), follicle stimulating hormone (FSH) 
or estradiol increased the number and extent of MC 
degranulation in the ovaries (108). Estrogen receptors are 
also expressed on bladder (109-111), and lung (112,113) 
MCs. Human MCs also express progesterone (114,115) and 
testosterone (116) receptors, but their activation appears to 
have an inhibitory effect.

One laboratory has reported gonadotropin-releasing 
hormone-like immunoreactive MCs in the habenula of 
doves (equivalent to the hypothalamic infundibulum in 
humans) (117), which increased during courting (118). MCs 
in ovarian, uterine and brain tissues change their histamine 
content throughout the rat estrus cycle; moreover, MCs are 
absent from the thalamus during pro-estrus but are present 
in the hypothalamus only during the estrus phase (119).

MC-derived mediators, especially histamine, are 
considered to be important in sexual arousal and coitus (120).  
Anecdotal information suggests that patients with 
mastocytosis or MC activation (3) may have increased 
libido. Uterine MCs were shown to have oxytocin 
receptors, activation of which prevented serotonin uptake 
and increased serotonin availability (121) that may positively 
affect sexual behavior. Circulating levels of oxytocin are 
known to increase during sexual arousal and orgasm in 
both men and women (122). It is interesting that intranasal 
oxytocin was reported to increase libido and related sexual 
behavior in a male subject (123).

Conclusions

MCs have been retained throughout the phylogenetic 

tree (124). Moreover, MC ability to produce numerous 
hormonal, immune and neural substances resemble that of 
the unicellular organism Tetrahymena dating from some 
500 million years ago (125,126). MCs are present in all 
mammals and may be necessary for survival of the species 
by regulating immunity (127), protecting the organism 
against external triggers (53), supporting pregnancy (128), 
augmenting delivery and also ensuring optimal conditions 
for procreation.
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