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Background: During the past decades, in radiotherapy, the dose distributions were calculated using density 
correction methods with pencil beam as type ‘a’ algorithm. The objectives of this study are to assess and 
evaluate the impact of dose distribution shift on the predicted secondary cancer risk (SCR), using modern 
advanced dose calculation algorithms, point kernel, as type ‘b’, which consider change in lateral electrons 
transport. 
Methods: Clinical examples of pediatric cranio-spinal irradiation patients were evaluated. For each case, 
two radiotherapy treatment plans with were generated using the same prescribed dose to the target resulting 
in different number of monitor units (MUs) per field. The dose distributions were calculated, respectively, 
using both algorithms types. A gamma index (γ) analysis was used to compare dose distribution in the lung. 
The organ equivalent dose (OED) has been calculated with three different models, the linear, the linear-
exponential and the plateau dose response curves. The excess absolute risk ratio (EAR) was also evaluated as 
(EAR = OED type ‘b’ / OED type ‘a’). 
Results: The γ analysis results indicated an acceptable dose distribution agreement of 95% with 3%/3 mm. 
Although, the γ-maps displayed dose displacement >1 mm around the healthy lungs. Compared to type ‘a’, 
the OED values from type ‘b’ dose distributions’ were about 8% to 16% higher, leading to an EAR ratio >1, 
ranged from 1.08 to 1.13 depending on SCR models. 
Conclusions: The shift of dose calculation in radiotherapy, according to the algorithm, can significantly 
influence the SCR prediction and the plan optimization, since OEDs are calculated from DVH for a specific 
treatment. The agreement between dose distribution and SCR prediction depends on dose response models 
and epidemiological data. In addition, the γ passing rates of 3%/3 mm does not translate the difference, up to 
15%, in the predictions of SCR resulting from alternative algorithms. Considering that modern algorithms 
are more accurate, showing more precisely the dose distributions, but that the prediction of absolute SCR is 
still very imprecise, only the EAR ratio could be used to rank radiotherapy plans.
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Introduction

The medulloblastoma, the most common central nervous 
system malignant tumor in children, requires cranial and 
spinal irradiations (1,2). The radiotherapy techniques 
for spinal region result in irradiation of large volumes of 
normal tissues to rather high doses (e.g., heart, lung and 
esophagus) (3). The routine evaluation of radiotherapy 
plans is performed by assessing physical parameters derived 
from dose volume histograms (DVH). In addition, based 
on DVH data, the radiobiological modelling allows to 
estimate the clinical outcomes of radiotherapy such as the 
tumor control probability (TCP) and the normal tissue 
complication probability (NTCP). Similarly, the secondary 
cancer risk (SCR) models in radiotherapy are also using 
the dosimetric data displayed on medical imaging to 
estimate this risk. Several approaches and models have 
been proposed for estimating the SCR (e.g., dose-responses 
relating to linear, linear-exponential, plateau and linear-
quadratic models) (4-9). Estimating the SCR can be used as 
a strategy to rank and optimize the treatment plan in order 
to limit the dose to the organs. The goal of this study is to 
estimate quantitatively the potential impact of the lateral 
electron transports modeling on radiation-induced second 
cancers prediction.

Methods

Dose calculation using CT medical imaging and plan 
comparison

Clinical examples of treatment plan for pediatric cranio-
spinal irradiation patients were used, as example, to 
evaluate the impact of dose calculation models on the SCR 
prediction for normal lungs. Thus, the study is based on the 
comparison between DVH from plans generated using two 
different dose calculation algorithms. The same prescribed 
dose to the target was considered in both plans resulting, 
however, in different number of monitor units (MUs) per 
field: the doses were calculated respectively using type 
‘a’ and type ‘b’ algorithms. Typing ‘a’ algorithm as pencil 
beam convolution with modified Batho’s method does 
not consider change in lateral electron transport and only 
takes account of scattered dose. This algorithm type was 
only used to generate and quantify differences between the 
two predictions of SCR. The type ‘b’ algorithm considers 
approximately the lateral electron transport as well as the 
scattered dose to calculate the delivered dose, which is 

translated into MUs. The anisotropic analytical algorithm 
(AAA) is the used type ‘b’ algorithm. All treatment plans 
were generated using the Eclipse® treatment planning 
system (TPS), (Varian Medical Systems, Palo Alto, CA, 
USA) (10-13). The dose distribution in CT-images from 
both plans were analyzed using gamma (γ) index to calculate 
the percentage of pixels of γ passing rates (95% of pixels 
with γ ≤1) (14).

Application of cancer risk models to radiotherapy plans

The excess absolute risk (EAR) estimation for an organ 
is based on the use of the DVH from radiotherapy plan. 
This is similar to equivalent uniform dose (EUD) concept 
to estimate TCP and NTCP. Figure 1 shows the use of 
physical parameters from DVH metrics to estimate the 
radiotherapy outcomes including TCP, NTCP and SCR. 

Modeling of SCR
The EAR in a small volume of an organ is expressed by a 
dose dependent function with an initial slope β, the risk 
equivalent dose as RED(D) and the function μ describing 
the change in EAR with age at exposure (agex) and age 
attainted (agea) using age related parameters (15):

EAR (D, agex, agea) = β.RED (D).μ(agex, agea) [1]

where RED is the dose-response relationship for radiation 
induced cancer in units of dose and β describes the slope 
of the dose response curve at low dose. The modifying 
function μ contains the population dependent variables, e.g., 
for age (not used for the present results):

μ(agex, agea) = exp{γe (agex – 30) + γa ln( agea/70)} [2]

where γe and γa are age modifying parameters. 
Using the Eq. [2], the fit parameters are gender averaged 

and centered at an age at exposure of 30 years and an 
attained age of 70 years. The βEAR and the age modifying 
parameters for different sites can be taken from Preston  
et al. 2007 (16). 

Estimating the SCR from dose distribution in CT-images
Using {vi, Di} from differential DVH, the EAR for a specific 
organ can be obtained as:

i
1 .( ) . . RED(D ) . (agex, agea)organ

i
i

EAR V D
VT

β µ= ∑  [3]

where VT is the total organ volume and the sum is taken 
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over all bins of the DVH. 
In this study, the risk estimates are applied to the same 

case, but using two DVHs from radiotherapy plans. Using 
the same parameters for the same patient (including gender, 
age at exposure and age attained), the EAR ratio for lung 
from both plans can be evaluated as:

type 'b' i
OED type 'b' 

type 'a'
type 'a' i

1 .( ) . . RED(D ) . (agex, agea)

1 .( ) . . RED(D ) . (agex, agea)
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i
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i
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We can describe the risk ratio, EAR, from both treatment 
plans as the organ equivalent dose (OED) ratios. The OED 
can be determined on the basis of an organ specific dose 
response relationship (RED) and from the DVH. The 
OED values are independent of the β, and the function μ. 
Thus, the use of EAR ratio avoids the uncertainties in the 
parameters needed in the Eq. [1]. 

In this study, only the lungs as organs at risk were 
included. The OED for linear model, linear-exponential 
model and plateau model were calculated respectively as: 

∑=
i

ii DV
VT

OED .1
linear

 
 [6]
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[8]

where α is a tissue specific parameter and δ is an organ 
specific dose response parameter. For lung the parameters 
were α =0.129 for linear exponential model and δ =0.139 for 
plateau model.

Results

The AAA showed more heterogeneous dose distribution 
compared to pencil beam method. Thus, the dose 
distribution for lungs were more heterogeneous using 
type ‘b’ algorithm compared to type ‘a’. In addition, the 
type ‘b’ predicted a significant dose difference to average 
lung dose by a factor of 1–1.1. Therefore, the OED was 
significantly increased predicting more risks. The Figure 2 
shows dose distributions for the lungs in frontal plan using, 
respectively, types ‘a’ and ‘b’ algorithms. The lower panel 
in Figure 2 shows 2D γ-maps plotted in the frontal plan. It 
can be seen that electron transports goes deeper through 
the normal lung tissues with a distance to agreement (DTA) 
varying from 2 to 8 mm and dose differences (∆Dose) of 
about ±3%. The Figure 3 shows a comparison of OED 
values and EAR ratio given by the three SCR models. It 
can be seen that the shift on DVH bins, resulting from 
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Figure 1 The use of physical parameters from cumulative dose volume histograms (cDVH), and differential dose volume histograms (dDVH) 
metrics, to estimate radiotherapy outcomes including toxicity and secondary cancer risk. EUD, equivalent uniform dose; OED, organ 
equivalent dose.
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type ‘b’, has a considerable influence on the OED and EAR  
values.

Discussion

The risk of secondary cancer should be more properly 
estimated by using more advanced algorithms producing 
more accurate DVH. The results presented in this 
paper suggest that the contribution of lateral electron 
transport worth to be included for the risk estimation of 
secondary cancers. The modern algorithms in radiation 
oncology are thus expected to calculate more accurately 
the dose distribution around the lungs. Indeed, they were 
recommended to calculate DVH for better estimating 
TCP/NTCP (17-19). The γ-maps confirmed the observed 
results from dose distribution, showing more dose in the 
lungs using type ‘b’ algorithm. For example, it can be seen 
in the Figure 2 that the isodose curves were more extended 
in the lateral direction >1 mm, leading to more dose deposit 
in normal tissues. 

However, regarding γ, it is interesting to note that 
there are also some other techniques to compare dose 
distributions more or less similarly to γ, such as delta 
envelope, chi-index. In this context, a caution should be 
done when comparing dose distribution with Monte Carlo 
(MC) to avoid the over/underestimated average γ-value 
due to the increase of the statistical noise level in the dose 
distributions (20-22).

Assuming that the DVH produced by type ‘b’ algorithm 
is the closest to the “real” situation, we note that the OEDs 
were significantly increased predicting more SCR compared 
with type ‘a’ algorithm. Consistently, the SCR models 
predict more EAR, about 1–1.2 times larger, than type ‘a’ 
algorithm. The predicted risk is low in terms of absolute 
value. However, for radiation protection purpose, the more 
trusted estimated risk with DVH including the contribution 
of electron transport is recommended, to rank and compare 
photon therapy plans or to compare with proton irradiation. 
Furthermore, attention should be paid to select the most 
appropriate SCR models. 
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Figure 2 Dose distributions, in frontal plan, around the left and right lungs. The doses were calculated, respectively, with type ‘a’ algorithm 
as pencil beam and type ‘b’ algorithm such as AAA. Lower panels illustrate 2D γ-map plotted in the frontal plan showing more dose in the 
lateral direction, with dose difference: ∆Dose ±3%. It can be seen that the electron transport goes deeper in the normal tissues with a DTA 
>1 mm. AAA, anisotropic analytical algorithm.
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Uncertainties of dose calculation algorithms and secondary 
cancer models

The use of dose calculation methods (type ‘a’) that compute 
the dose using only scattered dose would yield wrong results 
and somehow under estimate the SCR, in particular for 
lungs where the contribution of lateral electron transport 
in the dose distribution is significant. The delivered dose, 
to the isocentre from 3DRT irradiation technique, required 
more MUs (from 3% to 5%) using type ‘b’ taking account 
of lateral electron transport, as AAA algorithm, compared 
to former model as pencil beam (type ‘a’) when prescribing 
the same dose (23). 

Nevertheless, the more recent algorithms, as type 
‘c’, such as Acuros-XB is recommended to calculate the 
dose distribution (24). Thus, a more incertitude can be 
observed in the choice of dose calculation algorithms. The 
objective of this study is to assess the incertitude due to 
dose calculation algorithms types ‘a’ and ‘b’ as well as OED 
models. The much more modern engine, could be also 
used to compute DVH and OED, but it is also not near to 
reference standard dose calculation such as MC.

By principle, different dose distribution in an organ 
could yield the same OED, if they are able to cause the 
same radiation induced cancer incidence. Then, the EAR as 
a function of OED and other patient related parameters, as 
age parameters, can be estimated from radiotherapy plans. 
However, the uncertainties are still very high due to the 
unknown processes of the induction of secondary carcinoma 
and sarcoma. More recently, Nguyen et al. 2015, showed that 
the uncertainties in the dose response curves could exceed 
100% for the prediction of second cancer risk. However, 

if the strategy is to compare treatment plans, the precision 
is around 10% (25). Thus, the accuracy and precision of 
the dose calculation, as well as more adapted parameters 
for OED and EAR are well in the scope of such a precision 
level, and should be recommended to better estimate  
the SCR.

Conclusions

The precision of secondary cancers prediction depends 
on the dose distribution using medical imaging and dose 
response models as well as epidemiological data. We advise 
to use the more advanced photon dose algorithms with 
3D heterogeneity corrections as models including Grid-
based Boltzmann Transport equation or MC algorithms. 
Present SCR models still have poor absolute capacities of 
prediction, however, ratio may be used with caution to rank 
radiotherapy plans.
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