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Introduction

Dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) is a noninvasive widely used method of 
investigating the tumour vasculature environment.

For a brief description, the measurement technique 
consists of repeated (dynamic) T1-weighted acquisitions 
following a bolus injection of low-molecular weight 
gadolinium-chelate contrast agent (Gd). As the measured 
signal enhancement is related to the uptake of Gd in the 
investigated tissues vasculature, the method is sensitive 
to the quality of tumour vascularization and related 
characteristics of tumour angiogenesis, like vascular 
permeability, extracellular extravascular space, vascular 
volume, and blood flow. However, these measurements 

suffer from considerable variation in acquisition methods, 
analysis approaches and operator procedure, making very 
difficult direct comparison of the results in multi-centric 
trials. As a result of this, several studies demonstrated 
higher diagnostic performance using pharmacokinetic (PK) 
modelling. The aim for this quantitative approach has been 
to overcome the unwanted dependences like the subject 
inter- and intra-variability, the inter observer variability, 
so that the derived parameters only reflect the local tissue 
properties. The added value of this quantitative method for 
tissue characterization has been shown in the prostate, liver, 
head and neck (1-3).

In recent years, the development of novel anti-
angiogenic and anti-vascular cancer therapies has led 
to important considerations regarding the potentiality 
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for DCE-MRI measurement to be used as an imaging 
biomarker of drug efficacy in clinical trials of angiogenesis 
inhibitors, because conventional end points based on 
reduction in tumour size may be inadequate for evaluating 
the clinical response. However, the results published by 
many investigators, particularly in clinical studies (4) are 
not directly comparable because of significant discrepancies 
in equipment, data acquisition protocol, PK model used, 
parameter estimation methods and quantitative imaging 
endpoints.

In 2004, the NCI CIP MR Workshop on translational 
research in cancer published guidance on how and under 
which conditions to apply these techniques for use in phase 
1/2a trials of anti-cancer therapeutics affecting tumour 
vascular function (5). An European update of this guideline 
was published by Leach et al. (6), and more recently, 
guidance to practical aspects for successfully implementing 
the methodology was presented by the Quantitative 
Imaging Biomarkers Alliance (QIBA) group (7).

In the present context where there is no global consensus 
on standardized software, data analysis is proposed to be 
performed centrally. What usually happens is that the 
solution comes either from the trial investigator research 
group using custom-designed validated software, or from 
partnering with a specialized software company. As imaging 
practicians of participating sites, we experienced that 
this situation does not clearly support the use of DCE-
MRI for further developments, because of the lack of 
facilities to access or to implement the methodology into 
clinical practice. The implementation may require long 
term investment in resources that could not be reached at 
most centers. Combined with the apparent complexity to 
integrate the post-processing task into the routine reviewing 
and reporting process, outside of academic institutions, 
there are likely to be few radiologists in clinical practice 
who will be familiar or enthusiast with the use of these 
software.

Therefore, the purpose of the present project is 
threefold: (I) to present standardized analysis methods 
for the quantification of DCE-MRI data to achieve the 
required compliance level of multi-centric trials; (II) to 
validate the quality performance of the methods; (III) to 
provide an easy-to-use and accessible solution for routine 
implementation into clinical practice.

Existing analysis software

Among existing medical software, several custom-

des igned post-process ing  tool s  have  been made 
available for free for educational and research purposes  
[Toppcat (8), DcemriS4 (9), DATforDCEMRI (10), 
DCEMRI.jl (11) …]. These in-house solutions are 
commonly a collection of functions built  under a 
programming environment such as Matlab, LabView or 
IDL. They are mostly designed for a specific study and with 
limited functionalities, such as reading and reporting in 
DICOM format, incorporating AIF data, or integrating the 
T1 map calculation, thus involving expertise and programing 
competence for clinical implementation in order to 
meet the global consensus requirements on standardized 
software.

Beside this, scanner and software vendors have started 
to provide a complete PACS integrated clinical solution. 
In this concept, the DCE-MRI post-processing is easily 
performed and ready for interpretation, and results may 
be integrated into the formatted reporting of studies. 
Dedicated applications like Tissue 4D (Siemens), DCE 
Tool (OsiriX), iCAD (Nashua), DynaCAD (Invivo), GenIQ 
(GE), T1 permeability (Philips) and Olea Sphere (Olea 
Medical Solutions Inc.) are capable to perform DCE-
MRI analysis based on PK modelling methods. Although 
all of these solutions can incorporate a common basic 
Tofts model, only GenIQ, Intetellispace and Olea Sphere 
can process individual AIF measurement as expected 
in anti-cancer therapy trials, while Aegis and DynaCad 
did not implement a T1 mapping process. Beyond these 
prerequisite components, multiple differences in the 
analysis approaches, such as the determination of contrast 
arrival time, the fit optimization method and the definition 
of noise may also have significant influence on the 
calculation of the PK parameters (12-14). Consequently, 
the standardization of the methods and analysis algorithms 
used remains a major challenge, and wil l  require 
significant collaboration between manufacturers to adopt 
the same methodology to achieve an “industry standards”, 
or to allow flexible parametrization of the analysis 
protocol, with enough open access to implement specific 
and novel analysis approaches, while preserving some 
proprietary components. In the present situation where it 
is likely a difficult commercial issue for industry to adopt 
such a policy, we think that TumourMetrics could be a 
standardized clinical solution.

Key features of TumourMetrics

For a brief overview, the TumourMetrics module for 
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DCE-MRI is a comprehensive software application 
for the quantitative evaluation of DCE-MRI studies 
in clinical practice. The base configuration runs as 
plugins in the PACS viewer, but it can also be made 
standalone in any external local PC workspace. The 
intensive computational tasks needed for parameter maps 
calculations are programmed in C++, whereas tasks like 
viewing, segmentation, statistics or appropriate analysis, 
and reporting, that require operator interactivity on 
the resulted maps runs as plugins in ImageJ, a public 
domain open source Java-based image processing 
program authored and maintained by Wayne Rasband 
at the National Institute of Mental Health (rsb.info.nih.
gov/ij/).

Beyond the main task common to PK analysis software, 
several features in the workflow make TumourMetrics 
suitable to be used as a platform for comprehensive analysis 
and diagnostic decision support:
	Fully compliant with the QIBA v.1.0 profile (5).
	Quality performance of the proposed methodology 

validated using the QIBA test data.
	Can be standalone or integrated to PACS for 

automatic reading and reporting.
	Ful l  automated  workf low,  excepted  in  the 

determination of the measured AIF, where the 
segmentation of the feeding artery is performed 
semi-automatically. Because an inadequate AIF 
severely impacts on the reliability of DCE-MRI 
parameters, this step needs to be validated by the 
operator. The key feature of the automated process 
relies on the recognition of the study type contained 
in the Dicom study description (e.g., prostate, 
breast). TumourMetrics package provides study 
configuration files for breast, prostate, head and 
neck and research studies. All analysis parameters 
are set in these files to perform automatically the 
QA and the calculation workflow. Other parameters 
like the r1 relaxivity of Gd contrast agent are read in 
allocated data files during the processing.

	Flexible design to meet the specificity of new 
study trials and the continual evolution of analysis 
approaches.

	Innovative parametric classification of suspicious 
voxels, semi-automated ROI selection tools, 
improving the inter-observer reproducibility.

	Total volume parametric segmentation with 
histogram analysis.

	Including a versatile numeric phantom generator 

of dynamic and T1 mapping series based on 
Buckley (15) data to enable comparison with other 
analysis methods or with new model.

	No format incompatibility issues to import studies 
from main scanner manufacturers.

	Not requiring dedicated workstation, special training 
and prerequisite data manipulation (i.e., format 
conversion) imposed by many of commercial or 
research software.

Methods

Description of the workflow

Input
Transfer of the DCE-MRI and T1 mapping series in the 
working space:
	Directly from PACS viewer, with variable levels of 

integration.
	Or manually from all other supports.

Running of PK analysis
	Identification of the study type to apply the pre-defined 

analysis protocols. Each protocol is a customizable text 
file that contains needed information to perform the 
analysis automatically.

	Identification of series used for variable flip angle (FA) 
method.

	Quality assurance checking
	Motion correction (optional): make use of Elastix (16).
	T10 mapping and conversion to Gd concentration.
	Application of the AIF method defined in the protocol.
	Fitting routine.
	Generate parametric images with color interpretation.
	Send the results to PACS.

Interpretation and reporting
	Direct launch to ImageJ graphical user interface (GUI).
	User login.
	Reporting of findings to PACS.

Output: DICOM formatted color-coded parameter maps
	Ktrans (min−1): volume transfer constant. This parameter 

is the most often used DCE-MRI end-point for early 
phase trials of anti-cancer therapy.

	Kep (min−1): symmetric exchange rate of contrast agent 
across the capillary wall. The ratio of Ktrans by Kep is 
Ѵe, the volume fraction of extra-vascular extra-cellular 
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space (EES) in the voxel.
	Ѵp: is the volume fraction of blood plasma within a 

voxel, related directly to angiogenesis.
	Z0 (s): is the central reduced value of the arrival time t0, 

a better means to detect an early enhancement, which is 
common in tumours.

	WO (%): washout expressed as (Swash-in − Slate)/Slate, 
where Swash-in is the maximal enhancement and Slate the 
enhancement at last measurement.

	IAUGCbn: is the blood normalized initial (over 60 min 
by default) area under the Gd curve in the voxel.

T10 determination

The implemented algorithm makes use of the 3D 
spoiled gradient-echo (SPGRE) with variable FA known 
as DESPOT1 (17).  The method can include 2 to  
10 measurements using different FAs θ from which T10 maps 
with the same coverage as DCE-MRI is achieved. In the 
analysis protocol, T10 value can also be fixed for specific need.

Conversion to Gd concentration

For a typical SPGRE acquisition, the conversion of relative 
enhancement S(t)/S0 to concentration of Gd in tissue Ct(t) 
is determined by:
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where E=e−TR/T10, r1 is the relaxivity of Gd chelate and θ is 
the acquisition FA.

AIF methods

The extended Tofts model (described below) requires 
that Cp, the concentration-time course of contrast agent 
in the vascular compartment is modelled by an arterial 
input function (AIF) which reflects the blood supply to the 
examined tissue. The analysis protocol can be set to use a 
subject-specific AIF by direct measurement, or a generic 
mathematic function.

Subject-specific AIF
For a better reproducibility, we implemented a semi-

automated search algorithm to generate a locally 
optimal AIF. The method consists first of a user-defined 
box that delimits the search region to the input vessels. 
By using the ImageJ GUI, the task is assisted by an 
automatic display of the subtraction series presenting 
the maximal arterial  enhancement,  this helps the 
operator to locate easily the vascular structure before 
defining the box. Then the search algorithm identifies 
all voxels above a signal intensity threshold (by default 
90% of the whole maximum), and using a region 
growing method, extends the selection in the whole 
imaging volume entering in the threshold. Next, the Gd 
concentrations under the selection were corrected to 
plasma concentrations using:

( )/ 1plama bloodAIF AIF Htc= −

where by default, the hematocrit Hct is 0.45, but is 
adjustable in GUI. Then, Cp is calculated using Eq. [1], by 
assuming an arterial blood T10 of 1,440 ms.

A mathematical modelling of this measured AIF is then 
calculated using bi-exponential (by default), Orton (18) or 
mixed model (19):

1 0 1 0 2 2 0( ) [ ( ) ( ( )) ( ( ))]c
pC t D a t t exp m t t a exp m t t= − − − + − −

	
[2]

with D (mmol/kg) the dose of contrast agent, t0 the 
arrival time in tissue, a1, a2 describing the exponential 
components  ampli tude with decay m 1,  m 2,  and c 
simulating the bolus dispersion effect, which equals 0 
for bi-exponential, 1 for Orton and any other values for 
mixed models.

The purpose of this modelling is to produce an AIF free 
of pulsatile and body motion artifact. All options are let 
open, including the possibility to choose a standard AIF 
(below), or the model-free measurement, depending on the 
study design. This should be set by special consensus in the 
study protocol.

Standard and population-averaged AIF
If AIF cannot be sampled adequately, a more robust 
parameter estimate can be achieved by using a population-
averaged AIF. From the literature, we optionally included 
for different range of temporal resolution (TS) 3 commonly 
used bi-exponential AIF {c=0 in Eq. [2]} obtained from 
healthy general population:
	Weinmann (20): (TS >20 s) a1 =3.99 kg/L, a2 =4.78 kg/L, 

m1 =0.144 min−1, m2 =0.0111 min−1.
	Fritz-Hansen (21): (6< TS <20 s) a1 =24 kg/L, 
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a2 =6.2 kg/L, m1 =3.0 min−1, m2 =0.016 min−1.
	Parker (22): (TS <6 s) a1 =65 kg/L, a2 =13 kg/L, 

m1 =4.9 min−1, m2 =0.08 min−1.
A custom designed AIF can also be set in the analysis 

protocol.

Fitting algorithm and strategy

The general consensus for clinical trials is to apply the 
general bi-compartmental PK model described by Tofts 
et al. (23). In theory, the model considers the exchange 
between plasmatic and EES compartments within the 
capillary endothelium acting as a symmetric semi-
permeable membrane. Therefore, under the assumption 
that the contrast agent is well-mixed in the blood plasma, 
the equilibrium is described by:
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For a bi-exponential AIF model (2), the analytic solution 
of this differential equation is:
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where kep =Ktrans/Ѵe is symmetric exchange rate of contrast 
agent across the capillary wall.

This time equation directly relates the measured 
concentration data to model parameters Ktrans, Kep and Ѵp, 
as well as t0, which have to be extracted using a non-linear 
fitting algorithm (bellow).

For any forms of AIF model, the general solution of (3) 
is written:
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and usually, it is calculated using deconvolution techniques 
via the transfer function:
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where iω is the variable in frequency domain.
In time or in frequency domain, two fitting routines 

that can be set freely in the analysis protocol have been 
implemented in C++ for rapid pixel-wise estimation of 
the model parameters. We included the commonly used 

Levenberg-Marquardt (LM) algorithm (24) and adapted 
the BOBYQA algorithm (25) which was initially written in 
FORTRAN. What makes the difference is the way in which 
the iterative steps minimize the χ2 to approach the global 
best-fit: the LM is a “line search” method which determines 
directionally the value of fitting parameters, whereas 
BOBYQA uses the trust region algorithm to minimize χ2 
within small regions surrounding the current estimate of 
the solution and is less likely to find local minima, but is 
more computationally demanding.

Report of error estimate

Estimates of uncertainty are reported using RMS (root 
mean square) error map for each fitting parameter. 
Additionally, all relevant steps in the fitting process (number 
of iterations, χ2, uncertainty on parameter estimate, 
fit failures…) can be inspected in a text file for QA or 
debugging purpose.

Parametric color maps

The pre-contrast images are used for fusion with overlay 
colors. The analysis protocol contains flexible color cut-
offs for each output parameters described above. These 
cut-offs should be pre-defined as the standard deviation 
SD in normal like tissue involved in the tumour type, i.e., 
by measuring them in breast normal glandular tissue, or 
arbitrarily in the peripheral normal zone of the prostate, 
so that sub-normal voxels can be detected and classified 
into 4 color-coded subsets: blue-green-red for parameter 
values exceeding 1SD-2SD-3SD, and below 1SD no color 
is attributed. As a result of this definition, subset0 is the 
whole histogram volume, subsets1 include all the color-
coded voxels, subset2 cumulate the green and red, subset3 is 
red. These cut-offs act as “scaling” or “clustering” purpose, 
and do nothing to change the quantification results, but 
have consequent impact on the computer-assisting method 
described next.

Viewing and reporting

The GUI (Figure 1) is composed of multiple images 
stacks which allows easy 4-dimensional inspection of 
parametric mapping in synchronization with the subtraction 
images, and auxiliary windows for tools, in-line curve 
display of enhancement curve over 3×3 voxels cursor, and 
segmentation results. Segmentations can be performed 



501Quantitative Imaging in Medicine and Surgery, Vol 7, No 5 October 2017

© Quantitative Imaging in Medicine and Surgery. All rights reserved. Quant Imaging Med Surg 2017;7(5):496-510qims.amegroups.com

semi-automatically on the tumour total volume and on hot 
spot ROI, and can be inspected and readjusted manually in 
consistence with an edit base validation protocol.

The “hot-spot” method differs from the classical 
assessment in that the parameter calculations are not 
averaged over a user-dependent ROI, but rather the user 
locates a color-coded seed-point from which a region 
growing algorithm segments a contiguous region that most 
highly characterizes the tumour. With this method, the 
hot-spot result is the average of parameter values in the 
segmented voxels, and is likely to be more reproducible.

In the total volume method, the whole tumour is 

enclosed inside a user-defined bounding box using assistance 
of orthogonal views. Parameter values in the resulted 
selection are then plotted using single- or bi-parameters 
(Ktrans vs. Kep) histograms, showing the classification of 
voxels in subsets. Functional volume response can also be 
assessed on the blended histograms, and is proposed as an 
approach to describe quantitatively the functional changes 
in tumour along follow-up.

Quality performance validation

The initiative to provide synthetic DCE-MRI data is 
already being undertaken by Buckley (15) and the QIBA 
group. For our validation, both phantoms were used, the 
difference is that the Buckley data simulates a realistic breast 
tumour, but requires to be converted to DICOM images, 
whereas the QIBA data is a ready-for-use DICOM data set, 
except that parameter space in low values of Ktrans may be 
less typical of tumour characteristics. The rationale behind 
this extreme condition could be to provide a test that allows 
the estimate of uncertainty and quantitation limit, and to 
handle the occurrence of fitting failure, as Ktrans =0 min−1 or 
extremely low is ill-conditioned, so precluding any precision 
for Ѵe or Kep in the PK model.

The QIBA data consists of 2 sets of DICOM part  
10 synthetic noise-free images corresponding to the basic 
Tofts and the extended Tofts model. To test basic Tofts, we 
used the QIBA v06 RevC phantom provided by RSNA (26). 
The simulation parameters are: 0.5 s resolution time, 1,321 
sampling, 30° FA, 5 ms TR, 1,000 ms T10 in tissue, 1,440 ms  
T10 in blood, 45% hematocrit. Injection of contrast agent 
occurred at 60 seconds, assuming a T1 relaxivity of the 
gadolinium contrast agent of 4.5 mmol−1 sec-1. The test image 
is organized as a top and a bottom 50×10 pixels trips between 
which patches of 10×10 pixels are allocated for combinations 
of Ktrans and Ѵe in the following scheme: Ktrans varies along 
Y-axis over (0.01, 0.02, 0.05, 0.1, 0.2, 0.35) min−1 and Ѵe 
takes values (0.01, 0.05, 0.1, 0.2, 0.5) along X-axis. The top-
left 10×10 pixels strip also contains the peak of the vascular 
region and the time label and the top-right 25×10 pixels 
correspond to ill-conditioning (Ktrans =0, Ѵe =0.5). Finally, 
the vascular region is the bottom 50×10 pixels strip of the 
image.

For the extended Tofts phantom, we used the dcemri_
testdata_v2 provided by RSNA (27). Related to the first 
phantom, differences in the parameterization are: 0.5 s  
resolution time, 661 sampling and 25° FA. The data 
contains 10×10 pixels to patch each combination of Ktrans, Ѵe  

Figure 1 GUI for visualization and analysis. Screen capture in 
the course of hot-spot ROI approach: in this example, the user 
reviewed the DCE-MRI parametric images in synchronization with 
subtraction images, and focused on the lesion image that showed 
the largest area colored with the most significant Ktrans value [1]. 
Clicking inside this area with the threshold tool [2] automatically 
created the ROI that contains all contiguous voxels with Ktrans equal 
or above the pointed cutoff value. The user confirmed the ROI and 
clicked the plot tool [3] to have a display of the measured kinetic 
curve, the model best fit and its parameters. The finding was then 
added to report [4] with the reference and orthogonal projection 
images [5]. GUI, graphical user interface; DCE-MRI, dynamic 
contrast-enhanced magnetic resonance imaging.
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and Ѵp in the following scheme: Ktrans varies along X-axis 
over (0, 0.01, 0.02, 0.05, 0.1, 0.2) min−1, Ѵe takes values  
(0.1, 0.2, 0.5) recurrently along Y-axis, while Ѵp takes 
(0.001, 0.005, 0.01, 0.02, 0.05, 0.1) for each recurrence of 
Ѵe. The vascular region is the bottom 60×20 pixels strip of 
the image.

Buckley’s data has two sets, one simulating the breast 
tumour and the other the brain meningioma response, 
both consisting in an AIF and 13 concentration curves 
using different combinations of Ktrans, Ѵe and Ѵp, with 
a resolution time of 1 s and 301 samplings. In this work, 
we present the results for breast data with an extension of 
the original parameter space by 2 additional curves with 
different Ѵe, giving 1 AIF and 15 combinations for the 
extended Tofts model (Figure 2). To obtain the DCE-MRI 
images compatible with current clinical use, we generated 
a dynamic set of phantom images as well as a set of variable 
FA images for T1 mapping. The concentration data were 
first converted to MR signal intensities as described by the 
Bloch equation of spoiled gradient-echo sequence. Each 
time-intensity curve was patched into 64×64 pixels, giving 
a 256² phantom image and, repeating this allocation for 
each time points, we obtained the dynamic series images. 
Subsequently, variable experimental conditions that could 
affect the performance of the PK quantification software 
can be incorporated. The final phantom can include 
customizable perturbation extends towards the image 
noise, the tissue native T1, the overall onset time, the time 
delay between arterial input and tissue vasculature, and the 
measurement protocol (time resolution, repetition time, 
echo time, FA). In the first experiment, we incorporated 
4 tissue T10 (300, 600, 900 and 1,200 ms) arranged 2×2 
per patch, and assumed an equilibrium magnetization of 
5,000, 30° FA, 4.63 ms TR, 1,440 ms T10 in blood and 45% 
hematocrit. In the second experiment, a noise of σ =0.2 was 
added.

In our routine workflow, TumourMetrics has now been 
evaluated as a diagnostic aid tool for multi-parametric 
assessment of tumours in prostate, breast and head and 
neck. We also made the software available to the European 
MR section of EORTC Imaging Group, and at the time 
of writing, a multi-centric trial (EORTC 90111) is under 
our central analysis. The last demonstration is a case which 
shows the concept for clinical application.

For all experiments, we used the subject-specific AIF 
with deconvolution method (as suggested in the QIBA 
profile) and the Bobyqa fitting algorithm which showed 
the best results in the tested parameter space of phantoms. 

In the fitting process, the values of the parameters were 
constrained within upper and lower bounds of (0.001, 1.8) for 
Ktrans, (0.01, 1.0) for Ѵe, and if applicable (0.001, 1) for Ѵp.  
RMS errors and intraclass correlation coefficients (ICCs) were 
calculated to determine the bias and the absolute agreement 
between estimates and true parameters value. A 3.4 GHz  
Intel Core i7-2600 running on Windows 7 was used.

Results

QIBA basic Tofts data

The computation time to fit all the voxels was about 8 s. 
Figure 3 presents a scaled color map of the estimates and 
the associated errors expressed in % difference to known 
truth values. The % errors on Ktrans varied within (−15.2, 5.7),  
with a RMS error of 1.9%. Largest errors occurred for 
2 points in the region of low Ѵe values. % errors for Ѵe 
were within (−15.3, 5.4) with RMS error of 2.2%, and were 
largest for 3 points in the region of high Ktrans. In this tested 
parameter space, both parameters were correlated to true 
values with ICCs >0.995.

QIBA extended Tofts data

The computation time was 52 s. As shown in Figure 4, the 
% error to known truth was from (−8, 23) for Ktrans, (−27, 50)  
for Ѵe and (−4.6, >100) for Ѵp. In the same order, the 
RMS error was 0.9%, 23% and 0.7% with ICCs of 0.997, 
0.76 and 0.998. Largest fit errors could be explained by ill-
fitting condition at low Ktrans values, except that this strong 
dependence between Ktrans and Ѵe had little influence on 
Ѵp, for which the error was rather overemphasized when 
expressed relatively to very low reference values. Also, 
the equilibrium magnetization used to simulate these data 
was relatively low, thus resulting in bad discretization of 
low signal, and increased the uncertainty of Ѵe estimate 
as pointed by the poor R coefficient. Ktrans and Ѵp didn’t 
suffer from this effect because their estimation relies 
predominantly on the initial high intensities part of 
enhancement curves.

Buckley breast data

A complete data set including 2 optimized FAs images 
was generated. The value of these FAs was determined 
according to DESPOT1 by assuming a T1 of 900 ms in 
tissue and an acquisition TR of 5.5 ms. The computation 
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time to fit the 256² voxels was about 164 s. Color map 
images representing the measured parameter values and the 
associated % error in noise-free and noise-added cases are 
shown in Figure 5, while the quantification results can be 
compared in Figure 6.

In the noise-free case measured on tissue T1 of 900 ms,  
the % error to known truth was from (−15, 7.9) for Ktrans, 
(−45, 4.6) for Ѵe and (−49, 29,200) for Ѵp. In the same 
order, the RMS error was 2.1%, 3.2% and 8.2% with 
ICCs of 0.94, 0.89 and 0.87. In the Ktrans parameter space, 
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excepted for slight overestimation in 2 extreme conditions 
(Ktrans very low and Ѵp highest), all estimates were 
systematically underestimated with a maximum error in the 
region of low Ѵp values. In the Ѵe parameter space, the 
estimates matched well their true value except when Ktrans 
is very low, situation already met previously. Next for Ѵp, 
again the largest overestimated error was related to its very 
low simulated value, so there is no substantive concern, 
but the underestimation related to low Ktrans values should 
be much more significant, when related to the results for 
Ktrans, because this shows that even with a resolution time 
of 1 s, the extended Tofts model wasn’t accurate enough 
in resolving the ambiguous perfusion and permeability 
meaning of Ktrans. So, we think that when using the extended 
Tofts model, the interpretation of Ktrans should be carefully 
related to Ѵp in terms of dependence.

Next for the determination of T1, the values matched 
the true data very accurately within a range of 0.3 to 1.44 s, 
scoring a maximum error of −2.8%, RMS of 0.87 and ICC 
of 0.999. At 1.6 s, the linearity began to be impaired with 
an error of −12%. The effect of the tissue native T1 on the 
accuracy of PK parameters is presented by the error bars in 
Figure 6A, which shows that the influence exists, but caused 
minor errors compared to PK model fitting errors.

Finally, a noise of σ =0.2 was added to the phantom to 
test the precision of our quantification. The parametric 
maps were analyzed using the ROI selection tools supplied 
by our GUI. The parameter values in the ROI were 
averaged in the corresponding patch and reported with 
the associated standard deviation (SD) in Figure 6B. The 
results showed no significant difference between the noise-
free values and the noise-added means, and the variances 
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Figure 5 Validation using the Buckley breast data, noise-free (A,B) and with σ =0.2 noise (C,D). (A,C) Parametric map of Ktrans, Ѵe, Ѵp and 
T1. (B,D) Accuracy of the quantifications expressed as % differences to the true values and presented in scaled color map.
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expressed as SD ×100/true value indicated that a noise SD 
of 5 (1/σ) propagated a typical error of the order of 10% on 
the PK parameter estimates. Also, the influence of noise on 
T1 determination was to a lesser extend similar, scoring a 
variance of 6% (Figure 5C).

Example with clinical data

We report here a case from EORTC 90111-24111 
multicenter trial relating metabolic response after 2 weeks 
of treatment with neo-adjuvant afatinib in squamous cell 
carcinoma of the head and neck. Morphologic conventional 
MRI, diffusion weighted imaging (DWI) and DCE-MRI 
were acquired at baseline and after treatment 1 day before 

surgery with respect to a standardized imaging guideline. 
The analysis protocol was setup to include individual AIF 
measurement, T1 mapping, noise filter, the extended Tofts 
model and the BOBYQA fitting algorithm. The DCE-
MRI data was acquired with a resolution time of 3.9 s, 
sampling 64 series with an imaging matrix of 192² pixels 
×20 slices. The computation time to process all the 737,280 
voxels was about 260 s. The resulted parametric response 
maps were assessed using the parameter values measured 
in hot-spot ROI and total volume histogram clustered by 
a cutoff value of 0.3 for Ktrans and 0.5 for Kep as described 
above. Figure 7 shows the analysis reports at baseline and 
after treatment from the same operator. Despite the semi-
automated segmentation method intended to reduce the 

Figure 6 Validation of Buckley breast data using the extended Tofts model. For the noise-free and noise-added set: (A) true values and the 
measured values in the 15 simulated curves, the error bar (red) representing the standard deviation induced by noise. (B) Bias expressed as 
the % difference between measured and true parameter values. The variance represented by the error bars refers to the standard deviation 
scaled in % to the true value. For the noise-added data (red), the variance is induced by noise, while for the noise-free data (green) the 
variance represents the effect of variable native T1. (C) Compares the variances induced by noise when using a 3×3 kernel average filter.
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observer variability in the selection of the input vessels, 
the AIF differed significantly between the two visits. Such 
individual variations in AIF measurement has been reported 
(28,29), and should be independent of operator, especially 
since the 2 segmentations appeared very similar. In this 
example, the analysis with hot- spot showed minor increase 
of Ktrans (2%), whereas Ѵe decreased by 18%. When 
accessed by the parametric volume change, the tumour size 
decreased globally, except in the high Ktrans and higher Kep 
values. At the same time, the conventional morphologic 
evaluation showed a discreet reduction of the tumour size 
(1.7 cm × 2 cm vs. 1.5 cm × 1.6 cm). These findings suggest 
heterogeneous changes in the tumour vascularity, but in 
the context of this trial, we are not able to conclude what 
represents the therapeutic meaning of these changes. This 
is our first experience using the TumourMetrics software in 
multicenter clinical trial, with the purpose first to validate 
the reliability and the usability of this analysis tool in 
clinical practice and multicentric clinical research and, if the 
condition is satisfied, to validate the potential use of DCE-
MRI as a biomarker of treatment response.

Discussion

Globally, our quantification method estimated the parameters 
accurately, unless there are extreme circumstances where 
Ktrans meets a small Ѵe <0.05, and vice-versa when 
Ѵe gathers with very small Ktrans <0.01. The situation 
between Ktrans and Ѵp is that they are competing against 
each other when the balance is becoming unequal, while 
keeping their respective proportionality towards true 
values. So, we recommend special caution when using the 
extended Tofts in the clinical achievable time resolution 
(3 s for a best), because the conflict between Ktrans and Ѵp  
is increasing with the time resolution (30,31), and both 
parameters should be reported. For this reason, the QIBA 
profile recommends the use of basic Tofts. We cannot say in 
the scope of this study if using the basic model to quantify 
high resolution time data if Ѵp exists is more accurate or 
clinically relevant, given that the tumours vascularization 
is an essential micro-environmental indication for anti-
vascular and radiotherapy treatments. Large clinical trials 
are needed to validate the approach, and this is what 

A

B

C

Baseline Follow up

Parametric Response Map

Figure 7 Example of treatment response assessment: analysis reports of a squamous cell carcinoma before and after 2 weeks of neo-adjuvant 
treatment with (A) semi-automated AIF measurement, (B) hot-spot ROI analysis, (C) total volume histogram, and at right the proposed 
parametric response map of Ktrans and Kep to assess the total tumour volume change. AIF, arterial input function.
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the present project would be aimed. In the meantime, 
simulation studies with our numeric phantom are under 
investigation to help understanding this issue.

Most clinical CAD software applies a smoothing filter 
on DCE-MRI data to reduce the noise effect, thus our 
software also incorporated this option in the setting of 
analysis protocol. As shown in Figure 6C, the filter globally 
reduced the % variance to values lesser than the errors on 
parameters.

Regarding the advantages of TumourMetrics, we 
acknowledge that in clinical practice, other analysis tools 
such as those provided by MR scanner vendors may be 
fully or partly compliant with QIBA and could be equally 
efficient as for quality performance. At our knowledge, 
there was not QIBA test data validation using these clinical 
solutions that has been published to make the comparison. 
In a recent study, Beuzit et al. compared the accuracy and 
reproducibility among five of mostly used clinical software 
using in-house simulated data and clinical data (32). Their 
results showed significant errors in calculated parameters 
and poor inter-software reproducibility. This variability 
may be mainly explained by the different methods used to 
process all steps of parameters quantification, given that 
some of these were not fully compliant with the QIBA 
recommendations.

In our work, we used publicly available simulated data. 
Assuming that the method used by Beuzit et al. for the 
generation of in-house simulated data was the same, a 
rough comparison of ICCs could be made: for our Buckley 
data ICCs was 0.94 for Ktrans and 0.89 for Ѵe, while the 
overall ICCs yielded by Beuzit et al. were respectively 0.5 
and 0.67.

Conclusions

We still emphasize that our objective was not to demonstrate 
that our software is doing better than other commercial or 
non-commercial software, but to provide a reliable freely 
accessible DCE-MRI post-processing software that firstly 
ensures the compliance with the standardization of analysis 
methods, and secondly achieves an easy integration of 
DCE-MRI in routine clinical practice, but also as a clinical 
research tool. In our knowledge, there is no open source 
and freely accessible software application that can achieve 
these objectives by dealing with the needs of community 
radiologists.

The package includes both the PK quantification of 
DCE-MRI data and a straightforward interpretation GUI 

which limits the inter-operator variability. The software 
has been first designed for easy integration into the clinical 
workflow. At our radiology department, TumourMetrics 
runs as a plugin in the diagnostic workstation and provides 
means for complete interpretation of breast and prostate 
studies without the need of dedicated workstation. By 
selecting the patient study from the PACS viewer, a 
single click starts the application with the computation of 
parametric maps. The process time generally falls under 
one minute, so that reading physician will stay focused on 
the same investigation, and without transition, the results 
obtained are interpreted using our home-developed GUI 
for visualization, ROI and VOI analysis and reporting. 
For the quality assessment, the DICOM structure info of 
parametric maps records all parameters of methods used 
for PK quantification like AIF, FAs for T1 mapping or 
fitting algorithm. For a full clinical integration, all results 
and analysis reports are signed using user login, and 
automatically transferred to the PACS.

To address the issue of standardization in both DCE-
MRI quantification and analysis in ROI and VOI, our 
software can be set to be fully compliant with the widely 
accepted QIBA DCE-MRI Profile, since set up to facilitate 
the standardization, development, and validation of 
quantitative imaging biomarkers.

Final ly,  the rel iabi l i ty  of  our results  has  been 
demonstrated using publicly available simulated data, 
providing an important basis for multicenter reproducibility 
of the method. Moreover, a quantification protocol can 
be made fit for purpose to ensure prospectively a strict 
consistency between each center participating in a clinical 
trial: this has a major interest in oncology and also in series 
focusing on rare diseases.

We think that this open source solution gives the 
possibility to develop easily additional approaches to 
tumour measurements, i.e., improving the ROI or volume 
segmentation tools or new quantification methods 
to evaluate the heterogeneity of tumours, as well as 
heterogeneous response to treatment.
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