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Introduction

Over the past 25 years, measurements of biochemical 
markers of bone turnover and bone mineral density 
(BMD) have assumed an important role in trials of new 
treatments for osteoporosis (1-12), and are often regarded 
as surrogate measures of the effectiveness of fracture 
prevention therapies (13). Bone turnover markers (BTM) 
such as serum procollagen type I N propeptide (PINP), 
bone alkaline phosphatase (bone ALP) and urinary cross-
linked N-telopeptides of type I collagen (U-NTX) (14) have 
advantages that they are easily measured in blood or urine 

and can demonstrate the effect of anti-fracture treatment 
on bone formation or resorption within 1 week to 3 months 
of the start of treatment (13,15). However, measurements 
of BTM are not site specific and respond to the changes in 
bone turnover occurring throughout the entire skeleton. 
In contrast, measurements of BMD using dual-energy 
X-ray absorptiometry (DXA) have the advantage that they 
can be measured directly at important fracture sites such 
as the hip and spine, but the disadvantage that it can take 
2 years or more to evaluate the full effect of treatment on 
bone mass (1-12).
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It would be useful for the early phases of drug 
development to have a technique that can measure site 
specific changes in response to treatment on a shorter 
time scale than DXA scanning, say 3 months instead of 
2 years. Since the primary aim of osteoporosis treatment 
is to prevent hip fractures, the ideal site to measure is the 
femoral neck or total hip region of interest (ROI) used in 
DXA. Such measurements could provide useful input to 
decisions to proceed from phase II to phase III trials and 
help avoid late stage attrition. Although the assessment of 
bone turnover using bone biopsy with double tetracycline 
labelling still has an important role in the evaluation of the 
safety and mechanism of action of new anti-fracture drugs 
(16-21), bone biopsy studies are limited by their restriction 
to the iliac crest, their relatively invasive nature, the need 
for a skilled and experienced practitioner, and the difficulty 
of obtaining both baseline and follow-up studies in the same 
subjects. 

In the past, radioisotopes have provided an alternative 
method of studying bone turnover, and there is a large 
historical literature based on the use of bone seeking 
radionuclides such as 32P, 45Ca, 47Ca and 85Sr in non-imaging 
tracer studies (22-25). Today, quantitative studies of bone 
using radionuclides are based around medical imaging using 
either hybrid positron emission tomography and computed 
tomography (PET/CT) dual-modality systems (26) or the 
gamma camera (27). The use of short half-life tracers such 
as fluorine-18 sodium fluoride ([18F]NaF, T1/2 =110 min) 
for PET, or technetium-99m methylene diphosphonate 
([99mTc]TcMDP, T1/2 =6 hours) for gamma camera imaging, 
ensures that the radiation dose to subjects is kept as low 
as possible. These techniques are attractive because they 
provide quantitative measurements of bone formation rate 
at specific sites in the skeleton (26,27), subject only to the 
limitations set by spatial resolution.

Historical studies using autoradiography showed 
that bone seeking tracers such as [18F]NaF and [99mTc]
TcMDP are laid down on the surface of newly forming 
hydroxyapatite crystals at sites of bone formation (28-30).  
Hence measurements of the uptake of tracer into bone 
reflect the amount of actively mineralizing bone present, 
and the aspect of bone turnover being studied relates to 
osteoblastic activity. Several recent studies have shown 
significant correlations between the regional plasma 
clearance of [18F]NaF and bone formation rate (31) 
and mineral apposition rate (32,33). A striking visual 
confirmation of how bone tracers are laid down exclusively 
at sites of newly forming bone was provided by X-ray 

fluorescence imaging of bone biopsy specimens obtained 
after treatment of osteoporotic women with stable 
strontium ranelate (34). However, it is important to note 
that, for all types of radionuclide studies, blood flow is a 
rate-limiting step controlling uptake (35). If the first pass 
extraction efficiency of a tracer attains its maximum possible 
value of 100%, then the measurements purely reflect blood 
flow. Hence it is important to bear in mind that in general 
the changes in bone tracer kinetics found in radionuclide 
studies can be due to changes in either bone blood flow, or 
osteoblastic activity, or a combination of both.

This article reviews techniques for quantitative 
radionuclide imaging of bone suitable for research studies 
and clinical trials in the field of osteoporosis, with emphasis 
on [18F]NaF PET/CT. We begin by discussing the 
advantages of [18F]NaF PET/CT compared with gamma 
camera studies using [99mTc]TcMDP. Then we review the 
Hawkins method of performing quantitative [18F]NaF 
studies based on a 60-minute dynamic PET scan (26), and 
discuss a simplified approach to image acquisition and 
analysis which, with little loss of accuracy or precision, 
enables the same information to be obtained from a single 
short (3- to 5-minute) static scan acquired 45 to 75 minutes 
after tracer injection (36,37). The advantage of the static 
scan approach is that, with a series of short acquisitions 
made at different bed positions, quantitative measurements 
of bone plasma clearance can be made at multiple sites in 
the skeleton with only a single injection of [18F]NaF.

Advantages of [18F]NaF PET imaging

The first quantitative use of a radionuclide imaging agent 
to investigate various types of metabolic bone disease, 
including osteoporosis, was the 24-hour [99mTc]TcMDP 
whole-body retention test developed by Fogelman  
et al. (38). The test originally required a whole-body 
counter but, because few of these remain in use today, 
it was adapted for the dual-headed gamma camera by 
Brenner et al. (39). It was further refined by Moore et al., 
who added blood sampling to measure [99mTc]TcMDP 
plasma clearance and made measurements in several sub-
regions of the skeleton including the skull, arms, legs, 
spine and pelvis (Figure 1A) (27).

The bone imaging agent [18F]NaF was first described by 
Blau et al. (42). Although its 511 keV positron annihilation 
gamma rays are unsuitable for the gamma camera, its 
properties make it the ideal bone agent for PET imaging. 
Over the last decade [18F]NaF PET/CT has become widely 
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recognized as the optimum radionuclide imaging technique 
for the investigation of metastatic and metabolic bone disease 
due to the superior properties of [18F]NaF as a bone-seeking 
tracer and the better spatial resolution of PET scanners 
compared with either planar or single photon emission 
computed tomography (SPECT) (Figure 1) (43-51). The 
advantages of [18F]NaF for quantitative imaging of the 
skeleton include its exceptionally high and rapid uptake into 
bone, its rapid clearance from soft tissue, and the absence 
of any protein binding in the circulation (40). But the 
technique has some important limitations. PET/CT is an 
expensive technology compared with DXA or BTM, and 
the radiation dose to the subject is high despite the short 
half-life of [18F]NaF. The cost limits the number of subjects 
that can be enrolled in a study, and radiation dose the 
activity of [18F]NaF administered and the number of follow-
up scans that can be performed. 

Quantitative [18F]NaF PET imaging—the Hawkins 
method

The 60-minute dynamic [18F]NaF PET scan method 
described by Hawkins et al. (26) was the first radionuclide 
imaging technique to measure bone plasma clearance, 
and has since been widely employed in other studies 
(41,52-60). Plasma clearance measurements differ from 
the standardised uptake values (SUV) (61) conventionally 
measured by PET in that the rate of uptake of tracer to an 
organ is normalized to its concentration in arterial plasma. 
For example, glomerular filtration rate (GFR) expresses 
kidney function in terms of the volume of plasma required 
to transport the mass of tracer (conventionally inulin) 
excreted by the kidneys in a 1-minute time interval and is 
measured in units of mL·min−1. For PET studies, plasma 
clearance is expressed as the clearance per mL of tissue, and 

A

B C

Figure 1 Images of bone seeking tracers used for quantitative imaging. (A) [99mTc]TcMDP whole body planar gamma camera bone scan image 
as used by Moore et al. (27) to measure whole body and regional bone plasma clearance; (B) [18F]NaF PET sagittal image of the lumbar spine  
(L1-L4) as used in studies based on the Hawkins method (26). Reproduced with permission from (40). (C) [18F]NaF PET coronal image 
of the proximal femur as used by Frost et al. to study regional bone plasma clearance in the hip and femoral shaft (41). Both PET images 
are two-dimensional (2D) projection views of the complete three-dimensional (3D) scan data, and are restricted by the 15-cm axial field of 
view of the PET scanner. The [18F]NaF activity collecting in the urinary bladder during the 1-hour dynamic scan has been masked to give 
a clearer view of the uptake in bone. Reproduced with permission from (40). [18F]NaF, fluorine-18 labelled sodium fluoride; PET, positron 
emission tomography.
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the units are mL·min−1·mL−1.
The advantage of the Hawkins method is that it provides 

a complete quantitative description of regional bone tracer 
kinetics in the first 60 minutes following a bolus injection 
of tracer (62). The method is summarized in Table 1. PET/
CT scanners have a limited axial field of view (~15 cm), so 
the dynamic scan is restricted to the lumbar spine (Figure 1B), 
or hip (Figure 1C), or any similar sized ROI. Following 
positioning of the subject, a low mA CT scan is acquired for 
attenuation correction of the PET images, and can also help 
with the definition of the bone ROIs during scan analysis. 
After this a 10 mL injection of [18F]NaF is administered, 
and acquisition of the 60-minute dynamic PET scan 
commenced. A scan protocol consisting of twenty-four 
5-second frames, four 30-second and fourteen 240-second 
(total time 60 minutes) gives adequate information about 

the bone uptake curve (Figure 2A).
To calculate the plasma clearance of fluoride to bone 

it is also necessary to measure the arterial input function 
(AIF) (Figure 2A), and this can be done either by direct 
sampling using an arterial line (52,53,56,62), or by using 
an image derived input function from an ROI placed over 
the aorta or femoral artery (53,55,62-64), or by using a 
semi-population method using serial venous blood samples 
taken 30–90 minutes after injection (65). Of these three 
approaches, direct arterial sampling is the preferred method 
for the most reliable results, while the semi-population 
method is simple and convenient as it involves taking only  
3 or 4 blood samples. Once the AIF is known it is combined 
with the bone time-activity curves (TACs) for the various 
ROIs defined on the dynamic PET scan to determine the 
plasma clearance in each ROI. Both the AIF and the bone 
TACs require correction for the radioactive decay of [18F]
NaF back to the time of injection.

Once the AIF and TACs have been determined, they 
are analysed using the Hawkins compartmental model 
(Figure 2B) to find the effective plasma flow (K1) and the 
plasma clearance to the bone mineral compartment (Ki) 
in each ROI (26). In the Hawkins model the rate constant 
K1 describes the clearance of [18F]NaF from plasma to 
the unbound bone pool, and is measured in units of  
mL·min−1·mL−1 (58). Regional bone blood flow can be 
estimated from K1 knowing the packed cell volume and the 
first pass extraction of [18F]NaF, which is often assumed to be 
100% (66,67). The rate constant k2 in Figure 2B describes the 
reverse flow of tracer from the unbound bone pool to plasma 
in terms of the fraction of tracer in the unbound bone pool 
transported per minute (typical value ~0.4 min−1). Similarly 
k3 (~0.2 min−1) describes the forward transport from the 
unbound bone pool to bone mineral, and k4 (~0.01 min−1) the 
reverse flow from bone mineral to the unbound bone pool. 
The parameter Ki represents the net plasma clearance of [18F]
NaF to the bone mineral compartment and is calculated 
from the following equation (26):

Ki = K1 × k3/(k2 + k3) mL·min−1·mL−1	 [1]

In Eq. [1], the ratio k3/(k2 + k3) represents the fraction 
of tracer initially cleared to the unbound bone pool that 
binds to bone mineral. As mentioned above, changes in Ki 
in response to treatment can reflect changes in either bone 
blood flow or bone formation rate. The form of Eq. [1] 
suggests that a change in bone formation rate will cause a 
change in the value of k3/(k2 + k3) by increasing the value 

Table 1 Protocol for [
18

F]NaF PET imaging using the Hawkins 
method (26)

60-minute dynamic study on PET/CT scanner

Frame times: twenty-four 5-second, four 30-second and 
fourteen 240-second frames

Patient preparation: patient should be well hydrated and 
comfortable

CT scan for attenuation correction and defining bone ROIs

Patient positioning:

Spine: L1–L4 including bottom of T12 and top of L5

Hip: 1 cm above acetabulum to mid femoral shaft

Injected activity: 90 MBq (spine) or 180 MBq (hip) [
18

F]NaF in  
10 mL saline

Injection protocol:

T0: start dynamic scan

T0 + 10 seconds: start injection of [
18

F]NaF

T0 + 20 seconds: finish injection. Follow with 10 mL saline 
flush

T0 + 30 seconds: finish saline flush

Measurement of arterial input function:

Either: direct arterial sampling using a blood line

Or: image derived input function from aorta or femoral artery

Or: semi-population input function with venous blood samples 
at 30, 40, 50 and 60 minutes after injection

PET, positron emission tomography; CT, computed tomography; 
ROI, region of interest.
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of k3. A fifth free parameter, the fraction of the bone ROI 
occupied by blood, Fbv, can be added to improve the fit to 
the data in the first 30 seconds after injection of tracer. 

Figure 2C shows the results of fitting the bone TAC and 
AIF in Figure 2A to the Hawkins model in terms of time 
plots of the amount of tracer in each compartment of the 
model. The fit to the model is obtained by varying the 
values of K1, k2, k3, k4 and Fbv until the predicted bone TAC 
gives the best fit to the measured curve. The value of Ki is 
then calculated using Eq. [1]. 

Figure 3A shows measurements of the precision error 
of each parameter in the Hawkins model expressed as the 
coefficient of variation derived from repeat PET scans of the 
lumbar spine over a 12-month period (68), and Figure 3B  
the percentage change in each parameter in response to 
6-months treatment with teriparatide (68). By dividing 
treatment response by the precision error we obtain a 
measure of the statistical utility of each model parameter for 
measuring response to treatment (Figure 3C). In practice, of 
the various parameters measured by the Hawkins model Ki 
has the best precision, and experience shows that generally 
it is the most robust for measuring response to treatment. 
Following treatment with teriparatide the parameters  
k3/(k2 + k3) and k3 also showed statistically significant changes 
in response to treatment, but not K1, k2 or k4 (Figure 3B).  

Overall, the changes are consistent with teriparatide 
treatment increasing osteoblastic activity, but not bone 
blood flow. 

Alternative methods to the Hawkins model for analyzing 
the AIF and bone TACs include deconvolution and spectral 
analysis (68). A fourth method, the Patlak plot, is described 
below. 

Why measure bone plasma clearance? 

The most common approach to quantifying PET images, 
for example in oncology, is to measure SUV (61). SUVs 
offer a simple method to express the uptake of PET tracers 
in tumours by taking the activity concentration in the ROI 
in kilo becquerels per millilitre (kBq/mL) and normalizing 
for injected activity and the subject’s body weight  
[SUV = kBq/mL body weight (kg)/injected activity (MBq)]. 
In oncology studies, uptake in tumours is frequently 
heterogeneous and the maximum SUV (SUVmax) is often 
reported. But in studies of metabolic bone diseases such as 
osteoporosis, where the uptake in bone is more uniform, it 
is preferable to smooth out the pixel-to-pixel noise in the 
image by expressing the SUV as the mean value in the bone 
ROI rather than the maximum. 

For PET studies of bone, does it matter whether 

Figure 2 Quantitative analysis using the Hawkins model. (A) Representative curves showing the arterial input function measured by direct 
blood sampling and corresponding bone time activity curve (TAC) for a [18F]NaF dynamic PET scan of the lumbar spine. Both curves have been 
corrected for radioactive decay. Reproduced with permission from (40). (B) The Hawkins compartmental model used for the analysis of [18F]NaF 
PET dynamic bone scans (26). The rate constant K1 describes the effective bone plasma flow to the unbound bone pool, k2 the reverse transport 
of tracer from the unbound bone pool back to plasma, k3 the forward transport from the unbound bone pool to bone mineral, and k4 the reverse 
flow. Bone plasma clearance Ki is calculated using Eq. [1]. Reproduced with permission from (40). (C) Results of fitting the bone TAC and arterial 
plasma input function to the Hawkins compartmental model. As well as the 4 parameters K1, k2, k3 and k4 the model also fits the fractional volume 
of blood within the bone ROI, FBV. The plasma clearance to bone mineral Ki is calculated using Eq. [1]. The figure shows time activity plots of the 
amount of tracer in each compartment of the Hawkins model and the resulting fit of the summed curves to the measured bone TAC. Reproduced 
with permission from (40). [18F]NaF, fluorine-18 labelled sodium fluoride; PET, positron emission tomography.
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we choose to measure SUV or plasma clearance? The 
limitation of measuring SUVs is that only a finite amount 
of tracer is administered to the patient, and this has to 
be shared out between the various competing tissues. 
In the case of [18F]NaF, these include the kidneys and 
other regions of the skeleton. If a patient is treated with 
a potent bone anabolic agent such as teriparatide (69),  
or has extensive metastatic bone disease (70), or a 
large area of active Paget’s disease (71), the [18F]NaF 
plasma concentration will be reduced by the increased 
competition for tracer, resulting in a reduced measurement 
of SUV. As an example, in a [18F]NaF PET study of 
osteoporotic women taking teriparatide, after 6-months 
treatment the 1-hour [18F] plasma concentration was 21% 
lower than at baseline (69). Although measurements of Ki 
were 24% higher than baseline values, a highly statistically 
significant change (P=0.0003), values of SUV were only 3% 
higher and were not significantly different from baseline 
(P=0.84). Experience with other bone tracers confirms this 
phenomenon. In a trial of [89Sr] strontium chloride therapy 
for bone metastases from prostate cancer, at 1-hour after 
injection the [89Sr] plasma concentration in a subject with 
a ‘superscan’ was only 30% of values found in subjects 
with only a few small areas of metastatic bone disease (70).  
Plasma concentration of [99mTc]TcMDP was similarly 
reduced in a patient having a gamma camera bone scan for 
extensive Paget’s disease (71).

It follows that measurements of a change in SUV at a 
particular site partly reflect the changes in bone formation 
occurring at other sites in the skeleton. In contrast, plasma 
clearance measurements are free of this limitation because 
the uptake is expressed relative to the arterial concentration 
of tracer actually delivered to tissue rather than the amount 
of tracer injected. In studies of osteoporosis treatments that 
have a potent effect on whole skeleton bone formation, or 
subjects with extensive Paget’s or metastatic bone disease, 
plasma clearance can be a more reliable indicator of site-
specific bone function than SUV (69). 

Determination of bone plasma clearance using 
the Patlak plot

Provided that the Hawkins model rate constant k4 is 
negligibly small, Patlak analysis provides a simple alternative 
graphical method of measuring Ki (Figure 4A) (36). At time 
T after injection of tracer the concentration in the bone 
ROI, Cb(T), is expressed by the following equation:

b 0
( )( )

( ) ( )

T

p
i

p p

C t dtC T V K
C T C T

= + ∫ 	
[2]

where Cp is the concentration of tracer in plasma and the 
intercept of the straight line, V, is the volume of distribution 
in the unbound bone pool. To allow for equilibration 
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Figure 3 Precision and treatment response of the different parameters in the Hawkins model. (A) The precision errors of the parameters in 
the Hawkins compartmental model (Figure 2B) used for the analysis of [18F]NaF PET dynamic scans expressed as the coefficient of variation. 
The data comes from the analysis of lumbar spine scans in 20 postmenopausal women who had scans at baseline, 6- and 12-month after 
stopping alendronate and had no changes in biochemical markers of bone turnover in that period (68). (B) The treatment response expressed 
as the percentage change from baseline of the parameters in the Hawkins model measured by [18F]NaF PET dynamic scans of the lumbar 
spine in 18 postmenopausal women after 6 months treatment with teriparatide (68). (C) The ratio of the absolute value of the treatment 
response in (B) divided by the precision error in (A) for each parameter. Parameters with a large treatment response and a small precision 
error have the highest ratios and are likely to be the most sensitive parameters for measuring response to treatment. [18F]NaF, fluorine-18 
labelled sodium fluoride; PET, positron emission tomography.
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Figure 4 Quantitative analysis using the Patlak plot. (A) Standard Patlak analysis (i.e., assuming kloss =0) of [18F]NaF PET data obtained 

during a 60-minute dynamic scan. The graph is a plot of normalized bone uptake ( ( )
( )

b

p
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) against normalized time ( 0
( )

( )

T

p

p
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∫ ) (see Eq. [2]). 

Bone plasma clearance (Ki) is found from the slope of the straight-line fit to the 10–60 minutes data points. The intercept on the vertical axis 
gives the volume of distribution V. Reproduced with permission from (40). (B) Evaluation of kloss by the modified Patlak analysis of Holden 
et al. (72). Triangles, schematic plot of the standard analysis (kloss =0) applied to 10–60 minutes dynamic scan data. Circles, modified analysis 
(Eqs. [3] and [4]) with the value of kloss optimized to give the best straight-line fit to the 10–60 minutes data points. Squares, modified 
Patlak analysis over corrected for kloss. Reproduced with permission from (37). (C) Derivation of the semi-population input function. The 
population residual function is scaled for injected activity and the time of peak counts adjusted to agree with a region of interest drawn over 
the aorta for dynamic PET scan data or to the time of injection for static scans. This curve is added to the terminal exponential fitted to the 
30-, 40-, 50- and 60-minute venous plasma data. The terminal exponential is rolled off using a ramp function at the time of peak counts so as 
not to affect the early rise of the bolus. Reproduced with permission from (65). (D) Derivation of bone plasma clearance using the simplified 
static-scan method (36,37). The right upper point is based on a measurement of bone uptake from a single 5-minute static scan acquired 
around 45–75 minutes after injection of tracer. The left lower point is the intercept of the graph and represents the population average 
volume of distribution V. The value of Ki is obtained from the slope of the straight line through the two points. Reproduced with permission 
from (40). [18F]NaF, fluorine-18 labelled sodium fluoride; PET, positron emission tomography.
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between tracer in plasma and the unbound bone pool in the 
first 10 minutes after injection, the values of Ki and V are 
determined by fitting a straight line to the 10–60 minutes 
data. A limitation of the Patlak method is that it provides 
measurements of for Ki, but not K1 or the other parameters 
of the Hawkins model. 

In practice the assumption that k4 is negligibly small is 
not strictly valid. As a consequence the points of the Patlak 
plot deviate slightly from a straight line (Figure 4A) and 
the resulting Ki measurements underestimate the Hawkins 
model values by around 25% on average. This problem 
can be avoided by using a modified Patlak analysis that 
introduces a rate constant kloss to represent the backflow 
of tracer out of the bone mineral compartment and into 
plasma (37). Following the method described by Holden  
et al. (72), Eq. [2] is rewritten as:

b ( ) ( )
( ) i

p

C T V K T
C T

θ= +
	

[3]

where: 

0

p

( ) exp[ ( )]
( )

( )

T
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T

C T
θ

− −
= ∫ 	 [4]

In this modified analysis the rate constant k loss is 

varied until the plot of normalized activity 
( )
( )

b

p

C T
C T  against 

normalized time θ(T) from 10–60 minutes after injection 
gives the best fit to a straight line (Figure 4B). Siddique 
applied the Holden method to 60-minute dynamic PET 
scans of the spine and hip and reported values of kloss 

~0.006 min−1 at both sites along with values for the volume 
of distribution V (Table 2) (37). 

A simplified method for [18F]NaF PET image 
acquisition and analysis

A full 60-minute dynamic PET scan is demanding for the 
patient, expensive in terms of scanner time and, because of 
the limited axial field of view of the PET scanner, only one 
bed position at a single skeletal site can be studied for each 
injection of [18F]NaF. To make studies simpler it would 
be helpful to have an alternative method that is easier for 
the patient, less expensive, and which enables Ki to be 
measured at multiple sites in the skeleton with a single 
injection of [18F]NaF. A method proposed by Siddique et al.  
(Table 3) meets these requirements with little loss of 
accuracy or precision compared with the standard Hawkins 
method (36,37). 

In this alternative method, the AIF is found by 
measuring the terminal exponential by taking 3 or  
4 venous blood samples starting 30 minutes after injection 
of tracer and adding a population derived residual curve 
to represent the early bolus peak and fast exponentials 
(Figure 4C) (65). For each individual PET scan, the 
residual curve is added to the terminal exponential after 
first scaling for injected activity and adjusting the origin 
to the time of injection. By 30 minutes the concentrations 
of tracer in arterial and venous blood have equalized, and 
by taking venous samples at 30, 40, 50 and 60 minutes 
the terminal exponential [which accounts for 75% of 
the area under the plasma curve in the first 60 minutes 
after injection (65)] can be reliably measured. However, 
this semi-population method of finding the AIF is not 
suitable for measuring K1, which requires an individual 
measurement of the AIF in each subject in the first few 
minutes after injection. 

In Siddique’s method, the measurement of Ki is made 
by combining the information about the AIF derived 
from the semi-population method with a measurement of 
regional bone uptake from a single 3- to 5-minute static 
PET scan acquired around 60 minutes after injection 
(Table 3) (36). The value of Ki is found from a simplified 
Patlak plot consisting of just two data points (Figure 4D), 
representing the measured tracer concentration in the 
bone ROI at the time of the single static scan and the 
population value of the intercept V (Table 2). Rearranging 
Eq. [3] we have:

Table 2 Results of a study of 60-minute dynamic [18F]NaF PET 
scans of the spine and hip using the modified Patlak analysis of 
Holden et al. (72) to determine the mean values of kloss and V at each 
site (37)

Skeletal site N kloss (min−1), mean (SD) V, mean (SD)

Spine 36 0.0057 (0.0022) 0.22 (0.13)

Total hip 54 0.0056 (0.0034) 0.09 (0.07)

Femoral  shaft 54 0.0067 (0.0038) 0.11 (0.07)

[18F]NaF, fluorine-18 labelled sodium fluoride; PET, positron 
emission tomography; SD, standard deviation; N, number of 
scans analysed; kloss, first order rate constant representing the 
efflux of tracer from the bone mineral compartment to plasma 
in the Holden equation (see Eq. [4]); V, volume of distribution of 
tracer in the unbound bone pool (see Eqs. [3] and [5]). 
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The normalized time θ(T) is calculated from the semi-
population AIF assuming a value of k loss =0.006 min−1  
(Table 3) (37). A limitation of the static scan method is that it 
is not possible to measure K1. However, performing a short 
(~5 to 10 minutes) dynamic scan at the time of injection 
would enable K1 to be measured at a single site. The chief 
advantage of the static scan method is that with a series of 
short scans acquired at different bed positions it is possible 
to measure Ki at several different skeletal sites with just a 
single injection of [18F]NaF (36,37). 

Conclusions

Quantitative [18F]NaF PET imaging provides a novel way 
to study regional bone formation rate that complements 
conventional measurements with BTM as a tool to 
investigate new treatments for osteoporosis, and has potential 
as an early biomarker of treatment efficacy for use in clinical 
trials. Unlike BTM, which measure the response to treatment 
across the entire skeleton, [18F]NaF PET can distinguish the 
changes occurring at sites of particular interest for fracture 
prevention such as the hip and spine, or the difference in 
response between trabecular and cortical bone. Dynamic 
[18F]NaF PET scans measure effective bone plasma flow and 
bone plasma clearance of fluoride, but with a single injection 
of tracer the information is restricted to a single bed position 

by the narrow axial field of view of the PET scanner. In 
contrast, a series of short static PET scans at different bed 
positions combined with venous blood sampling can be used 
to estimate plasma clearance at multiple sites in the skeleton 
with a single injection. Studies to date have examined the 
accuracy and reproducibility of [18F]NaF PET measurements 
in osteoporosis, confirmed that the changes seen during 
treatment are biologically plausible, and suggested ways to 
shorten and simplify image acquisition and analysis. The 
next steps required are studies to link the changes in KI with 
clinical endpoints such as the change in fracture risk and the 
identification of responders and non-responders. These could 
be undertaken as multi-centre sub-studies in Phase III clinical 
trials and will require further work relating to quality control 
and the standardization of image acquisition and analysis.
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Table 3 Simplified protocol for [18F]NaF PET imaging using static scan method

Injected activity: 90 MBq (spine) or 180 MBq (hip) [18F]NaF in 10 mL saline

Acquisition of static scan sequence commences 45–60 minutes after injection and should be completed by 75–80 minutes

Patient preparation: patient should empty their bladder before scanning

CT scan and 5-minute static PET scan at each measurement site

Patient positioning:

Spine: L1–L4 including bottom of T12 and top of L5

Hip: 1 cm above acetabulum to mid femoral shaft

Other sites up to whole body if required

Measurement of arterial input function:

Semi-population input function with venous blood samples taken at 30 minutes after injection, before the start and after completion of 
the static scan sequence

[18F]NaF, fluorine-18 labelled sodium fluoride; PET, positron emission tomography.
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