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Background: To determine the feasibility of radiomic analysis for predicting the therapeutic response of 
gastric carcinoma (GC) with abdominal cavity metastasis (GCACM) to pulsed low dose rate radiotherapy 
(PLDRT) using contrast-enhanced computed tomography (CECT) images.
Methods: Pretreatment CECT images of 43 GCACM patients were analyzed. Patients with complete 
response (CR) and partial response (PR) were considered responders, while stable disease (SD) and 
progressive disease (PD) as non-responders. A total of 1,117 image features were quantified from tumor 
region that segmented from arterial phase CT images. Intra-class correlation coefficient (ICC) and absolute 
correlation coefficient (ACC) were calculated for selecting influential feature subset. The capability of each 
influential feature on treatment response classification was assessed using Kruskal-Wallis test and receiver 
operating characteristic (ROC) analysis. Moreover, artificial neural network (ANN) and k-nearest neighbor 
(KNN) predictive models were constructed based on the training set (18 responders, 14 non-responders) and 
the testing set (6 responders, 5 non-responders) validated the reliability of the models. Comparison between 
the performances of the models was performed by using McNemar’s test.
Results: The analyses showed that 6 features (1 first order-based, 1 texture-based, 1 LoG-based, and 3 
wavelet-based) were significantly different between responders and non-responders (AUCs range from 
0.686 to 0.728). Both two prediction models based on features extracted from CECT showed potential 
in predicting the treatment response with higher accuracies (ANN: 0.714, KNN: 0.749 for the training 
set; ANN: 0.816, KNN: 0.816 for the testing set). No statistical difference was observed between the 
performance of ANN and KNN (P=0.999).
Conclusions: Pretreatment radiomic analysis using CECT can potentially provide important information 
regarding the therapeutic response to PLDRT for GCACM, improving risk stratification.
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Introduction

Gastric carcinoma (GC) is the fifth most commonly 
occurring types of malignancy, including more than 
one million new cancer diagnoses yearly, and also the 
third leading cause of cancer-related mortality with 
approximately 723,000 deaths every year (1). Patients with 
advanced GC always develop abdominal cavity metastasis 
(GCACM) with symptoms of pain, bleeding, and intestinal 
obstruction, severely affecting the quality of life. Generally, 
these patients are intolerant of surgery or further aggressive 
treatment. Radiotherapy is an option for such patients. 
However, the peritoneal radiation dose was restricted 
due to the low tolerable dose of the organ at risk near the 
target, for which patients with GCACM are not suitable for 
conventional radiotherapy.

Pulsed low-dose-rate radiotherapy (PLDRT) has been 
proved as an effective treatment strategy across a range of 
cancer type (2-8) by taking advantage of low-dose hyper-
radiosensitivity (LDHRS) (7,9), with maximizing tumor 
control and without producing severe adverse normal tissue 
complication. Nevertheless, the response to PLDRT is 
highly individual, with many patients being insensitive to 
standard treatment regimens. On the other hand, patients 
who are unresponsive to PLDRT may be harmed by 
unnecessary radiation toxicity, resulting in a delay of the 
modification of treatment plan and, consequently, it implies 
a high risk of tumor progression and poor prognosis. 
Therefore, early identification of patients who are at 
higher risk of poor response before PLDRT would lead 
to the optimization of the therapeutic management and 
improvement of outcomes. 

Recently, investigators have explored and validated 
a series of clinical biomarkers with the potential to be 
used in prediction of therapeutic response (10-14). For 
example, Nagashima et al. showed that biomarkers of 
immunohistochemical examination could be useful in 
predicting the clinical outcomes of unresectable GC 
patients with chemotherapy (10). De Cobelli et al. implied 
that apparent diffusion coefficient (ADC) of diffusion-
weighted MRI (DW-MRI) can be used to assess tumor 
response to neoadjuvant chemotherapy for patients with 
gastro-oesophageal (12) and GC (13). More recently, a 
review suggested that molecular and proteomics analyses 
showed promising response prediction in gastric cancer (14).  
Although these clinical indicators were demonstrated 
promising results over the past years, little attention has 
been paid to the predictive capability of CT, which is a 

common pretreatment examination for patients with GC. 
As such, new tools based on the pretreatment CT images 
are expected of the prediction of tumor response, especially 
for the patients with GCACM before PLDRT.

Radiomics is a non-invasive approach that extracts 
quantitative features from medical images and allows for 
comprehensive visualization and characterization of the 
tumor region and corresponding microenvironment, which 
has been found to show significant predictive power for gene 
expression, pathological classification, treatment response, 
and clinical outcome (15-19). This novel method focused on 
the improvement of image analysis by converting imaging 
data into a high-dimensional mineable feature set using a 
series of the data-characterization algorithm. Recent studies 
on gastric cancer have shown that radiomic features based on 
CT images are associated with pathological types, response to 
neoadjuvant therapy, and survival (20-24). To our knowledge, 
no published research has determined whether the treatment 
response to PLDRT in patients with GCACM could be early 
predicted by radiomic analysis using pretreatment contrast-
enhanced CT (CECT). Thus, the purpose of this study is to 
use radiomic features derived from baseline CECT combined 
with supervised machine learning algorithms to predict 
treatment response to PLDRT in GCACM patients.

Methods

Patient database

Forty-three patients who were treated with PLDRT for 
GCACM at Nanjing Drum Tower Hospital Cancer Centre 
from February 2014 to November 2017 were enrolled in 
this study under institutional ethics committee approval. 
Of the 43 patients, 15 were in stage III, and 28 were in 
stage IV. Patients in stage III underwent curative D2 
gastrectomy after a multidisciplinary meeting and received 
5-fluorouracil and oxaliplatin based chemotherapy for least 
four cycles after pathological diagnosis. Patients in stage 
IV received 5-fluorouracil-based palliative chemotherapy 
after diagnosis. The other inclusion criteria were met: 
(I) developed with metastases/peritoneal carcinosis after 
surgery or chemotherapy; (II) pre-PLDRT CECT was 
available; (III) with poor performance status unsuitable for 
further aggressive treatment (reoperation or conventional 
radiotherapy) after evaluation by the multi-disciplinary team; 
(IV) without received radiotherapy before PLDRT. Finally, 
all 43 patients completed PLDRT and enrolled in this study. 
Table 1 summarizes baseline patient characteristics.
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PLDRT

All patients were irradiated with a series of 0.4 Gy pulses 
separated by 5-min interval for 3-dimensional conformal 
radiotherapy, it created a time-averaged dose-rate of  
0.0667 Gy/min. The dose prescriptions were designed to 
cover at least 96% of planning target volume (PTV).

Response assessment

One month after treatment, therapeutic responses were 
assessed by dedicated radiologist and radiation oncologist 
(Y Yang), according to the Response Evaluation Criteria 
in Solid Tumors (RECIST v1.1) (25). The follow-up was 
updated every two months. Patients were subsequently 
grouped according to RECIST using pre/post-PLDRT CT 
images with contrast or PET scans if applicable; specifically, 
patients with complete response (CR) or partial response 
(PR) were considered as responders, while those with stable 
disease (SD) or progressive disease (PD) were classified as 
non-responders.

CECT image acquisition and tumor segmentation

CECT examinations were performed 3–5 days before 
radiation treatment. All patients were scanned using  
3 mm CT slice thickness, (Philips Brilliance 64; Philips 

Healthcare, Best, the Netherlands), with a resolution of 
approximately 1mm in the axial plane, according to the 
following acquisition parameters: tube voltage, 120 kVp; 
tube current, 200–250 mAs; rotation time, 0.75 s; pitch, 0.9; 
matrix, 512×512; convolution kernel, standard. Following 
a non-contrast scan, 100–120 mL iodinated contrast agent 
(Omnipaque, GE Healthcare, Shanghai, China) was injected 
intravenously at a rate of 3.0 mL/s with a pump injector 
(Medrad Stellant CT Injector System; Medrad, Indianola, 
PA, USA), yielding contrast-enhanced CT (CECT) (CECT 
was performed 30 s (arterial phase), 70 s (portal phase) 
after an infusion of contrast material). To obtain volume 
of interest (VOIs) for further radiomic analysis, a semi-
automatically segmentation was performed by two senior 
board-certified radiation oncologists (Y Yang for VOI-1 and 
S Li for VOI-2) from arterial phase CT images using open-
source available software (3D Slicer software, version 4.9.0, 
http://www.slicer.org) and then reviewed by an experienced 
radiation oncologist (J Yan). The contours for each VOI 
were drawn slightly within the border of the tumor lesion. 
The contours were consistent with gross tumor volume 
(GTV) delineated by radiation oncologists for radiotherapy 
treatment planning design and were manually modified to 
avoid adjacent air, fat, blood vessels and surrounding organs. 
Voxels related to air and adipose tissues [below 0 Hounsfield 
units (HU)] were automatically excluded from the analysis. 
All contoured volumes with a voxel size of 1×1×3 mm3 were 
resampled to an isotropic voxel size of 1×1×1 mm3 using 
cubic interpolation to unify the voxel size across the cohort.

Radiomic feature extraction

Pyradiomics V1.3.0 (26) was used to extract radiomic 
features from delineated three-dimensional (3D) VOIs 
(Figure 1). Pyradiomics is an open-source python package 
for the procession and extraction of radiomic features from 
medical image data using a large panel of automatically 
extracted data-characterization algorithms. Using this 
package, several categories features were extracted from 
original images, including shape and size (morphological 
feature), intensity histogram (IH, first order feature), gray-
level co-occurrence matrix [GLCM; directions: 13 angles 
in 3D (26-connectivity); distance: 1 pixel], gray-level size-
zone matrix (GLSZM; directions: 13 angles in 3D), gray-
level run-length matrix (GLRLM, directions: 13 angles in 
3D), neighboring gray-tone difference matrix (NGTDM; 
neighborhood size: 3×3×3) and gray-level dependence 
matrix (GLDM, distance: 1 pixel). As for GLCM, GLSZM, 

Table 1 Baseline characteristics of patients

Characteristic Value (n=43)

Gender, n [%]

Male 30 [70]

Female 13 [30]

Age, median [range] (years) 63 [28–79]

AJCC staging, n [%]

III 15 [35]

IV 28 [65]

Irradiation site, n [%]

Metastasis lesions 6 [14]

Retroperitoneal and/or abdominal lymph nodes 29 [68]

Hilar lymph nodes 7 [16]

Stomach and abdominal lymph nodes 1 [2]

PLDRT total dose, median [range] (Gy) 50 [50–54]
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and GLRLM, the value of a feature was calculated on each 
angle separately, after which the mean of these values was 
obtained. Additionally, the aforementioned texture features 
(GLCM, GLRLM, NGTDM, and GLDM-based) were 
also extracted from the images preprocessed using Laplacian 
of Gaussian (LoG) band pass filter and wavelet filter. In 
particular, LoG band pass filter was applied to the input 
original image for fine to coarse texture (filter width: fine, 
σ=0.5; medium, σ=1.5; coarse, σ=2.5) (24) and wavelet filter 
was applied for focusing features on different frequency 
ranges within the tumor volume respectively.

Overall, as for each lesion, the radiomic features were 
extracted from both filtered and unfiltered image, using three 
principal methods: shape-based (shape and size), first-order 
based (IH), texture-based (GLCM, GLSZM, GLRLM, 
GLDM), LoG-based (LoGσ =0.5/1.5/2.5_GLCM, LoGσ =0.5/1.5/2.5_
GLSZM, LoGσ =0.5/1.5/2.5_GLRLM, LoGσ =0.5/1.5/2.5_GLDM), 
and wavelet_based (Waveletlevel_GLCM, Waveletlevel_
GLSZM, Waveletlevel_GLRLM, Waveletlevel_GLDM). A 
detailed list of the features is provided in Table S1.

Statistical analysis

Statistical analyses were performed using R software version 
3.3.2 (R Foundation for Statistical Computing, Vienna, 
Austria).

Inter-observer variabi l i ty  of  radiomic features 
extraction was evaluated by calculating the intra-class 
correlation coefficient (ICC) using “irr” package (vers. 

0.84) in R software (27). It was performed to assess feature 
reproducibility in repeated delineation (ICC <0.40, poor; 
0.40≤ ICC <0.60, moderate; 0.60≤ ICC <0.80, good; ICC 
≥0.80, excellent). Radiomic features with ICC value greater 
than 0.8 were selected. 

Furthermore, pair-wise correlations among the above-
selected features (ICC ≥0.80) were also considered. For these 
highly reproducible features, we constructed a correlation 
matrix and then calculated the absolute correlation 
coefficient (ACC) using “caret” package (ver.6.0-77).  
The ACC values close to 1 represented the features are 
strongly correlated. In our study, for example, if two 
variables have a high correlation (ACC ≥0.8), the function 
looks at the mean absolute correlation of each variable (with 
the remaining features) and removes the variable with the 
largest mean absolute correlation.

The capability of each influential feature (ICC ≥0.8 
and ACC <0.8) to classify patients concerning therapeutic 
response were investigated by using the Kruskal-Wallis 
test (P<0.05) (28). Receiver operating characteristic (ROC) 
curves analysis was used to assess the diagnostic efficacy of 
each studied features for discrimination different treatment 
responses by measuring associated areas under the ROC 
curves (AUC). 95% confidence intervals (CIs), specificity 
and sensitivity, were also obtained.

Feature selection and radiomic model construction

Influential features (ICC ≥0.8 and ACC <0.8) extracted 

 Figure 1 Workflow of radiomic analysis for gastric carcinoma with abdominal cavity metastasis.

I. Tumor segmentation II. Feature extraction III. Feature reduction IV. Analysis

Radiomic features

Clinical outcomes
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from CECT were subsequently modeled by supervised 
machine-learning algorithms using Weka software 
(University of Waikato, Hamilton, New Zealand): ANN 
(the number of hidden layers was 1) and KNN [5 neighbors 
(k=5) were chosen in this study]. To build and validate the 
predictive models, the patients were randomized into two 
groups: 32 for training (18 responders, 14 non-responders) 
and 11 for testing (6 responders, 5 non-responders).

To avoid model over-fitting, the feature vector 
dimensionality should be reduced firstly. Based on the 
training group (18 responders, 14 non-responders), 
wrapper-based feature selection method (29) was used to 
select optimal feature subset for the specific model (ANN 
or KNN). This method performed on the previously 
calculated feature subset (features with ICC ≥0.8 and ACC 
<0.8) by recursively removing features and then testing the 
predictive ability of the remaining features without missing 
any critical ones. After that, feature vector dimensionality 
was further reduced.

Once the optimal feature subsets had been obtained, 
ANN and KNN were trained and models generated for 
prediction. To assess predictive performance, 10-fold 
cross-validation (CV) was served as the internal validation 
in the training group. The associated metrics including 
specificity, precision, and accuracy of the predictions were 
calculated from true negatives (TN), false negatives (FN), 
true positives (TP), and false positives (FP). Additionally, 
Matthews correlation coefficient (MCC) was also calculated 
for providing additional reassurance on the model’s 
reliability.

Statistical comparison between ANN and KNN models

Significant differences between the performance of different 
models were evaluated with McNemar’s test (30). This 
test was conducted based on the results obtained from the  
10-fold CV.

Predictive validation of radiomic models

We applied the established models to the validation group 
(6 responders, 5 non-responders), and the performance was 
assessed with specificity, precision, and accuracy.

Results

Treatment response after PLDRT

The treatment response was assessed one month after 

the PLDRT treatment. Two patients with no evidence of 
disease after treatments were considered as CRs. PLDRT 
treatment led to PR in 22 patients, whereas 17 and 2 were 
SD and PD respectively under treatment according to 
RECIST.

Overall, 24 patients were classified as responders (2 CR, 
22 PR), while 19 patients were classified as non-responders 
(17 SD, 2 PD).

Predictive capabilities

A total of 1,117 radiomic features, preprocessed with 
or without LoGσ =0.5/1.5/2.5 filter and wavelet filter, were 
calculated on each of the 43 cases: 13 shape features, 18 first 
order features, 74 texture features, 276 LoG features, and 
736 wavelet features. ICC and ACC were performed on the 
feature metrics and yielded 41 influential features. More 
details on the influential features are summarized in Table 2.

The result of Kruskal-Wallis test showed that 6 features 
(1 first-order feature, 1 texture feature, 1 LoG feature,  
3 wavelet features; P value: 0.010–0.047) could differentiate 
between responders (CRs and PRs) and non-responders 
(SDs and PDs). Details of the result are summarized in 
Table 3 and the distribution of these statistically significant 
features was shown in Figure 2. As for differentiation 
between responders and non-responders, we analyzed the 
significant features with ROC curves and the corresponding 
AUC values were obtained (range from 0.686 to 0.728). 
For example, F_Skewness, with an AUC of 0.728 (sensitive 
=0.684, specificity =0.792), was capable of differentiating 
responders from non-responders, using a threshold  
of −0.271 (Table 3), indicating that tumor lesions whose F_
Skewness was lower than −0.271 were most likely from non-
responders. Similar results were obtained from the ROC 
analysis of other significant features. Figure 3 shows the 
ROC curves for the significant features.

Supervised classification and statistical comparison

Wrapper-based feature selection method was performed 
on the influential feature set (features with ICC ≥0.8 and 
ACC <0.8, Table 2) before ANN and KNN modeling for 
generating different optimal feature sets for each model, 
with the results showing that 7 features were selected for 
ANN and 4 features were selected for KNN. Specifically,  
3 features (LoG2.5_glszm_LALGLE, WLHL_glszm_
SZNUN, WHHL_F_SKewness) were both selected for these 
two models. Table 4 displays details of the optimal feature 
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sets for each model.
The classification results based on training group from 

repeating 10-fold CV is presented in Table 5, including 
parameters of specificity, precision, weighted accuracy, and 
MCC for the two models. Both ANN and KNN models 
achieved higher prediction, with the accuracies of 0.714 and 
0.749 respectively.

The results from pairwise comparisons in McNemar’s 
test revealed no statistically significant difference between 
the performance of ANN and KNN models, indicating that 
the choice of the models was not of substantial importance 
(P=0.999).

Validation result

Table 6 summarizes the detail results of model testing based 
on the testing group. The two predictive models achieved 
same accuracies (ANN: 0.816, KNN: 0.816).

Discussion

Prior works have documented the value of radiomic analysis 
in GC. Liu et al. (20), for example, correlated CT texture 
features with differentiation degree, Lau classification and 
vascular invasion status of GC. An Austria group reported 

Table 2 The features obtained from preprocessing

Feature types Features

Shape-based None

First order-based Skewness

Texture-based gldm_DNUN, gldm_DV, glcm_Imc1, glcm_CS

LoG-based LoG0.5_glcm_MP, LoG0.5_F_Skewness, LoG0.5_glszm_ SZNUN, LoG0.5_ glszm_ SALGLE, LoG1.5_glcm_Imc1, 
LoG2.5_glcm_Imc1, LoG2.5_ glszm_ LALGLE, LoG2.5_ glszm_ SALGLE

Wavelet-based WHHH_F_Skewness, WHHH_F_Median, WHHH_F_Mean, WHHH_glszm_SAE, WHHH_ngtdm_Strength, WHLL_glcm_CS, 
WHLL_F_Skewness, WHLL_F_Median, WHLL_F_Kurtosis, WHLL_glszm_ SZNUN, WLHL_F_Skewness, WLHL_glszm_ 
SZNUN, WLHH_F_Mean, WLHH_glszm_SAE, WLHH_ngtdm_Strength, WLLH_F_Skewness, WLLH_F_Mean, WLLH_glszm_ 
SZNUN, WLLH_glszm_GLNU, WLLL_glcm_CS, WLLL_glcm_IV, WLLL_F_Mean, WLLL_F_Skewness, WHHL_F_Skewness, 
WHHL_glszm_ SZNUN, WHLH_F_Mean, WHLH_glcm_IDM, WHLH_glszm_SAE

gldm, gray-level dependence matrix; DNUN, dependence non-uniformity normalized; DV, dependence variance; glcm, gray-level co-
occurrence matrix; Imc1, informal measure of correlation 1; CS, cluster shade; LoG0.5/1.5/2.5, volume preprocessed using Laplacian of 
Gaussian band pass filter with 0.5/1.5/2.5 filter width; MP, maximum probability; F, first order; glszm, gray-level size-zone matrix; SZNUN, 
size zone non-uniformity normalized; SALGLE, small area low gray-level emphasis; LALGLE, large area low gray-level emphasis; WHLL, 
volume with a wavelet high-pass filter along x-direction, a low-pass filter along y-direction and a low-pass filter along z-direction; SAE, 
small area emphasis; ngtdm, neighboring gray-tone difference matrix; GLNU, gray-level non-uniformity; IV, inverse variance; IDM, inverse 
difference moment.

Table 3 Features showing statistical difference between non-responders and responders

Feature P value Standard error 95% CI AUC Sens Spec Cut-off

F_Skewness 0.010 0.083 0.571–0.852 0.728 0.684 0.792 ≤−0.271

LoG2.5_glszm_SALGLE 0.013 0.081 0.564–0.847 0.721 0.421 0.958 ≤4.99×10−3

WHLH_F_Mean 0.013 0.081 0.564–0.847 0.721 0.684 0.791 ≤−3.42×10−3

glcm_CS 0.037 0.086 0.527–0.819 0.686 0.421 0.958 ≤−4.547

WLLL_F_Skewness 0.037 0.087 0.527–0.819 0.686 0.736 0.667 ≤−0.087

WHLH_glszm_SAE 0.047 0.084 0.518–0.812 0.678 0.526 0.833 ≤0.401

F, first order; LoG2.5, volume preprocessed using Laplacian of Gaussian band pass filter with 2.5 filter width; GLSZM, gray-level size-zone 
matrix; SALGLE, small area low gray level emphasis; WHLH, volume with a wavelet high-pass filter along x-direction, a low-pass filter along 
y-direction and a high-pass filter along z-direction; GLCM, gray-level co-occurrence matrix; CI, confidence interval; AUC, area under the 
curve; Sens, Sensitivity; Spec, Specificity; Responders, patients with CR and PR; non-responders, patients with SD.
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Figure 2 Box plots of the amplitude features, successfully differentiating non-responders [stable disease (SD), progressive disease (PD)] from 
responders [complete response (CR), partial response (PR)]. (A) F_Skewness (P=0.010); (B) LoG2.5_glszm_SALGLE (P=0.013); (C) WHLH_
F_Mean (P=0.013); (D) glcm_CS (P=0.037); (E) WLLL_F_Skewness (P=0.037); (F) WHLH_glszm_SAE (P=0.047).
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that CT textural information might aid radiologists in 
the classification of gastric adenocarcinoma, lymphoma, 
and gastrointestinal stromal tumors (21). Similar findings 
were observed by Ma et al. that found radiomic analysis 
has the potential to accurately differentiate Borrmann type 

IV gastric cancer from primary gastric lymphoma (22). 
Based on pretreatment CECT, Giganti et al. suggested 
that radiomic analysis can provide biomarkers regarding 
the response rate to neoadjuvant therapy for GC (23). 
This same group subsequently demonstrated a correlation 
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between CT-based radiomic features and overall survival 
in patients with GC (24). To date, there have been few 
studies to investigate the application of radiomic analysis for 
predicting therapeutic response in gastric cancer. Promising 

results have been reported for GC treated with neoadjuvant 
therapy (23). However, studies have yet to investigate the 
application of radiomic analysis to predict the response of 
patients with GCACM to PLDRT.

In present work, we analyzed 1,117 radiomic features 
quantifying tumor phenotypic differences and found that 
six parameters were able to discriminate responders from 
non-responders before PLDRT initiation with AUC values 
range from 0.686 to 0.728. This suggested that there is a 
significant difference in the tumor tissue between patients 
who responded to PLDRT versus those who do not, and 
this underlying difference can be characterized by using 
of radiomic features calculated from pretreatment CECT. 
The radiomic features were mathematical measurements 
concerned with the quantitative description of pixel 
arrangement within the tumor region (31), and spatial 
distribution of pixel within homogeneous tumors appeared 
more regular than those heterogeneous ones (32). In other 
words, radiomic features evaluated in this study highlight 
tumor heterogeneity at a regional and local level, depending 
on types of feature matrix, may be associated with hypoxia, 
proliferation, cellularity, vascularization, and necrosis (33).  
Therefore, radiomic features could be correlated to 
physiologic process and consequently response to PLDRT 
could be predicted, as it is closely related to intratumoral 
heterogeneity. Our results provide compelling evidence for 
using imaging biomarkers as potential predictors of tumor 
response to PLDRT for GCACM patients.

Moreover, we further incorporated ANN and KNN 
machine-learning algorithm into radiomic features to build 
predictive models. For modeling, in present work, ANN 
and KNN were constructed on the training group and 
subsequently tested on the validation group. Additionally, 
to obtain more robust prediction model and minimize 
the risk of modeling over-fitting, we followed a series 
of preprocessing procedures: assessment for feature 
reproducibility and correlation, wrapper-based method 
for feature selection as well as 10-fold CV approach for 
internal validation. After that, both two models achieved 
higher predictive accuracies in the training set (ANN, 0.714; 
KNN, 0.749) and testing set (ANN, 0.816; KNN, 0.816). 
These observations might be attributed to the ability of 
radiomic analysis to indirectly capture the information of 
intratumoral heterogeneity, including parameters not easily 
visible by a simple visual inspection, which they might be 
associated with tumor response to PLDRT. These findings 
extend those of Giganti et al. (23), confirming that radiomic 
analysis is not only used to predict preoperative response to 

Figure 3 Receiver operating characteristic (ROC) curves on the 
basis of the significant features.
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Table 4 Optimal feature set obtained from Wrapper-based feature 
selection

Feature type ANN KNN

Shape-based None None

First order-
based

None None

Texture-based None glcm_CS

LoG-based LoG2.5_glszm_LALGLE LoG2.5_glszm_LALGLE

LoG0.5_glcm_MP

Wavelet-based WLHL_glszm_ SZNUN WLHL_glszm_SZNUN

WHHL_F_SKewness WHHL_F_SKewness

WHLL_F_Median

WHLL_glcm_CS

WLLL_glcm_CS

glcm, gray-level co-occurrence matrix; CS, Cluster Shade; 
LoG2.5, volume preprocessed using Laplacian of Gaussian 
band pass filter with 2.5 filter width; glszm, gray-level size-
zone matrix; LALGLE, large area low gray level emphasis; 
MP, Maximum Probability; SZNUN, size zone non-uniformity 
normalized; F, first order; WLHL, volume with a wavelet low-pass 
filter along x-direction, a high-pass filter along y-direction and a 
low-pass filter along z-direction; ANN, artificial neural network; 
KNN, k-nearest neighbor.
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neoadjuvant therapy in patients with gastric cancer but also 
to predict the response to treatment in GCACM patients 
treated with PLDRT. This study therefore indicates that 
the benefits gained from multivariate radiomic analysis 
could improve patient risk stratification. Most notably, this 
is the first study to our knowledge to explore the potential 
of radiomic analysis for the assessment of phenotypic 
properties of GCACM tumors which could be related 
to different treatment response, and the first study that 
explores the potential of joint supervised machine-learning 
algorithms and CECT radiomic features for the prediction 
of treatment response in GCACM patients treated with 
PLDRT. Our study provides a good enlightenment to the 
coming studies to prospectively establish patient cohorts.

However, several limitations are worth noting. First, 
due to relatively small sample cohort of patients in a 
single center and the retrospective nature of this study, 
our radiomic models remain to be externally validated 
in multiple centers with a larger and prospective patient 
cohort in the future. Second, although the predictive power 
of radiomic analysis has been demonstrated in our study, the 
radiomic-biology correlations have not yet to be identified 
in published literature and clinical experience. Therefore, 
future studies are necessary to explore the potential 
mechanism further. Third, due to a comprehensive 
consideration of clinical factors and economic conditions of 
patients, not all patients had performed PET scans before 
and after treatment. In this case, we are still rely on CECT 
for response evaluation, which could potentially affect 
assessment result. Finally, in this work, we only assessed 
early responses (e.g., one month after treatment) without 
assessment for long-term effectiveness. Further studies 

are on-going to follow up with the patients to ensure the 
accuracy of response evaluation.

In conclusion, radiomic features derived from CECT in 
combination with supervised machine learning algorithm 
could serve as a clinical tool to facilitate early prediction of 
GCACM patients’ response to PLDRT, with the advantage 
of low cost, using existing CECT images, without subjecting 
patients to unnecessary radiation exposure or imaging.
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Supplementary

Table S1 Feature type and associated features

Feature type Methods Feature name

Morphology -based Shape Maximum 3D diameter (M3D)

Maximum 2D diameter slice (M2DS)

Sphericity

Minor axis (MA)

Elongation

Surface volume ratio (SVR)

Volume

Major axis (MA1)

Surface area (SA)

Flatness

Least axis (LA)

Maximum 2D diameter column (M2DC)

Maximum 2D diameter row (M2DR)

First order-based Histogram Interquartile range (IQR)

Skewness

Uniformity

Median

Energy

Robust mean absolute deviation (RMAD)

Mean absolute deviation (MAD)

Total energy (TE)

Maximum

Root mean squared (RMS)

90 percentile

Minimum

Entropy

Range

Variance

10 percentile

Kurtosis

Mean

Texture-based GLCM Joint average (JA)

Sum average (SA)

Joint entropy (JE)

Cluster shade (CS)

Maximum probability (MP)

Idmn

Joint energy (JE)

Contrast

Difference entropy (DE)

Inverse variance (IV)

Difference variance (DV)

Idn

Idm

Correlation

Autocorrelation

Sum entropy (SE)

Sum squares (SS)

Cluster prominence (CP)

Imc2

Imc1

Difference average (DA)

Id

Cluster tendency (CT)

GLSZM Gray level variance (GLV)

Zone variance (ZV)

Gray level non uniformity normalized (GLNUN) 

Size zone non uniformity normalized (SZNUN)

Size zone non uniformity (SZNU)

Gray level non uniformity (GLNU)

Large area emphasis (LAE)

Small Area high gray level emphasis (SAHGLE)

Zone percentage (ZP)

Large area low gray level emphasis (LALGLE)

Large area high gray level emphasis (LAHGLE)

High gray level zone emphasis (HGLZE)

Small area emphasis (SAE)

Low gray level zone emphasis (LGLZE)

Zone entropy (ZE)

Small area low gray level emphasis (SALGLE)

GLRLM Short run low gray level emphasis (SRLGLE)

Gray level variance (GLV)

Low gray level run emphasis (LGLRE)

Gray level non uniformity normalized (GLNUN)

Run variance (RV)

Gray level non uniformity (GLNU)

Long run emphasis (LRE)

Short Run high gray level emphasis (SRHGLE)

Run length non uniformity (RLNU)

Short run emphasis (SRE)

Long run high gray level emphasis (LRHGLE)

Run percentage (RP)

Long run low gray level emphasis (LRLGLE)

Run entropy (RE)

High gray level run emphasis (HGLRE)

Run length non uniformity normalized (RLNUN)

NGTDM Coarseness

Complexity

Strength

Contrast

Busyness

GLDM Gray level variance (GLV)

High gray level emphasis (HGLE)

Dependence entropy (DE)

Dependence non uniformity (DNU)

Gray level non uniformity (GLNU)

Small dependence emphasis (SDE)

Small dependence high gray level emphasis (SDHGLE)

Dependence non uniformity normalized (DNUN)

Large dependence emphasis (LDE)

Large dependence low gray level emphasis (LDLGLE)

Dependence variance (DV)

Large dependence high gray level emphasis (LDHGLE)

Small dependence low gray level emphasis (SDLGLE)

Low gray level emphasis (LGLE)

LoG-based First-order statistic and texture 
of Laplacian of Gaussian 
(LoG). Filter width: fine, σ=0.5; 
medium, σ=1.5; coarse, σ=2.5

First-order features

GLCM features

GLSZM features

GLRLM features

NGTDM features

GLDM features

Wavelet-based First-order statistic and texture 
of wavelet decomposition. 
Decomposition levels: LLL, 
LLH, LHL, LHH, HLL, HLH, 
HHL, HHH.

First-order features

GLCM features

GLSZM features

GLRLM features

NGTDM features

GLDM features

GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size-zone matrix; GLRLM, gray-level run-Length matrix; NGTDM, neighboring 
gray-tone difference matrix; GLDM, gray-level dependence matrix; Decomposition levels , i.e., LLH interpreted as the high-pass sub band, 
resulting from directional filtering of the volume with a low-pass filter along x-direction, a low pas filter along y-direction and a high-pass 
filter along z-direction.


