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Introduction

The goal of radiotherapy is to deliver the highest possible 
dose of radiation to a tumor while minimizing normal tissue 
toxicities (1). The dose distribution needs to be calculated 
with a radiation treatment planning system (TPS), and 
verified by quality assurance (QA) tests (2). In recent years, 
some researchers used three-dimensional (3D) printing 
technology to make phantoms for QA and dose verification. 
Similar ideas are used for fabricating a kidney phantom 
reported by Adams et al, which used agarose in phantom 

production (3). Ehler et al. used fused deposition printing 
technology to make anthropomorphic phantoms for 
radiation therapy dose measurements (4). 
By using a PolyJet printer, Mayer et al. presented a 
chest phantom for detection of dose inside and outside 
a moving tumor and in lung tissues (5).  Menikou 
et al.  reported a 3D printed MRI compatible head 
phantom (6). Adams et al. further constructed soft 
phantoms using a novel technique that combined 3D 
wax printing and polymer molding. Similar method 
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was also found in the studies on bone and lung tissues, 
MR images, and small animal experiments (7-11).  
Despite these advanced technologies, these previously 
reported methods are complicated and hard to be practically 
adopted for clinical use. In addition, the tissue-equivalency 
of previously used materials has not been proved in terms 
of radiation attenuation. The clinical applications of various 
anthropomorphic phantoms include equipment calibration, 
QA, dose verification, teaching, surgical guidance, etc. 
(12-15). For these purposes, they should be designed with 
similar human anatomy and attenuation characteristics (16). 
However, the tissue equivalent materials are not readily 
available for 3D printing (17,18).

We herein proposed a formula that can produce adequate 
tissue-equivalency in terms of radiological attenuation and 
dose deposition. We also fabricated a chest phantom via 3D 
printing technique, and filled with the proposed materials 
to simulate soft tissue and fat. The purpose of our study is 
to create an anthropomorphic chest phantom with similar 
human anatomy and radiation attenuation properties of 
individual patient.

Materials and methods

3D phantom design

An anonymized chest CT was obtained from the Department 
of Radiology, Hubei Cancer Hospital using the Brilliance 
CT scanner (Philips, Netherlands, 256-slice spiral CT, pitch  
value 0.27). The scanning parameters are as follows: 
tube voltage 120 kVp, current 260 mAs, slice thickness  
0.5 mm, a total of 596 2D axial slices. The DICOM (Digital 
Imaging and Communications in Medicine) images were 
imported into Mimics Research 17.0 image analysis software 
(Materialize, Belgium). The chest phantom was divided into 
ribs, scapula, sternal angle, fat tissue, muscle tissue, lung 
tissue and lesion. Based on the image, each part of the bones 
and tissues were segmented and 3D reconstructed.

The models were created from the CT images in the 
Magic 10.0 software (Materialize, Belgium). The 3D 
models of fat tissue shell, lung tissue shell, ribs, scapula, 
and sternum were transformed to Magic 10.0 software and 
processed with solid generation and noise reduction, as 
shown in Figure 1.

3D printing models and materials

The segmented mesh files for the chest shell (mentioned 

in section “3D phantom design”) were converted into 
the Standard Tessellation Language (STL) format for 3D 
printing. The material used in printing the fat and chest 
wall shell is acrylonitrile butadiene styrene (ABS). The 
radiation equivalent material of ribs, sternum angle and 
scapula was made with modified resin polymer material (8). 
The printed phantom shell is shown in Figure 2.

Selection of radiation equivalent materials

Various equivalent materials and blending ratios were  
selected via CT equivalent test (19,20). These materials 
were further tested and modified in our study to improve 
tissue equivalency for four tissue/organs, including fat, 
muscle, tumor lesion, and lung. 

Figure 3 shows the comparison of unmodified and 
modified materials for all four tissue types. For fat tissue, 
the molted M3 wax was selected as the solvent, while 
CaCO3 and MgO were used as solutes. For muscle tissue, 
water was chosen as the solvent, with agarose, NaCl, and 
pearl powder as solutes. For tumor lesions, water was used 
as solvent, with agarose, NaCl, and pearl powder as solute. 
For lung tissue, the foamed silica gel was made up of silica 
gel and curing agent by 1:1. Then, the silica gel was injected 
directly into the lung tissue shell. As shown in Table 1, the 
modified materials were in close approximation to human 
tissues in terms of CT numbers.

End-to-end testing for radiotherapy delivery

The acquired CT images of the phantom were imported 
into the TPS (Monaco 5.11, Elekta, Sweden). The target 
area was outlined and a 3D conformal radiotherapy plan 
with three beams was created using 6 MV X-rays, with a 
prescription dose of 2 Gy (3,5,21). The tumor dose was 
calculated in the TPS using the pencil beam convolution 
(PBC), collapse cone convolution (CCC) and Monte Carlo 
(MC) algorithms, respectively. The prescription dose 
was required to cover at least 95% of the planning tumor 
volume (PTV). The plan was delivered using a linear 
accelerator (Precise Treatment System™, Elekta, Sweden). 
The actual delivered dose to the PTV, lung, and spinal cord 
was measured using an ion chamber (UNIDOS E, PTW, 
Germany) and compared with the planned doses. 

Results 

Figure 4 shows the actual constructed chest phantom. 
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The phantom also went through the CT scan (Figure 4A) 
with the same parameters as the patient scanning. The 
CT image, as shown in Figure 4B, was compared with the 
patient chest scan Figure 4C. A CT image fusion of the 
phantom and the patient’s chest is shown in Figure 5. 
The CT image of the chest phantom is comparable to the 
human chest in morphology. Table 2 shows comparison of 
CT numbers between phantom and patient images for fat 
tissue, muscle tissue, bone, and tumor. The differences were 
around 20 HU for fat, muscle and tumor, while around 55 
HU on average for bone. 

The dose comparison between calculated and measured 
methods is shown in Table 3. The ion-chamber measured 
doses were 213.7 cGy in tumor, 53.85 cGy in normal lung 

tissue, and 4.1 cGy in spinal cord. Meanwhile the calculated 
doses obtained by different algorithms were also shown. For 
the tumor, lung, and spinal cord, PBC reported 215.1, 52.5, 
and 1.9 cGy; CCC reported 214.6, 54.4, and 4.4 cGy; and 
MC reported 214.1, 55.2, and 4.5 cGy, respectively. The 
differences between measured and calculated dose were 
<1% for tumor, 1–2.5% for lung, and 7–9% for the spinal 
cord for both CCC and MC. The PBC algorithm is known 
to be in-accurate in dose calculation especially for lung 
region, thus showed higher discrepancies. 

Discussion

With the development of 3D printing technology, 

Figure 1 The regions of interest in patient CT data were processed by Mimics Research 17.0 (deep purple part represents lesions). (A) 
Coronal section; (B) transverse section; (C) sagittal plane; (D) 3D reconstruction; (E) the shell model of the muscle tissue opened up, the 
lung tissue shell model opened downward, and the rib model wrapped around the lung tissue model; (F) the shell model of muscle tissue 
(opening upwards); (G) the ribs and chest bone model; (H) the lung tissue shell model (opening downward); (I) the scapula model.
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phantoms can be manufactured in a simple and fast manner. 
In our experiments, a regular 3D printer can satisfy the 
3D printing requirement for radiotherapy clinical use 
in printing personalized phantoms. Following the same 
method, other anatomical phantoms can be designed and 
fabricated, i.e., pelvis, breast, head, etc. Our end-to-end test 
in dose verification using the present phantom shows an 
immediate clinical use for individualized dose verification, 
especially for those complex plans requiring high precision. 
Through the phantom verification, we showed that both 
MC and CCC algorithms overestimated the dose in tumor, 
normal lung and spinal cord. The PBC overestimated the 
dose of tumor and underestimated the doses of normal lung 
tissues and spinal cord. 

The fused deposition printing technology used in 
previous studies by Ehler et al. (4) and Bache et al. (11) may 
produce deformation during the production process. With 
that in consideration, we used photo-sensitive printers for 
our phantoms. Compared to the study by Mayer et al. (5), 
the CT numbers of our phantom is closer to actual human 
tissues. With the adjustable CT numbers of currently used 

Figure 2 3D printed phantom shell. (A) Ribs, scapula, sternum angle, fat and lung tissue shells. (B) The phantom with fat tissue equivalent 
material.

A B

Figure 3 CT images of the unmodified materials (left column) and 
improved materials (right column). (A) Agarose, (B) wax and (C) 
printed materials.

A

B

C

Table 1 Comparison of unmodified materials and improved 
materials in CT numbers 

CT number (HU) Agarose Wax Printed materials

Unmodified materials 0±15 −150±20 −130±40

Modified materials 40±20 −100±30 160±40
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phantom materials, our future research will be producing 
various anatomical phantoms with tissue equivalency, such 
as liver phantom, kidney phantom, etc. Because of the 
simplicity of 3D printing phantoms, laboratory production 

is achieved without the need of complex industrial 
customization.

There are some limitations in our presented method. 
First, the 3D printer specifications restrict the size of a 
printable phantom. For larger size body regions (e.g., 
phantom), the phantom must be divided into several 
sections, before being printed and glued into a complete one. 
Second, the dissolution of the equivalent tissue materials 
requires evaluation and validation. The concentration of 
the solution affects uniformity and radiation attenuation 
property of the phantom. Third, the 3D printed phantom 
shell affects image quality and phantom stability. The 3D 
printing material of the shell is fragile, so it is necessary 
to accurately estimate the shell thickness according to the 
manufacturing method and experimental requirements. 
Although the production of such phantom is simple and 
convenient, further exploration and improvement are 
needed for large-scale clinical applications. 

Conclusions

This study introduced a method of fabricating a lung 
phantom with anatomically accurate and X-ray attenuation 
equivalency to human tissues. The 3D printed thoracic 
phantom can be used for radiotherapy QA and dose 
verification. 

Figure 4 Verifying the imaging effect of chest phantom: (A) CT scanning of the phantom; (B) the CT image of the chest phantom; and (C) 
the CT image of the patient.

A B C

Figure 5 Image fusion of phantom and patient CT images.

Table 2 Comparison of the CT number of the phantom and patient 
images

CT number (HU) Fat tissue
Muscle 
tissue

Bone Tumor

Patient images −80±20 60±30 265±135 55±25

Phantom images −100±30 40±20 210±90 33±16
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