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Introduction

Liver cirrhosis is commonly accompanied by not only 
cerebral functional disturbances but also cerebral 
morphological abnormalities (1-3). Accumulating evidence 
has shown the presence of brain grey matter volume (GMV) 
loss and neuronal cell death, which are regarded as the basis 
of an irreversible neurocognitive impairment, in cirrhotic 
patients (4-7). The mechanisms underlying GMV loss in 
cirrhosis remain unclear. However, a more noticeable GMV 
loss has been observed in patients with alcoholic cirrhosis, 
a history of overt hepatic encephalopathy (HE) and more 
severe liver dysfunction (2,5). Surprisingly, ammonia, which 

is generally thought to be the primary cause of cirrhosis-
related neurocognitive impairment, was the least powerful 
predictor of abnormalities in cerebral morphology in a 
computed tomography (CT) study (3). Moreover, ammonia 
was found to have no correlation with GMV loss in 
magnetic resonance imaging (MRI) studies (4,5).

Oxidative stress (OS) is defined as an imbalance 
between oxidants and antioxidants accompanied by 
overproduction of reactive oxygen species (ROS) (8). OS 
results in the production of oxidation products and the 
depletion of endogenous antioxidants. Excessive ROS 
damage cellular structures and macromolecules, leading 
to cellular dysfunction and ultimately cell death (9). The 
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brain is particularly vulnerable to oxidative damage due 
to its high metabolic rate, limited antioxidant capacity, 
and rich content of easily oxidizable polyunsaturated fatty 
acids (10). OS is known to contribute to brain aging and 
neurodegenerative diseases (11,12) which are characterized 
by brain atrophy and GMV loss. Moreover, studies have 
reported a relationship between oxidative damage and GMV 
loss in a variety of clinical populations, such as patients with 
chronic human immunodeficiency virus infection, diabetes, 
and psychosis (13-15).

OS is a recognized feature of chronic liver disease (CLD), 
which is not restricted to the ailing liver but represents a 
systemic phenomenon (16,17). Malondialdehyde (MDA) is 
a product of lipid peroxidation and a sensitive and reliable 
biomarker of oxidative tissue damage (18). High levels of MDA 
have been detected in blood samples from cirrhotic patients 
in many studies (19-21). Furthermore, postmortem studies 
have revealed a great deal of lipofuscin pigment (indicating 
peroxidized lipids) in the brains of cirrhotic patients (22). 

Based on the previously mentioned studies investigating 
GMV loss and OS in cirrhosis, we hypothesized that GMV 
loss observed in cirrhosis might be related to oxidative 
damage. Therefore, we evaluated the relationship between 
an oxidative stress marker (MDA) and GMV loss in patients 
with non-alcoholic cirrhosis. 

Methods

Participants

Between August 2016 and July 2017, patients with non-
alcoholic cirrhosis attending the Hepatology Outpatient 
Department of the Third Xiangya Hospital were enrolled 
in this prospective study. Thirty-four patients with non-
alcoholic cirrhosis (mean age 49.29±9.48 years; 28 males, 
6 females) were included in this study. The diagnosis 
of cirrhosis was based on medical history and physical, 
biochemical and imaging examinations. Since previous studies 
have shown that alcohol has a direct effect on the brain (23)  
and since it is difficult to distinguish the neurological 
consequences of alcohol and CLD, we excluded patients 
with alcoholic cirrhosis. Due to poor compliance, patients 
with overt HE or a history of overt HE were also excluded. 
Other exclusion criteria for cirrhotic patients included recent 
(<1 month) infection or gastrointestinal bleeding, a surgical 
portocaval shunt or a transjugular intrahepatic portosystemic 
shunt, or hepatic malignancy. 

Twenty-seven age- and sex-matched healthy controls 

(mean age 46.85±7.85 years; 20 males, 7 females) without 
liver diseases were recruited from the local community.

Exclusion criteria for all subjects included alcoholism, 
history of drug abuse, treatment with drugs that would 
induce an antioxidant/pro-oxidant status imbalance, history 
of severe head trauma, neurological or psychiatric disorder, 
hypertension, diabetes, kidney failure, cerebrovascular 
disease or any lesion detected on conventional brain MRI. 

Clinical methods

All subjects underwent physical examinations and blood 
biochemistry tests on the same day as the MRI scan.

 Blood draws were performed on subjects at 7:00 am after 
a night of fasting with water allowed. Blood biochemistry 
tests included liver function tests, kidney function tests, 
coagulation tests, and plasma ammonia tests. The degree of 
liver failure in the patient group was determined according 
to the Child-Pugh classification.

Measurement of serum MDA levels

Blood samples used for the determination of MDA were 
fasting morning samples. Venous blood (5 mL) was taken 
and centrifuged. The supernatant was collected and stored 
at −80 ℃. All samples were analyzed on the same day. Serum 
MDA levels were measured using a Lipid Peroxidation 
(MDA) Assay Kit (Sigma).

Brain MRI

All subjects were scanned with a 3T scanner (Ingenia, 
Philips) using a phased array coil. An ultrafast gradient 
echo 3D sequence (T1W_3D_TFE_ref) was used. Scans 
were acquired in the sagittal orientation with the following 
parameters: repetition time =7.8 ms, echo time =3.5 ms, 
inversion time =969.3 ms, gap =0 mm, flip angle =8°, 
bandwidth = 191.5 Hz/pixel, field of view =240×240 mm2, 
matrix =240×240, 182 slices with resolution =1×1×1 mm3, 
and acquisition time = 6 min 26 s. T1-weighted and T2-
weighted fast-spin echo images were also obtained to 
exclude any pathological findings. Quality assurance was 
performed by an experienced radiologist. 

Image analysis

Images were preprocessed using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm) in a MATLAB environment (MathWorks 
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Inc., Natick, MA). We used the VBM8 toolbox (http://dbm.
neuro.uni-jena.de/vbm) for image segmentation and spatial 
normalization. After segmentation, we obtained global 
tissue volumes, including global GMV, global white matter 
volume and global cerebrospinal fluid volume, in native 
space. The sum of global GMV, global white matter volume 
and global cerebrospinal fluid volume was defined as total 
intracranial volume. We calculated the normalized global 
GMV by dividing the global GMV of each subject by his/
her respective total intracranial volume to normalize the 
head size of each subject.

Statistical analysis

Statistical analysis was performed using SPSS version 22.0 
software (SPSS Inc., Chicago, IL, USA). All results are 
expressed as mean ± standard deviation. Independent sample 
t-tests were used to detect the significance of age, serum MDA 
levels and data of kidney function tests between cirrhotic 
patients and healthy controls; Mann-Whitney U tests were 
applied to identify the significance for plasma ammonia levels 
and data of coagulation and liver function tests between the 
two groups; while Chi-square test was performed to identify 
the gender significance between the two groups.

Global GMV is related to age and sex (24). Therefore, 
analysis of covariance with age and sex as covariates was 
performed to assess the difference in normalized global 
GMV between the two groups. 

Previous studies have revealed that GMV correlates with 
the degree of liver failure in cirrhotic patients (2,5). Thus, 
to avoid any confounding effect, we performed a partial 
correlation analysis in the patient group to investigate the 
relationship between serum MDA levels and normalized 
global GMV adjusted for age, sex and Child-Pugh class. 
We also examined the relationship between plasma 
ammonia levels and normalized global GMV using a partial 
correlation analysis. 

In addition, a Spearman correlation analysis was 
performed to examine the relationship between serum 
MDA and plasma ammonia in the patient group.

A P value of less than 0.05 (uncorrected) was considered 
to indicate a statistically significant difference.

Results

Demographic and clinical characteristics

Demographic and clinical characteristics are listed in Table 1.  

There was no significant difference in age or sex between 
the two groups. Liver function was graded as Child-Pugh 
A in 19 patients, B in 11 patients and C in 4 patients. None 
of the patients showed clinical manifestations of overt HE 
at the time of investigation or had experienced previous 
episodes of overt HE. Compared with control subjects, 
cirrhotic patients showed higher plasma ammonia levels 
(35.53±10.09 μmol/L for patients vs. 14.78±4.45 μmol/L for 
controls; P<0.001) (Figure 1A).

Serum MDA levels

Compared with control subjects, cirrhotic patients showed 
higher serum MDA levels (0.36±0.04 nmol/mL for patients 
vs. 0.17±0.04 nmol/mL for controls; P<0.001) (Figure 1B).

Global GMV

Analysis of covariance revealed a significant difference in 
normalized global GMV between the two groups, with 
patients exhibiting a smaller normalized global GMV than 
healthy controls (0.43±0.02 for patients vs. 0.44±0.01 for 
controls; P=0.042) (Figure 1C).

Correlations between normalized global GMV, serum MDA 
levels and plasma ammonia levels in the patient group

In the patient group, partial correlation analysis revealed 
a significant negative correlation between normalized 
global GMV and serum MDA levels (r=−0.378, P=0.036, 
uncorrected) after adjusting for age, sex and Child-Pugh 
class (Figure 2A). There was no significant correlation 
between normalized global GMV and plasma ammonia 
levels (r=−0.097, P=0.604, uncorrected) (Figure 2B). 

No significant correlation was found between serum 
MDA levels and plasma ammonia levels in the patient group 
(r=0.241, P=0.169, uncorrected).

Discussion

In this study, we evaluated the relationship between serum 
MDA levels and global GMV in patients with non-alcoholic 
cirrhosis. Our main finding was that increased serum MDA 
levels were associated with GMV loss in patients with non-
alcoholic cirrhosis. To the best of our knowledge, this 
study is the first to investigate the relationship between 
oxidative damage and GMV loss in cirrhosis. Although 
the association we detected does not imply causation, we 
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Table 1 Demographic characteristics and clinical data of the participants

Characteristic Healthy controls (n=27) Cirrhotic patients (n=34) P value

Age (years) 46.85±7.85 49.29±9.48 0.286

Sex: male/female (n) 20/7 28/6 0.433

Etiology (n)

HBV-related cirrhosis – 30 –

Schistosomal cirrhosis – 2 –

Primary biliary cirrhosis – 2 –

Child-Pugh class: A/B/C (n) – 19/11/4 –

Ascites volume: absent/small/
moderate-large (n) 

– 18/16/0 –

Serum albumin (g/L) 46.50±8.35 34.85±7.08 <0.001

Total bilirubin (mg/dL) 0.71±0.24 1.60±1.22 <0.001

Alanine aminotransferase (U/L) 17.30±5.80 38.09±32.07 <0.001

Aspartate aminotransferase (U/L) 17.90±3.70 59.24±67.59 <0.001

INR 0.95±0.06 1.28±0.22 <0.001

Prothrombin time (s) 10.87±0.60 14.65±2.45 <0.001

Blood urea nitrogen (mg/dL) 13.96±3.30 13.68±4.28 0.780 

Serum creatinine (mg/dL) 0.79±0.17 0.85±0.16 0.166 

Plasma ammonia (μmol/L) 14.78±4.45 35.53±10.09 <0.001

Serum MDA (nmol/mL) 0.17±0.04 0.36±0.04 <0.001

Normalized global GMV 0.44±0.01 0.43±0.02 0.042

Data are presented as mean ± SD or number of subjects. GMV, grey matter volume; HBV, hepatitis B virus; INR, international normalized 
ratio; MDA, malondialdehyde.
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Figure 1 Distributions of (A) plasma ammonia levels, (B) serum MDA levels, and (C) normalized global GMV in controls and cirrhotic 
patients. GMV, grey matter volume; MDA, malondialdehyde.

provide a reasonable hypothesis that OS adversely affects 
GMV in cirrhotic patients.

Neuroimaging plays an important role in uncovering 
cerebral morphological and functional abnormalities (25,26).  
Brain atrophy and GMV loss in cirrhotic patients are 

robust findings assessed by CT and MRI (2-6). As expected, 
cirrhotic patients exhibited a smaller normalized global 
GMV than healthy controls in the present study, which is 
in line with the results of previous studies. However, GMV 
loss observed in cirrhotic patients seems contradictory 
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to previous MR spectroscopy (MRS) studies. Most 
MRS studies have found no significant difference in 
N-acetylaspartate, which is a neuronal marker, between 
cirrhotic patients and healthy controls (27,28). Zhang et al. 
speculated that this discrepancy might be due to the region 
of interest selected in MRS studies (the spectrum was 
obtained from one or two specific areas of 8 mm3 in volume, 
such as white matter regions and the anterior cingulate 
cortex), which may lead to false-negative results (5).

Evaluating MDA is a traditional method to detect 
oxidative damage in various tissues. In the present study, 
a significant increase in serum MDA levels in cirrhotic 
patients was reliable evidence of OS in these patients. 
Numerous studies have confirmed the presence of OS 
in cirrhotic patients using various peripheral blood  
markers (16,19-21). Therefore, the results of our study 
are consistent with previous observations that OS is a 
remarkable feature of cirrhosis. 

In this study, no significant correlation was found 
between serum MDA and plasma ammonia in the patient 
group. This finding suggests that chronic mild/moderate 
hyperammonemia does not lead to OS. Observations in 
portacaval shunted rats support our conclusions as follows: 
portacaval shunted rats developing hyperammonemia in 
the absence of intrinsic hepatocellular disease exhibited no 
signs of OS in either the systemic circulation or the central 
nervous system (29). 

The present study revealed a significant negative 
correlation between serum MDA levels and normalized 
global GMV in cirrhotic patients after adjusting for age, 
sex and Child-Pugh class. This correlation supports our 
hypothesis that OS plays a role in GMV loss in cirrhosis. The 

brain is prone to OS and does not have sufficient antioxidant 
capacity to prevent ‘ongoing’ oxidative damage (10).  
Excessive ROS produced by OS are highly toxic to 
neurons and interact with biomolecules, leading to lipid 
peroxidation, DNA and RNA mutations, and protein 
aggregation. These changes result in neuronal dysfunction 
and, inevitably, neuron death (30). Moreover, lipid 
peroxidation products are toxic and have been shown to 
play a role in neuronal degeneration (31).

Furthermore, data from cirrhotic patients support our 
finding of a link between OS and GMV loss in cirrhosis. A 
great deal of lipofuscin pigment (indicating peroxidized lipids) 
has been observed in the brains of cirrhotic patients (22),  
providing direct evidence of the involvement of OS in 
cirrhosis-related brain impairment. Moreover, Montoliu  
et al. found that serum 3-nitro-tyrosine, a marker of OS, 
was a good peripheral biomarker of minimal HE in cirrhotic 
patients (32). Gimenez-Garzó et al. showed increased OS in 
the blood of cirrhotic patients and significant correlations 
between the levels of OS markers in blood and deficits in 
cognitive function and motor coordination (33). These 
correlations between disturbances in OS indices and brain 
dysfunction also suggest that OS plays a role in cirrhosis-
related brain impairment. However, the studies mentioned 
above did not explore the correlation between OS indices 
and abnormalities in cerebral morphology in cirrhosis.

One potential question is whether OS markers in 
peripheral blood reflect OS in the brain. As shown in the 
study by Ljubuncic et al. of rats with chronic bile duct 
ligation, MDA levels increased not only in the liver and 
blood but also in the brain (17). The authors confirmed that 
OS in CLD is a systemic phenomenon encompassing tissues 
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and organs throughout the body, even the brain separated 
by the blood-brain barrier. Therefore, our results of serum 
MDA levels in cirrhotic patients may at least partially reflect 
the oxidative status in their brains. Taken together, the 
observed negative correlation between serum MDA levels 
and normalized global GMV in cirrhotic patients seems 
logical.

Similar to previous studies (3-5), we did not found a 
significant correlation between plasma ammonia levels 
and normalized global GMV in cirrhotic patients. This 
finding may initially appear surprising because ammonia is 
generally believed to play a central role in cirrhosis-related 
brain impairment. However, it should be noted that a direct 
correlation between plasma ammonia levels and the severity 
of neurocognitive impairment is not found in CLD (34). 
Moreover, in cultured neurons, ammonia-induced neuron 
apoptosis has been demonstrated to be dose dependent and 
to reach statistical significance at only 2 mmol/L ammonia 
or higher (35). In the present study, the mean blood 
ammonia level in patients was 35.53±10.09 μmol/L, which is 
far below 2 mmol/L. Similarly, in the studies by Tarter and 
Zhang, the mean blood ammonia level in patients did not 
exceed twice the normal level, and no significant correlation 
was found between brain atrophy or GMV loss and blood 
ammonia levels (3-5). Thus, we speculate that in cirrhosis, 
mild/moderate elevations in blood ammonia may not be the 
primary cause of GMV loss.

This study had several limitations. First, the study 
employed a small sample size and a cross-sectional design. 
Therefore, although we identified a relationship between 
increased serum MDA levels and GMV loss in cirrhotic 
patients, we cannot conclude that a causal relationship 
exists. For the same reason, we cannot rule out the 
possibility that mild hyperammonemia may have had a 
cumulative effect on GMV loss. A study using a longitudinal 
design could be more appropriate for determining these 
relationships. Second, the pathophysiology of cirrhosis-
related brain impairment is complex, and many other 
factors, such as the accumulation of manganese (36) and 
malnutrition, may also contribute to GMV loss. Therefore, 
further studies are needed to consider these factors and 
perform multiple factor analysis. Finally, even though we 
had specific hypotheses based on previous studies, we did 
not correct for multiple comparisons in the correlation 
analysis between GMV, serum MDA and plasma ammonia 
in cirrhotic patients. Stricter thresholds should be used in 
future studies.

In conclusion, the present study showed that increased 

serum MDA levels were associated with GMV loss in 
patients with non-alcoholic cirrhosis, suggesting that 
OS may be involved in GMV loss in cirrhosis. Further 
studies are needed to determine whether OS is causally 
related to GMV loss in cirrhosis. If confirmed, treatments 
that decrease OS may help prevent the irreversible 
neurocognitive impairment caused by GMV loss in cirrhotic 
patients.
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