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Background: Breast imaging technology plays an important role in breast cancer planning and treatment. 
Recently, three-dimensional (3D) printing technology has become a trending issue in phantom constructions 
for medical applications, with its advantages of being customizable and cost-efficient. However, there is no 
current practice in the field of multi-purpose breast phantom for quality control (QC) in multi-modalities 
imaging. The purpose of this study was to fabricate a multi-purpose breast phantom with tissue-equivalent 
materials via a 3D printing technique for QC in multi-modalities imaging. 
Methods: We used polyvinyl chloride (PVC) based materials and a 3D printing technique to 
construct a breast phantom. The phantom incorporates structures imaged in the female breast such as 
microcalcifications, fiber lesions, and tumors with different sizes. Moreover, the phantom was used to assess 
the sensitivity of lesion detection, depth resolution, and detectability thresholds with different imaging 
modalities. Phantom tissue equivalent properties were determined using computed tomography (CT) 
attenuation [Hounsfield unit (HU)] and magnetic resonance imaging (MRI) relaxation times. 
Results: The 3D-printed breast phantom had an average background value of 36.2 HU, which is close 
to that of glandular breast tissue (40 HU). T1 and T2 relaxation times had an average relaxation time 
of 206.81±17.50 and 20.22±5.74 ms, respectively. Mammographic imaging had improved detection of 
microcalcification compared with ultrasound and MRI with multiple sequences [T1WI, T2WI and short 
inversion time inversion recovery (STIR)]. Soft-tissue lesion detection and cylindrical tumor contrast were 
superior with mammography and MRI compared to ultrasound. Hemispherical tumor detection was similar 
regardless of the imaging modality used. 
Conclusions: We developed a multi-purpose breast phantom using a 3D printing technique and 
determined its value for multi-modal breast imaging studies. 
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Introduction

Breast cancer is one of the most common cancers in women 
worldwide, accounting for 25% of diagnosed cancer cases and 
15% of cancer-related deaths among women (1). Although 
routine mammography, which remains the primary diagnostic 
and screening tool for breast cancer (1), has the ability to 
detect early stage breast cancer (2) and reduce the incidence 
of late-stage breast cancer (3), it has limited sensitivity 
in detecting lesions in women with dense breasts (4).  
Ultrasound and magnetic resonance imaging (MRI) can be 
used as alternative modalities for mammography in these 
patients (1,5,6). Breast ultrasound imaging can assist in 
distinguishing between cysts and solid masses, potentially 
reducing unnecessary biopsies (7,8). With the ability to 
detect breast cancers at the pre-invasive stage, MRI has 
been used as an adjunct to mammographic screening, 
especially in women with a high risk of breast cancer (9,10). 
Furthermore, dynamic contrast-enhanced MRI (DCE-MRI) 
images provide vascular kinetics in tissues, which improves 
tumor detection capability and sensitivity (9,11). Routine 
incorporation of MRI should be approached cautiously as it 
can increase diagnostic costs, biopsies and mastectomy rates 
without changing the survival or recurrence endpoints (12).  
However, Kolb et al. (4) and Berg et al. (13) compared 
combined breast evaluation applications including 
clinical examination, ultrasound, MRI, and multi-modal 
combination with the use of a single modality and their 
results indicated improved sensitivity in cancer detection 
with the combination of modalities.

These studies emphasize the urgent need for a 
quantitative and qualitative phantom for imaging quality 
assessment and testing (14,15). Currently, the majority 
of phantoms are designed for use with a single imaging 
modality; thus, multiple purpose phantoms are required for 
different imaging systems. Several commercialized breast 
phantoms have been developed using tissue-mimicking 
materials (TMMs) for adipose and glandular tissue for use 
with specific imaging techniques. With mammography, 
polymethyl methacrylate (PMMA) plates (16-18) and epoxy 
resins (19-21) are the TMMs commonly used to represent 
different proportions of adipose and glandular tissue. In 
breast ultrasound, TMMs include biopolymers [gelatin (22) 
and agar (23,24)], polyacrylamides (25), urethane rubber (26), 
and paraffin–gel waxes (27). Similar MRI phantoms have 
been designed with homogeneous glandular-equivalent 
tissues (i.e., polysaccharides, water, and egg whites) which 
are surrounded by homogeneous adipose-equivalent tissue 

(i.e., Crisco, fat, and lard) (28-32). However, all these 
phantoms are only compatible with a single-modality 
imaging system. Furthermore, some of the TMMs in use, 
such as PMMA, are poor surrogates for breast tissue (33).

To overcome these limitations, construction of multi-
modal breast phantoms has been pursued (19,34-36). 
Biopolymers are commonly used to construct these multi-
modal breast phantoms with TMMs (22-24,30,35,36), but 
have poor durability due to water evaporation and bacterial 
growth (36-38). Unlike these biopolymers, polyvinyl 
chloride (PVC), a common synthetic chemical polymer, is 
easy to handle, bacterial-resistant, stable and durable under 
normal, ambient conditions (39). 

Here, we use PVC-based TMM material and three-
dimensional (3D) printing techniques to construct a 
custom-designed breast phantom with multiple inserts 
for multi-modal image quality control (QC) (i .e. , 
mammography, MRI, ultrasound). To our knowledge, there 
has been no publication in the literature addressing the 
need for constructing a breast phantom for multi-modality 
imaging QC with cost-efficiency and ease of customization. 

Methods

Phantom construction

Production of PVC-based materials as TMM
The soft PVC TMM used for phantom construction was 
made from a mixture of PVC powder and softener (i.e., 
dioctyl terephthalate). A mixture of white and opaque PVC 
powder and softener was heated to 280 ℃ on a laboratory hot 
plate with constant stirring until the mixture was thoroughly 
polymerized and transparent (40). For breast ultrasound 
imaging, 3% graphite powder was added to the mixture 
resulting in an echo speed of 1,397.9 m/s (41), which provides 
sharp contrast with the insert and mimics breast tissue. A 
3D-printed negative breast mold (described in section 2.1.2 
and 2.1.4) was coated with Vaseline, then preheated before 
being filled in with the PVC mixture. This was allowed to 
cool at room temperature, forming the breast phantom.

Breast mold design
An anonymized MRI scan of a female breast was obtained 
from the Cancer Imaging Archive (TCIA) (42,43). The 
TCIA is a public database that does not require ethics 
approval. The MRI dataset was imported into Materialise 
Mimics (17.0.0.435, Materialise, Leuven, Belgium) for 
structure segmentation, smoothing, and remeshing for 3D 
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printing of the breast mold (Figure 1). 

Insert generation
Embedded inserts (semi-elliptic cylinder, height 53 mm, 
width 50 mm, thickness 6.0 mm) were generated to simulate 
tumors. A total of 18 cylindrical (columns 1–3) and 18 
hemispherical (columns 4–6) holes were imbedded in the 
insert ranging in diameter from 2.0 to 6.0 mm. For depth 
resolution, a total of 72 cylinders with 8 cylinders per row 
and a thickness ranging from 0.25 to 5.0 mm were used. 
Columns of 9 cylinders with diameters ranging from 1.0 to 
5.0 mm were used. For fiber lesions, a total of 15 horizontal 
strips ranging in height from 0.2 to 1.6 mm were used. For 
microcalcifications, a total of 17 groups of calcifications, 
each group containing 8 cylinders ranging in diameter 
from 1.2 to 2.1 mm were used. The 3D-printed inserts 
were designed using SolidWorks software (SolidWorks, 
SolidWorks Corp., Concord, MA, USA). Inserts were used 
to evaluate imaging quality and detection sensitivity based 
on lesion size, depth resolution, and threshold detection 
ability in different imaging systems (Figure 2).

3D printing
The 3D breast mold segmentation and inserts’ mesh files 
were converted to Standard Tessellation Language (STL) 
format compatible with the 3D printer (Objet 50, Stratasys, 
Minneapolis, Minnesota, USA). Acrylonitrile butadiene 
styrene (ABS) was used to print the 3D breast mold and 
inserts using 100% infill density with a fused deposition 

printing technique. The printing accuracy was 0.256 mm.

Image acquisition and evaluation

Mammography
A MAMMOMAT Inspiration system (Siemens AG, 
Erlangen, Germany) was used to acquire mediolateral 
oblique (MLO) and cranio-caudal (CC) images as shown in 
Figure 3. The mammographic scanning parameters included 
28.0 kV, 168.0 mAs, 77.4–90.1 N for the compression force. 

MRI
MRI images of the breast phantom were acquired using a  
3.0 T Siemens Magnetom Verio scanner (Siemens, 
Erlangen, Germany) with a proprietary phase array breast 
coil. T1WI, T2WI and short inversion time inversion 
recovery (STIR) sequences were obtained. Additionally, T1 
and T2 time constant measurements were obtained using a 
16-channel head coil. MRI parameters are listed in Table 1.

Ultrasound
A high-resolution ultrasonic diagnostic instrument (Mindray 
DC-N3 Doppler) was used with the transducer operating at 
a central frequency of 7.5 MHz. 

Image evaluation and statistical analysis
In this study, mammography images were assessed by a 
mammography specialist, ultrasound images were gauged 
by a sonographer, and MRI images were evaluated by a 
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Figure 1 The breast mold. (A,B) 3D rendering of the breast mold; (C,D) photographs of the 3D-printed breast mold.
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radiologist. Each specialist has more than 5 years of clinical 
experience and expertise in their corresponding imaging 
modality.

All data were collected and analyzed using GraphPad 
Prism 7 (Graphpad Prism, Graphpad Prism Software Inc., 
San Diego, CA, USA). 

Results

PVC-softener ratio selection 

The PVC-softener ratio greatly affects imaging physics 
properties of studied materials (39). The ratio most closely 
resembling biologic breast and tumor characteristics 

Figure 2 3D illustration of the breast phantom inserts. (A) Simulated tumors: cylindrical holes (column 1–3), and hemispherical holes 
(column 4–6). Diameters range from 2.0–6.0 mm. (B) Depth resolution: eight cylinders per row with thickness ranging from 0.25–5.0 mm. 
Each column contains nine cylinders with diameters ranging from 1.0–5.0 mm. (C) Fibers: strips with widths ranging from 0.2–1.6 mm. (D) 
Microcalcifications: each group contains eight cylinders with diameters ranging from 1.6–2.1 mm and 5.0 mm thickness. 

Figure 3 Breast phantom mammography using 28.0 kV, 168.0 mAs in (A) MLO and (B) CC positions. (C,D) The breast phantom is capable 
of compression for mammography.
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were chosen, as shown in Table 2. A PVC-softener ratio 
of 12.3×10−2 g/mL (i.e., 49.2 g PVC in 400 mL softener) 
corresponds to 36.2 HU and closely resembles glandular 
tissues (40 HU) (36). Depending on the tissue of interest, 
breast models using various materials (e.g., PVC and agar) 
can be combined to accurately create an imaging phantom 
with similar imaging characteristics (CT number, T1-/T2-
relaxation, m/s, etc.). In this experiment, a PVC-softener 
ratio of 15.2×10−2 g/mL (59.4 HU) was chosen, which is also 
close to the attenuation of actual tumor (60 HU) (36,47).

Phantom construction

The breast phantom was made of TMMs with PVC-based 
materials to mimic glandular breast tissue. Various QC 
inserts were incorporated to mimic artificial features (e.g., 
microcalcifications, fiber lesions, or tumors), and provided 
qualitative assessment of the lesion detection sensitivity for 
various imaging modalities (i.e., depth resolution). An interlock 
system was used to ensure insert alignment. Figure 4 shows a 
multi-purpose bulk breast phantom with various QC inserts. 

Simulated lesions

Four types of inserts were used to evaluate imaging, 

in detail, of characteristics of simulated tumors, depth 
resolution, fiber lesions and microcalcifications, for 
mammography (Figure 5), MRI (Figure 6), and ultrasound 
(Figure 7). All the results of the detected simulated lesions 
are summarized in Figure 8, which shows the comparison 
of three imaging modalities in image QC performance with 
various inserts.

Mammography
One hundred percent of cylindrical tumors, 88.9% of 
hemispherical tumors (Figure 5A,E), 100% of fiber lesions 
(Figure 5C,G), and 100% of microcalcifications (Figure 5D,H)  
were detected. Of the cases with depths from 0.5 to 5.0 mm  
and sizes from 0.25 to 5.0 mm, 65.3% were detected in 
depth resolution insert (Figures 5B,F). 

MRI
One hundred percent of cylindrical tumors and 83.3% 
of hemispherical tumors were detected with MRI images 
(Figure 6A,E,I). For depth resolution, 94.4%, 66.7%, and 
88.9% of cases were detected on T1-weighted (Figure 6B), 
T2-weighted (Figure 6F), and STIR (Figure 6J) images, 
respectively. Of the simulated fiber lesions, 100%, 93.3%, 
and 93.3% were detected with T1-weighted (Figure 6C), 
T2-weighted (Figure 6G) and STIR (Figure 6K) images, 

Table 2 Breast phantom characteristics

Breast phantom/ 
characteristic of TMMs

PVC-softener ratio  
(×10−2 g/mL)

Imaging characteristic Measured value Published value

Background 12.3 CT number (HU) +36.2 +40 (36)

T1 (ms) 206.81±17.50 1,324.42±167.63 (44)

T2 (ms) 20.22±5.74 54.36±9.35 (44)

12.3 (3.0% graphite power) Speed of sound (m/s) 1,397.9 (41) 1,544 (45,46)

Tumor 15.2 CT number (HU) +59.4 +10 to +60 (36,47)

Table 1 MRI acquisition parameters

Parameter
Image acquisition† Relaxation time†

T1-weighted T2-weighted STIR T1-mapping T2-mapping

TR (ms) 6.1 4,500 8.75 15 1,000

TE (ms) 2.6 70 4.33 2.32 13.8, 27.6, 41.4, 55.2, 69.0

Slice thickness (mm) 4 4 0.9 3 3

Flip angle (°) 15 120 15 5 180

NEX 1 1 1 1 1
†, Siemens Magnetom Verio. NEX, number of excitation.
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file:///D:\11111\QIMS-18-428\QIMS-18-428-R2-TABLE2-1745.docx#_ENREF_36
file:///D:\11111\QIMS-18-428\QIMS-18-428-R2-TABLE2-1745.docx#_ENREF_45
file:///D:\11111\QIMS-18-428\QIMS-18-428-R2-TABLE2-1745.docx#_ENREF_45
file:///D:\11111\QIMS-18-428\QIMS-18-428-R2-TABLE2-1745.docx#_ENREF_41
file:///D:\11111\QIMS-18-428\QIMS-18-428-R2-TABLE2-1745.docx#_ENREF_46
file:///D:\11111\QIMS-18-428\QIMS-18-428-R2-TABLE2-1745.docx#_ENREF_47
file:///D:\11111\QIMS-18-428\QIMS-18-428-R2-TABLE2-1745.docx#_ENREF_36
file:///D:\11111\QIMS-18-428\QIMS-18-428-R2-TABLE2-1745.docx#_ENREF_44


68 He et al. 3D printing multi-modality and multi-purpose breast phantom

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2019;9(1):63-74qims.amegroups.com

respectively. For microcalcifications, 76.5% were detected 
both on T1-weighted and STIR images (Figure 6D,L); 
however, only 13.2% of cases were detected with T2-
weighted images (Figure 6H). 

Ultrasound
Using ultrasound, 94.4% of simulated cylindrical tumors, 
83.3% of hemispherical tumors (Figure 7A), 66.7% in depth 
resolution (Figure 7B), and 45.6% of microcalcifications 
(Figure 7D) were detected. For fiber lesions, cases with 
diameters ranging from 0.8 to 1.5 mm had 60% detection 
(Figure 7C).

Discussion

In this study, we designed and constructed a novel multi-

modal compatible tissue-equivalent breast phantom with 
embedded inserts for simulating different breast lesions. 
We further analyzed quantitative and qualitative imaging 
characteristics for biophysically-equivalent simulated breast 
lesions using this multi-modal breast imaging phantom 
with various acquisition techniques. Our results showed 
that mammographic images showed a higher number of 
visible microcalcifications than those in the ultrasound 
and MRI. Visualization of lesions was improved with 
mammography and MRI versus ultrasound. The contrast of 
simulated cylindrical tumors with mammography and MRI 
was superior compared to ultrasound, and visualization 
of hemispherical tumors was similar in the various 
systems. A combination of different imaging modalities is 
recommended to improve the sensitivity of lesion detection. 

3D printing techniques play an increasingly important 

Figure 4 Photographs of the breast phantom. (A,B) The breast phantom and insert within the breast mold. (C,D) The PVC breast phantom 
has been removed from the mold and is ready for mammography and MRI. (E,F) An ultrasound breast phantom uses the mixture of PVC, 
softener and 3.0% graphite power to improve tissue contrast for imaging. 
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role in phantom constructions for clinical applications. 
Medical application of 3D printing technology is feasible 
for proton range compensators (44), pre-surgical planning 
(45,46), prosthetics/dental implants (48,49), and medical 
phantoms (50). With the advantages of being customizable 
and cost-efficient, 3D-printed phantom has significant 
contribute to equipment correction, patient-clinician 
interaction, tissue substitute, medical research and medical 
education/training (51). This technique was used in this 
study to construct the breast phantom mold, in addition to 
phantom inserts. The phantom was tested using different 
imaging modalities for breast imaging, and this represents 
the novel aspect of our study. 

Another important part of this study was to develop 
TMMs for human breast. PVC is one of the most 
common and widely used materials in phantoms, including 

abdominal phantoms for registration accuracy (52), prostate 
phantoms for image-guided biopsy procedures (53), and 
the mixture of PVC plastisol and graphite powder for 
ultrasound imaging (41). However, to our knowledge, 
there have been no published studies reporting appropriate 
TMMs for breast phantoms. In our study, we identified 
and reported a PVC-softener mixture that represents the 
physical and imaging properties of human breast tissues. 
A PVC-softener ratio of 12.3×10−2 g/mL corresponds to 
36.2 HU, which is similar to previous results from Liao  
et al. (40), and also close to glandular tissues (40 HU) (36). 
Although the T1 and T2 relaxation times are shorter than 
those reported with physiologic breast tissue (54), we found 
the mean relaxation times of 206.81±17.50 ms for T1 and 
20.22±5.74 ms for T2, as compared to published values of 
1,324.42±167.63 ms and 54.36±9.35 ms, respectively (54).  

A B C D

E F G H

Figure 5 (A,B,C,D) CC and (E,F,G,H) MLO mammographic images of the multi-modal breast phantom (28 kV, 168 mA). Tumor inserts 
(A) and (E), depth resolution inserts (B) and (F), fiber inserts (C) and (G), and microcalcification inserts (D) and (H) are used for qualitative 
measurements.
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A B C D
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Figure 6 MRI images of the multi-modal breast phantom with T1WI (A,B,C,D), T2WI (E,F,G,H), and STIR (I,J,K,L) sequences. The first 
column (A,E,I) shows tumor inserts, the second column (B,F,J) shows depth resolution inserts, the third column (C,G,K) shows fiber inserts, 
and the forth column (D,H,L) shows microcalcification inserts.

The speed of sound in PVC measured by anechoic imaging 
is approximately 1,400 m/s (39,53,55,56), which is lower 
than that of human glandular tissue at 1,544 m/s (57,58). 
For ultrasound imaging, a 3.0% graphite power was added 

to the PVC-softener ratio resulting in an echo speed of 
1,397.9 m/s with hyperechoic imaging (41). This step, 
while providing a sharp contrast with the inserts, may 
not truly reflect the biophysical imaging characteristics of 

Figure 7 Ultrasound images of the multi-modal breast phantom. (A) Tumor inserts, (B) depth resolution inserts, (C) fiber inserts, (D) 
microcalcification inserts.
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human tissue. Therefore, an opportunity for further TMM 
development and more sophisticated 3D printed breast 
phantom development exists.

The benef i t  o f  us ing PVC-based mater ia l  for 
mammography is that due to its inherent elasticity, the 
breast phantom can be compressed for mammographic 
imaging. Freed et al. (34) described a dual-modality breast 
phantom capable of compression; however, the resulting 
deformation after compression was not compatible with 
mammographic imaging. Our PVC-based breast phantom 
is superior to those previously described (28,34,36) although 
the overall elastic deformation capability is relatively 
limited and still needs future development. If the pressure 
applied to the phantom for mammographic imaging exceeds 
the elastic modulus of this material, the phantom may be 
damaged.

Typical evaluation criteria for a breast phantom include 
QC (16,28), detectability of microcalcifications, masses 
(16,17,59-63), and assessment/optimization of MRI 
acquisition protocols (29,30). Our breast phantom was 
designed to evaluate imaging characteristics of a single breast 
lesion for mammography, MRI, and ultrasound, including 
simulated tumors, depth resolution, fiber lesions, and 
microcalcifications. For simulated tumors, more than 94% 
of cylindrical cases and more than 83% of hemispherical 
cases were detected for all three imaging modalities. 
For depth resolution, depths greater than 0.5 mm  
and diameters greater than 1.5 mm were detected for all 
three imaging modalities. MRI had the best performance 
due to 3D image acquisition, but detection performance 
varied with the MRI acquisition sequence. For fiber lesions, 
diameters greater than 0.8 mm were detected for all three 

imaging modalities. The imaging performance in detecting 
microcalcifications was variable depending on the imaging 
modality used. In general, lesion diameters greater than  
1.6 mm were detected with all modalities, and mammography 
outperformed ultrasound and MRI. Finally, ultrasound 
had good detection performance for fiber lesions, depth 
resolution, and tumors; however, feature details lacked 
imaging contrast and this method was not sensitive to small 
lesions. 

Despite robust qualitative measurements there are 
some limitations to the current study. 3D printing has 
an accuracy of 0.256 mm and limits the ability to assess 
micrometer lesions. In addition, the current phantom 
was constructed with a homogenous density and lacks the 
heterogeneity present in physiologic tissues. Incorporation 
of heterogeneous materials through advanced 3D printing 
techniques will improve phantom design and biophysical 
equivalence compared with physiologic tissues. Finally, a 
temperature difference between the PVC-softener mixture 
and breast mold may introduce bubbles which cannot be 
eliminated, and this may affect image quality. It is worth 
noting that the presence of bubbles can be minimized by 
reducing excessive mixing during heating, preheating the 
breast mold, or placing the PVC mixture under a strong 
vacuum prior to decanting into breast mold. 

Conclusions

We constructed an anthropomorphic PVC breast 
phantom using 3D printing and TMMs capable of multi-
modal imaging assessment for mammography, MRI, and 
ultrasound. Embedded inserts allow for qualitative image 

Figure 8 Comparison of the number of detected simulated lesions in different modalities.
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assessments. Ongoing development of a heterogeneous 
breast phantom using high-fidelity 3D printing with 
multiple biologically-equivalent materials will improve the 
phantom similarity to physiologic tissues, and thus further 
enhance image quality and lesion detection.
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