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Background: Segmentation is a crucial and necessary step in diffusion tensor imaging (DTI) analysis of the 
cervical spinal cord. In existing studies, different diffusive metric maps [B0, fractional anisotropy (FA) and 
axial diffusivity (AD) maps] have been involved in the segmentation of tissues of the cervical spinal cord. The 
selection of a diffusive metric map for segmentation may affect the accuracy of segmentation and then affect 
the validity and effectiveness of the extracted diffusive features. However, there are few discussions on this 
problem. Therefore, this study would like to examine the effect of segmentation based on different diffusive 
metric maps for DTI analysis of the cervical spinal cord. 
Methods: Twenty-nine healthy subjects and thirty patients with cervical spondylotic myelopathy (CSM) 
were finally included in this study. All subjects accepted DTI scanning at cervical levels from C2 to C7/
T1. For healthy subjects, all cervical levels were included for analysis; while, for each patient, only one 
compressed cervical level was included. After DTI scanning, DTI metrics including B0, FA, AD, radial 
diffusivity (RD) and mean diffusivity (MD) were calculated. The evaluation was performed to B0, FA and 
AD maps from two aspects. First, the accuracy of segmentation was evaluated via a comparison between 
segmentation based on each diffusive metric map and segmentation based on an average image, which was 
acquired by averaging B0, FA, AD, RD and MD maps. The segmentation was achieved by a semi-automatic 
segmentation process, and the similarity between two segmentation results was denoted by the intersection 
of the union (IOU). Second, the diversity of extracted diffusive features was equalized as their performance 
in the classification of image pixels of different regions of interest (ROIs) and then was evaluated by mutual 
information (MI) and area under the curve (AUC). One-way ANOVA and Bonferroni’s post hoc tests were 
applied to compare the evaluation results. 
Results: One-way ANOVA suggested that there were differences (P<0.001) in IOU, MI and AUC values 
among the three diffusive metric maps for both healthy subjects and patients. The post-hoc tests further 
indicated that FA performed the best (P<0.001), i.e., the most substantial accuracy of segmentation and the 
highest diversity in extracted diffusive features. 
Conclusions: Different evaluation results had been observed for segmentation based on different diffusive 
metric maps, suggesting the necessity of selection of diffusive metric maps for segmentation in DTI analysis 
of the cervical spinal cord. Moreover, FA map is suggested for segmentation due to its best performance in 
the evaluation. 
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Introduction

Diffusion tensor imaging (DTI) has become a favorite 
technique in studies of the cervical spinal cord (1-5), due 
to its characteristics to detect the microstructure changes 
of nerve tissues (4,6,7). For DTI analysis, one crucial and 
necessary step is the segmentation of the whole spinal cord 
or more specific tissues like gray and white matters (8). The 
segmentation can help extract diffusive features to describe 
the status of the cervical spinal cord; also, it makes these 
diffusive features comparable among different subjects or 
patients without complicated image registration operation. 
The way for extraction of diffusive features may be different 
in different studies; one common way is to calculate the 
average value across the region of interest (ROI) defined by 
the segmentation (9-11). Compared with the whole spinal 
cord, the segmentation of tissues inside the spinal cord has 
attracted more and more attention in recent years; the more 
specific segmentation can extract more detailed diffusive 
features and provide a more comprehensive description 
of the cervical spinal cord. This kind of segmentation has 
already been used in several studies and achieved very 
promising findings, indicating its advantages over the 
whole-cord-based segmentation (8-16).

However, unlike the whole-cord-based segmentation, 
there are few methods for segmentation inside the spinal 
cord and the discussion on the segmentation is also  
limited (8). It is found that several different diffusive 
metric maps, e.g., B0, fractional anisotropy (FA) and axial 
diffusivity (AD), have been involved in the segmentation 
procedure in different studies (8-16). A question would be 
raised whether it maintains the consistent result if DTI 
analysis of the cervical spinal cord is performed based 
on segmentation from different diffusive metric maps. 
Different diffusive metric maps present different intensity 
distributions as they reflect different diffusive properties 
of the spinal cord tissues. The intensity distribution is an 
essential reference for segmentation, and the difference in 
intensity distribution may somehow affect the segmentation 
accuracy. An accurate segmentation can ensure the validity 
and effectiveness of the extracted diffusive features in DTI 
analysis; the knowledge on the effect can help researchers 
and clinicians choose a proper diffusive metric map for the 
segmentation in their studies.

Therefore, this study examined the effect of segmentation 
based on different diffusive metric maps for DTI analysis 
of the cervical spinal cord. The examination was performed 
in two aspects: one was to evaluate the accuracy of the 

segmentation results, and the other was to assess the 
diversity of the extracted diffusive features. The accuracy 
of the segmentation results can denote the validity of the 
extracted diffusive features, i.e., whether the diffusive 
features can correctly describe the diffusive properties 
of target tissues. The diversity of the extracted diffusive 
features can indicate their effectiveness. The effectiveness of 
these features will decrease if they are with a small variance; 
in that case, they can be replaced by the whole-cord-based 
features, which can be acquired with less time and efforts. 
The detailed examination methods would be introduced in 
the materials and methods section. 

Methods

Subjects

Thirty healthy subjects and thirty patients with confirmed 
cervical spondylotic myelopathy (CSM) were recruited in 
this study. All healthy subjects were Chinese, with normal 
sensory and motor functions as well as full Japanese 
Orthopaedic Association (JOA) scores and negative 
Hoffman sign. Also, the subjects should not be with a past 
history of spinal cord injury, myelopathy as well as other 
neurological diseases. One subject was excluded due to 
poor image quality. CSM patients were also Chinese, and 
they were diagnosed based on the neurological signs and 
symptoms with compatible radiological findings of stenosis 
by a group of senior spine surgeons. The patients with prior 
neurological trauma/surgery, other co-existing neurological 
disorders or claustrophobia were excluded. The age of the 
healthy subjects ranged from 21 to 62 years old with an 
average value of 45.3±9.0 years old, and there were 13 males 
and 16 females; while, the age of CSM patients ranged from 
43 to 86 years old with an average value 65.2±11.7 years 
old, and there were 20 males and 10 females. For healthy 
subjects, all cervical levels from C2 to C7/T1 were scanned 
and analyzed; while, for CSM patients, all cervical levels 
were scanned, but only one compressed level was selected 
for analysis. The compressed level was determined by 
neurological examination and the finding of spinal canal 
stenosis in diffusive metric maps. This study included 
subjects with different ages, and a previous study suggested 
that age-related changes could be neglected (9). All healthy 
subjects and CSM patients were informed before the 
experiments with an informed consent letter signed. This 
study was approved by the local institutional review board 
of research ethics. 
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DTI scanning

DTI scanning was performed by a 3T magnetic resonance 
scanner (Philips Achieva, The Netherland). The subject was 
placed supine with SENSE Neuro-Vascular ARRAY coil with 
16 channels enclosing the cervical region. The pulse sequence 
used was single-shot spin-echo echo-planar imaging (SE-
EPI). The diffusion encoding was in fifteen non-collinear and 
non-coplanar diffusion directions with b value =600 s/mm2. 
The imaging parameters were as follows: FOV =80×36 mm,  
acquisition matrix =80×28, reconstructed resolution 
=0.63×0.63 mm2, slice thickness =7 mm, fold-over direction = 
AP, number of excitation (NEX) =3, EPI factor =35, TE/TR 
=60 ms/5 heartbeats. Spectral presaturation with inversion 
recovery was applied to avoid water-fat-shift artifacts. Cardiac 
vectorcardiogram triggering was applied to minimize the 
pulsation artifact from cerebrospinal fluid. The image slice 
planning was to use 12 slices to cover cervical levels from C2 
to C7/T1 in three stacks. 

Diffusive metric calculation

Conventional diffusive metrics, e.g., FA, AD, radial 
diffusivity (RD) and mean diffusivity (MD), were calculated 
by DTI Studio software (version 2.4.01, 2003, John 
Hopkins University, Baltimore, MD, USA). The definitions 
of each diffusive metric were explained in the following. 

After DTI scanning, B0 map and several diffusion-
weighted images corresponding to different gradients were 
acquired. Notably, a diffusion-weighted image could be 
denoted by (17):
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where S0 represents the B0 map, g is the diffusion gradient 
matrix, and b is a diffusion-weighting factor. D is the 
diffusion tensor and can be defined as:
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The diffusion tensor is symmetric, i.e., Dij=Dji with 
i,j=x,y,z, and it can be represented by a vector with six 
independent variables as follows:
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Then, Eq. [1] was rewritten as:
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Moreover, ADC is known as the apparent diffusion 
constant, defined by:
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Based on Eq. [4], D
~

 could be calculated via a least-
squares problem, and in this study, it was calculated using 
singular value decomposition. When the tensor D

~
 was 

obtained, its three eigenvalues, i.e., λ1, λ2 and λ3 (λ1≥λ2≥λ3), 
and corresponding eigenvectors, i.e., v1, v2 and v3, could be 
calculated. With the three eigenvalues, FA, AD, RD, and 
MD were respectively defined by:
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AD =λ1 [8]

RD =(λ1+λ2)/2 [9]

MD =(λ1+λ2+λ3)/3 [10]

where λ
_
 is the average value of λ1, λ2 and λ3.

Average image calculation

An average image was calculated as the reference to examine 
the accuracy of segmentation based on different diffusive 
metric maps. The average image was a combination of 
five commonly used diffusive metric maps, including 
B0, FA, AD, RD and MD maps. The calculation process 
was shown in Figure 1A. In this process, the manual 
segmentation of the whole spinal cord was performed on 
B0 map by an experienced neuroimage researcher. Image 
contrast adjustment was achieved by histogram equalization 
algorithm provided by the scikit-image package (18). Image 
intensity range normalization transformed image intensities 
to the range from 0 to 1, and then image intensity inverse 
operation was to use 1 minus the image intensity after 
normalization. Image intensity inverse operation was only 
performed for FA, AD and MD maps, to ensure that gray 
and white matters corresponded to high and low image 
intensities respectively. The averaging procedure was to 
calculate the mean values of five diffusive metric maps after 
image preprocessing. 
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Segmentation of gray and white matters

The segmentation of gray and white matters had been 
performed for B0 map, FA map, AD map, and the average 
image. The segmentation process was shown in Figure 1B. 
In this process, the manual segmentation of the whole spinal 
cord and image preprocessing procedures were the same as 
those for average image calculation. Image intensity inverse 
operation was only performed for FA and AD maps. The 
intensity-based segmentation algorithm was via voting of 
segmentation results of six common automatic thresholding 
algorithms, i.e., yen (19), otsu (20), isodata (21), mean (22), 
li (23) and triangle (24). The voting process was defined as:
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where 0 and 1 represent the white and gray matter 
respectively, ιi and thi are the segmentation result and the 
threshold acquired by a thresholding algorithm, and I (x,y) 
represents image intensity at the image pixel position (x,y).

Yen algorithm was performed by the function “skimage.
filters.threshold_yen” in the scikit-image package (18). It is 
an entropy-based thresholding algorithm. It considers the 
foreground and background as two different signal sources 
and the threshold is supposed to be optimal if the sum of 
the two-class entropies reaches its maximum. Yen et al. 
defined the entropic correlation as:
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where p (g), g=0,...,G, represents the probability mass 
function (PMF) of the image and G is the maximum intensity 
value in the image, typically 255 if 8-bit quantization 

Figure 1 Flowcharts of calculation of average image and segmentation of gray and white matters. (A) Calculation of average image; (B) 
semi-automatic segmentation of gray and white matters on diffusive metric maps (B0, FA and AD maps) and average image. FA, fractional 
anisotropy; AD, axial diffusivity; RD, radial diffusivity; MD, mean diffusivity.

A

B
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is assumed. T is the threshold and ( ) ( )
0

T

g
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subscript “b” and “f” represent background and foreground 
respectively. Yen’s method was to find the threshold T to 
maximize TC (T).

Otsu’s method was performed by the function “skimage.
filters.threshold_otsu” in the scikit-image package (18). 
It tries to find the optimal threshold by minimizing the 
weighted sum of within-class variances of the two classes. 
Moreover, this minimizing process has been proved to be 
equal to a maximization of the inter-class variance. Thus, 
the threshold can be determined by solving the following 
optimization process:
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where T is the threshold, P (T) is the cumulative probability 
function, and mi (T) and ( )2

i Tσ  (i = b, f) represent mean and 
variance of background and foreground. P (T), mi (T) and 
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where p (g), g and G have the same definition as those in 
Eq. [13].

Isodata algorithm was performed by the function 
“skimage.filters.threshold_isodata” in the scikit-image 
package (18). It is an iterative selection method. First, an 
initial threshold is set by:

0 max min

2
g g

T
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=  [16]

where gmax and gmin are the maximum and minimum 
intensities in the image respectively. Second, the image is 
segmented into background and foreground based on the 
current threshold, and the average intensities of background 
and foreground Ab and Af are calculated as:
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where h (g) represents the pixel number with intensity g, 
and K is the number of maximum iteration. Third, the 
threshold is recalculated as:

, 1, 2,3,...,
2

b fk A A
T k K

+
= =  [18]

Then, repeat the second and third steps until TK = TK–1.
Mean algorithm was performed by the function “skimage.

filters.threshold_mean” in the scikit-image package (18). It 
returns the average image intensity as the threshold.

Li’s method was performed by the function “skimage.
filters.threshold_li” in the scikit-image package (18). It is to 
evaluate the Kullback-Leibler distance, defined as:

( ) ( ) ( )
( )
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q g

D q p q g
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where p (g) and q (g) represent the probability function of 
the original image and the reconstructed image. Li’s method 
tries to minimize this distance by solving the optimization 
problem as:
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where mb (T) and mf (T) have the same meaning as those in 
Eq. [15]. 

Triangle algorithm was performed by the function 
“skimage.filters.threshold_triangle” in the scikit-image 
package (18). It is based on the intensity histogram. 
Notably, a line L was drawn between the highest and the 
lowest peaks in the histogram. The lowest peak should be 
significantly larger than zero. Then, the locations between 
the selected highest and lowest peaks are selected, and the 
distances from the corresponding peaks of these locations 
to line L are calculated. The peak acquiring the most 
substantial distance is finally selected, and the threshold is 
the adding between the peak’s location and a fixed offset. 
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Evaluation of the effect of segmentation in diffusive metric 
maps

Accuracy of segmentation

The accuracy of segmentation was examined via a comparison 
between segmentation results based on each single diffusive 
metric map and the reference, i.e., segmentation based on 

the average image. Mainly, the comparison was based on the 
intersection of the union (IOU). IOU is a commonly used 
evaluation metric to show the similarity between the two 
segmentation results. In this study, it was calculated by:

intersection

union

IoU=
A

A  [21]

where Aintersection and Aunion represent areas of the intersection 
region and the union region of the two segmentation results 
respectively (Figure 2). 

The diversity of extracted diffusive features among 
different ROIs

Based on the segmented gray and white matters, diffusive 
features were extracted by calculating the average diffusive 
metric values (FA, AD, RD, and MD) across the two ROIs. 
For a diffusive metric, the corresponding diffusive features 
will be with high diversity between the two ROIs if the 
diffusive metric values are similar in the same ROI and 
are different a lot in different ROIs (Figure 3). Meanwhile, 
if this condition is fulfilled, this diffusive metric can also 
perform well in the classification of image pixels of the two 
ROIs. Therefore, the evaluation of the diversity of extracted 
diffusive features is equivalent to the evaluation of the 
performance of the corresponding diffusive metric in the 
classification of the two ROIs. Mutual information (MI) and 
area under the curve (AUC) were calculated for each diffusive 
metric (FA, AD, RD, and MD) to evaluate the classification 

Figure 2 Schematic diagram for the IOU regions. The red and 
blue lines circle ROI I and ROI II respectively. The yellow lines 
circle the intersection part of ROI I and ROI II. The black lines 
circle the union part of the ROI I and ROI II. IOU, intersection of 
the union; ROI, region of interest.

ROI II

ROI I

Union

Intersection

Figure 3 Schematic diagrams for evaluation of the diversity of diffusive features. The dots represent image pixels, and their colors represent 
different diffusive metric values. The circles represent the ROIs, and their colors represent the values of extracted diffusive features. If the 
diffusive metric values are consistent in the same ROI and different in different ROIs, the diffusive features are with high diversity and 
the diffusive metric can perform well in the classification of image pixels of the two ROIs. Otherwise, the diversity and the performance in 
classification decrease at the same time. ROI, region of interest.

Diffusive metric value

Diffusive feature Diffusive feature

Diffusive metric value

High performance in classification of the two ROIs Fair performance in classification of the two ROIs

ROI I ROI I

ROI II ROI II
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performance. Then, the mean MI and AUC values of FA, 
AD, RD, and MD were calculated respectively, to indicate 
the overall diversity of the extracted diffusive feature. 

MI was defined as (25):

( ) ( ) ( ) ( )
( ) ( )

,
MI , ( ) | , log

y Y x X

p x y
X Y H Y H Y X p x y

p x p y∈ ∈

 
= − =   

 
∑∑  [22]

where X and Y represent the two random variables, p (x,y) 
represents the joint probability of X and Y, p (x) and p (y) 
represent the probability of X and Y respectively, H (Y) 
represents the entropy of Y, and H (Y|X) represents the 
conditional entropy. MI represents the mutual dependency 
between X and Y. In this study, X and Y were set as the 
label (gray or white matters) and feature (FA, AD, RD or 
MD value) of image pixels respectively, and their mutual 
dependency reflected the ability of the tested diffusive 
metric in the classification of the two ROIs. 

AUC was calculated based on the receiver operating 
characteristic (ROC) curve, whose ordinate and abscissa were 
true positive rate and false positive rate respectively (26). 
AUC value would be subtracted by 1 if it was smaller than 0.5.

Statistical tests

One-way ANOVA analysis was performed based on 348 
healthy cases (29 healthy subjects ×12 cervical levels), to 
examine the differences in IOU, MI and AUC values. 
Moreover, Bonferroni’s post hoc tests were performed if the 
main effect was significant. Significant level was set as 0.05. 
The same statistical tests were also performed for the CSM 
patient group, based on 30 non-healthy cases (30 CSM 
patients ×1 cervical compression level). 

Results

Segmentation of gray and white matters

As shown in Figure 4, the original B0, FA and AD maps 
exhibited different image contrasts and image intensity 
ranges for both healthy and non-healthy cases. Moreover, 
in FA and AD maps, gray and white matters corresponded 
to low and high image intensities respectively. After image 
preprocessing, image contrasts and image intensity ranges 
of different diffusive metric maps became consistent; 
and, in all diffusive metric maps, gray and white matters 
corresponded to high and low image intensities. The gray 
and white matters had been revealed in the average image, 

and after image preprocessing, the average image shared 
the same image contrast and image intensity range with 
each single diffusive metric map. The segmentation could 
separate the high and low image intensities and extract 
different ROIs for gray and white matters. 

Accuracy of segmentation

One-way ANOVA revealed that there were significant 
differences in IOU among B0, FA and AD maps for both 
healthy subjects (F =2,219.5, P<0.001 for gray matter and 
F =2,232.4, P<0.001 for white matter) and CSM patients 
(F =47.1, P=0.0014 for gray matter and F =66.2, P<0.001 
for white matter). Bonferroni’s post hoc tests had been 
performed for further testing, and the results were exhibited 
in Figure 5. It is seen that the FA map achieved the best 
IOU value in both gray and white matters for both healthy 
subjects and CSM patients. 

The diversity of extracted diffusive features 

One-way ANOVA revealed that there were significant 
differences in MI and AUC among B0, FA and AD maps, 
and the specific testing results were shown in Table 1. 
Bonferroni’s post hoc tests had been performed for further 
testing, and the results of MI and AUC were exhibited 
in Figure 6. It is seen that different diffusive metric maps 
resulted in different MI and AUC values. FA map achieved 
the largest MI and AUC values in “mean value” for healthy 
subjects; while, for CSM patients, FA map only acquired the 
most substantial values in number, but statistical difference 
no longer existed between FA and AD maps. 

Discussion

This study evaluated the effect of segmentation based on 
different diffusive metric maps for DTI analysis of the 
cervical spinal cord. The evaluation was performed from 
two aspects, i.e., the accuracy of segmentation and the 
diversity of extracted diffusive features. Different evaluation 
results had been observed for segmentation based on 
different diffusive metric maps, suggesting the necessity of 
selection of diffusive metric maps for segmentation in DTI 
analysis of the cervical spinal cord. 

DTI is a favorite technique in studies of the cervical 
spinal cord. It can help understand the physiological and 
pathological changes in the cervical spinal cord and assist 
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in the development of clinical diagnostic and prognostic 
tools (1-5). Segmentation of cervical spinal cord tissues is 
a crucial and necessary step in DTI analysis (8). Usually, 
the segmentation is for the whole spinal cord (4-6,27) 
and the methods for such kind of segmentation have been 
well discussed. Recently, some studies have suggested 
that segmentation of more specific tissues, e.g., the gray 
and white matters, may lead to more valuable diffusive 
features for DTI analysis (9-14); nevertheless, the related 
segmentation methods are not well developed, and there is 
still no uniform way for the segmentation (8). It was found 
that different diffusive metric maps had been involved in 
segmentation of specific spinal cord tissues (9-14). Different 
diffusive metric maps reflect different diffusive properties 
of the spinal cord tissues and maybe with different intensity 
distribution. Image intensity is an essential reference for 
segmentation; the difference in image intensity may affect 

the segmentation accuracy, and then affect the validity and 
effectiveness of extracted diffusive features. To know this 
kind of effect can help choose the most appropriate diffusive 
metric map for segmentation and extract valid and useful 
diffusive features for DTI analysis of the cervical spinal cord. 

The effect of segmentation based on different diffusive 
metric maps was evaluated from two aspects: the accuracy of 
segmentation and the diversity of extracted diffusive features. 
The accuracy of segmentation determines the validity of 
extracted diffusive features. The diffusive feature is usually 
extracted via a combination of diffusive metric values of all 
image pixels inside an ROI, for example, the averaging. If 
a ROI contains tissues besides the target tissue, the value 
of extracted diffusive feature will inevitably be increased 
or decreased by the wrongly included tissues, and it can no 
longer correctly reflect the diffusive property of target tissue. 
The diversity of extracted diffusive features can indicate their 

Figure 4 The original image, image after contrast adjustment and the segmentation results for B0 map, FA map, AD map, and average 
image. (A) For healthy subjects; (B) for non-healthy subjects. FA, fractional anisotropy; AD, axial diffusivity.
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effectiveness. Compared with whole-cord-based features, 
diffusive features extracted by more specific ROIs can provide 
a more comprehensive description of the cervical spinal 
cord. However, if these diffusive features are with a small 
variance, their values will be very close to the whole-cord-
based feature, and it will be less meaningful to spend time 
and efforts on the segmentation inside the spinal cord. 

The accuracy of segmentation was examined by 
comparing the segmentation results of each diffusive 
metric map with the segmentation based on the average 
image. The average image can be a good reference for the 

comparison, though it is not a 100% reflection of the tissue 
distribution. It combines different diffusive metrics, and 
its intensity distribution can be more consistent with the 
tissue distribution than each single diffusive metric map. 
The segmentation was performed using a semi-automatic 
method, including a manual segmentation of the whole 
spinal cord, an automatic image preprocessing procedure 
for image contrast and intensity range normalization, and 
automatic intensity-based segmentation of gray and white 
matters. Its reproducibility was determined by the manual 
procedure, which had once been validated by Chan et al. (9);  

Figure 5 Statistical description and post-hoc test results of the IOU for both healthy and non-healthy subjects in the evaluation of the 
accuracy of segmentation. A significant difference was marked by *. IOU, the intersection of the union; FA, fractional anisotropy; AD, axial 
diffusivity; GM, gray mater; WM, white matter.
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Table 1 Results of one-way ANOVA analysis for MI and AUC in evaluation of the diversity of extracted diffusive features

Variable Statistics
Healthy subjects CSM patients

MI AUC MI AUC

FA F 2,499 1,323 124.3 64.9

P <0.001 <0.001 <0.001 <0.001

AD F 3,547 1,941 154.1 98.4

P <0.001 <0.001 <0.001 <0.001

RD F 891 1,190 11.3 16.9

P <0.001 <0.001 <0.001 <0.001

MD F 102 84 7.6 13.5

P <0.001 <0.001 <0.001 <0.001

Mean value F 177.5 179.8 29.0 25.7

P <0.001 <0.001 <0.001 <0.001

MI, mutual information; AUC, area under the curve; FA, fractional anisotropy; AD, axial diffusivity; CSM, cervical spondylotic myelopathy; 
RD, radial diffusivity; MD, mean diffusivity.
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the intra-observer and inter-observer reproducibility 
were 0.752 and 0.764 respectively, indicating excellent 
reproducibility (28,29). Also, the segmentation of gray 
and white matters was based on image intensities. The 
proposed segmentation method adopted a voting strategy, 
to combine results of a series of mature automatic 
thresholding algorithms. This method can help ensure the 
robustness of the segmentation. Moreover, the potential 
disturbance of image contrast and image intensity range to 
the intensity-based segmentation procedure was eliminated 
in the image preprocessing procedure. Hence, the proposed 
segmentation process could provide accurate and robust 
segmentation results for comparison. 

The diversity of extracted diffusive features was 
examined via a classification problem. Their relationship 
was illustrated in Figure 3. If diffusive metric values are 
similar in the same ROI and are different among different 
ROIs, the extracted diffusive features are with large 
variance and the diffusive metric can perform well in the 
classification of image pixels of the different ROIs. Based on 
this correlation, the diversity of extracted diffusive features 
can be quantitatively evaluated by metrics to show the 

classification performance, e.g., MI and AUC. 
In the testing, it was noticed that different diffusive 

metric maps had resulted in different evaluation results, 
suggesting that the selection of diffusive metric maps would 
affect DTI analysis of the cervical spinal cord. Among 
the three diffusive metric maps, FA performed the best in 
both the accuracy of the segmentation (Figure 5) and the 
diversity of extracted diffusive features (Figure 6) for both 
healthy subjects and CSM patients. FA describes the degree 
of diffusion anisotropy and is a relative value calculated 
by the three eigenvalues of the diffusion tensor [Eq. 7]; 
while B0 and AD maps are absolute values reflecting the 
tissues’ T1 or T2 value and the diffusion speed in the axial 
direction respectively. The absolute values may change a lot 
in different scanning and are easily affected by noises, biases 
and partial volume effect; while, relative value is usually 
more resistant to such kinds of interference. Also, FA is a 
comprehensive reflection of the axial and radial diffusion in 
tissues; it is expected to perform better than AD, which only 
contains information of diffusion in the axial direction. 

Even though the evaluation in this study was based on a 
semi-automatic segmentation process, the findings can also 

Figure 6 Statistical description and post-hoc test results of MI and AUC for both healthy and non-healthy subjects in the evaluation of the 
diversity of extracted diffusive features. A significant difference was marked by *. MI, mutual information; AUC, area under the curve; FA, 
fractional anisotropy; AD, axial diffusivity.
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be used in manual tracing based ROI analysis. The evaluation 
results inherently reflected the consistency between image 
intensity distribution and tissue distribution. The image 
intensity distribution is also an essential reference for manual 
tracing, and the manual tracing can be more accurate if it 
is performed on a diffusive metric map with a high degree 
of consistency to the tissue distribution. Also, the gray and 
white matters had been well segmented in the segmentation 
procedure. This segmentation procedure can also be applied 
for the brain, which is also made up of the gray and white 
matters; while, some modifications may be required in the 
preprocessing procedure as well as the set of parameters. 

There are still some limitations. First, the sample size 
of the non-healthy group was small compared with the 
healthy group. For healthy subjects, all cervical levels could 
be used for evaluation; while, for CSM patients, only the 
compression level was meaningful in the evaluation. In this 
study, the healthy and non-healthy groups were analyzed 
independently, and the imbalanced sample size would not 
affect the evaluation results. However, the small sample 
size of the non-healthy group may affect the credibility of 
the findings to some degree. Second, the average image 
is an approximation of tissue distribution. Therefore, the 
accuracy of the segmentation is not the absolute accuracy 
but a relative accuracy. 

In conclusion, this study evaluated the effect of 
segmentation in different diffusive metric maps, including 
B0, FA and AD maps. The evaluation was performed from 
two aspects: the accuracy of segmentation and the diversity 
of extracted diffusive features. Different diffusive metric 
maps resulted in different evaluation results, suggesting 
the necessity of selection of diffusive metric maps for 
segmentation in DTI analysis of the cervical spinal cord. 
Among the three diffusive metric maps, FA map performed 
the best in the testing and was suggested for segmentation 
in DTI analysis of the cervical spinal cord. 
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