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Introduction

Contrast sensitivity (CS), a measurement of the ability 
to discriminate an object from its background, is an 
essential domain of visual functions (1,2). CS decline or 
impairment indicates one’s disability to discern an object in 
low contrast, which has been related to poor performance 
in driving (3,4), face recognition (5), real-world mobility 
tasks (6,7), postural stability (8), reading processes (9,10), 
and other functions of everyday life (11). Aging or lesions 
in the eye (including the retina) as well as in thalamic or 
cortical locations are usually responsible for this decline 
or impairment (12,13). Previous studies in animals have 
suggested that lesions in medial posterior thalamus and 
striate cortex significantly depress CS (14,15). However, 
whether neuroanatomical substrates are underlying CS in 

humans is largely unknown. Furthermore, there is evidence 
that CS deficits are associated with several neurological and 
psychiatric disorders, such as Alzheimer’s disease (16,17), 
Parkinson’s disease (18) and depression (19). Thus, a better 
understanding of the neural mechanism of CS may have some 
clinical significance in understanding these brain diseases. 

In this study, we aimed to explore the relationship 
between CS and whole-brain morphology in a cohort of 
healthy young participants from the Human Connectome 
Project (HCP) dataset (20,21). CS was assessed using the 
Mars Contrast Sensitivity Test, a simple portable set of 
contrast-calibrated charts for testing peak CS recommended 
by the Committee on Vision of the U.S. National Academy 
of Sciences and National Research Council (22-25).  
The scoring procedure was designed in a unified form 
for accuracy, simplicity, and comparability between 
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different clinics or labs. Thus, the test has been widely 
and commonly used by researchers and clinicians (25).  
Whole-brain morphology was measured by using voxel-
based morphometry (VBM) analysis (26) based on the high-
resolution structural magnetic resonance imaging (MRI) 
data. A prior functional MRI study has demonstrated 
that the CS is linked to neural activity in V3A located in 
the hierarchy of cortical visual areas that is intermediate 
between lower and higher tier areas (27). Therefore, we 
hypothesized that variability in morphology in this area 
would be related to inter-individual differences in CS.

Methods

Participants

One hundred subjects (46 males) were selected from the 
HCP “100 Unrelated Subjects” dataset (http://www.
humanconnectome.org) (21). These participants are 
healthy young adults without documented history of major 
psychiatric, neurological or physical disorders and within a 
restricted age range of 22–36 years, which corresponds to a 
period after the completion of significant neurodevelopment 
and before the onset of neurodegenerative changes. The 
full set of inclusion and exclusion criteria is detailed in 
prior publications (20,21). All methods were performed in 
accordance with the relevant guidelines and regulations by 
the Institutional Review Board of Washington University 
in St. Louis, MO, USA. Written informed consent was 
obtained from each participant. 

CS scores

CS was assessed using the Mars Contrast Sensitivity Test (20).  
This test is a brief, valid and reliable measure that improves 
upon the traditional Pelli-Robson measure (23). The Mars 
test presents 48 letters of the same size, but each letter 
decreases in contrast by 0.04 log unit across and down 
the chart. The test stops when the participant makes two 
consecutive errors. The final score (Mars_Final) is the log 
CS of the last correct letter, minus 0.04 for any mistakes 
that precede the two consecutive errors (22). The current 
norms recommend by Mars Letter Contrast Sensitivity Test 
USER MANUAL (http://www.marsperceptrix.com) are as 
follows: 0.04–0.48 represents a profound loss; 0.52–1.00 
a severe loss; 1.04–1.48 a moderate loss; l.52–1.76 normal 
(age >60 years); 1.72–1.92 normal middle/young adult (age 
between 18 and 60 years).

MRI data acquisition and processing

High-resolution structural images were acquired using an 
HCP-customized Siemens 3.0 T “Connectome Skyra” 
scanner with a 32-channel head coil. The imaging parameters 
of the structural MRI were as follows: 3D MPRAGE 
T1-weighted sequence, repetition time =2,400 ms,  
echo time =2.14 ms, inversion time =1,000 ms, flip angle =8°,  
field of view =224 mm × 224 mm, matrix =320 × 320,  
0.7 mm isotropic voxels, and 256 sagittal slices. The total 
acquisition time for the structural MRI was 7 min and 40 s. 
Detailed descriptions of the HCP imaging procedures can 
be found in previous literature (18,19).

VBM analysis was performed using the CAT12 toolbox 
(http://www.neuro.uni-jena.de/cat) implemented in 
the Statistical Parametric Mapping software (SPM12, 
http://www.fil.ion.ucl.ac.uk/spm). First, all the structural 
T1-weighted images were corrected for bias-field 
inhomogeneities. Second, these images were segmented 
into gray matter (GM), white matter (WM), cerebrospinal 
fluid (CSF) density maps using the “new-segment” 
approach, an extension of the old unified segmentation 
algorithm (28). In contrast to the old unified segmentation, 
the new-segment approach has the following advantages: 
(I) a slightly different treatment of the mixing proportions; 
(II) the use of an improved registration model; (III) the 
ability to use multi-spectral data; (IV) an extended set of 
tissue probability maps, which allows a different treatment 
of voxels outside the brain. Third, the Diffeomorphic 
Anatomical Registration using Exponentiated Lie algebra 
(DARTEL) technique was used to generate custom, study-
specific template (29). Fourth, each participant’s GM 
density image was warped to the customized template; then 
the resultant images were affine-registered to the Montreal 
Neurological Institute (MNI) space and resampled to a 
voxel size of 1 mm × 1 mm × 1mm. Fifth, the modulation 
was applied by multiplying the transformed GM density (per 
unit volume in native space) (26) maps with the non-linear 
components of Jacobian determinants, which resulted in the 
normalized GM volume (GMV) maps representing the local 
native-space GMV after correcting the confounding effect 
of variance induced by individual whole-brain size. Actually, 
an analysis of modulated data tests for regional differences 
in the absolute amount (volume) of gray matter, whereas 
analysis of unmodulated data tests for regional differences 
in density of gray matter (30). Finally, to make a balance 
between compensating for registration errors and reserving 
anatomical details, the GMV images were smoothed with a 
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moderate full-width at half-maximum (FWHM) Gaussian 
kernel of 6 mm. 

Statistical analysis

We used a standard, univariate approach to investigate the 
relationship between the CS and the GMV in a voxel-wise 
manner within the whole gray matter. A multiple regression 
model in the SPM12 software was used to identify any voxels 
in the GMV maps that showed a significant association with 
the Mars_Final scores. The total intracranial volume was 
considered as a nuisance variable. Correction for multiple 
comparisons was performed using the non-stationary cluster-
level family-wise error (FWE) method (31). Initially, the 
group-level statistical map was set to a threshold of voxel-
level P<0.001 (cluster defining threshold). Then, all reported 
brain regions were corrected P<0.05 at the cluster-level using 
the random field theory and the FWE correction, following 
the current standard (32). 

Results

The range of Mars_Final scores for the 100 participants 
was from 1.08 to 1.88. Among them, one score was 1.08 
(a moderate loss), 10 scores were within l.52–1.72 (normal 
>age 60 years), and the remaining 89 scores were within 
1.72–1.92 (normal middle/young adult). In the voxel-
wise whole gray matter analysis, we found significant 
positive correlations (cluster-level P<0.05, FWE corrected; 
a minimum cluster size of 1,013 voxels) between the 
Mars_Final scores and the GMV in the bilateral visual 

cortex [left: cluster size =1,109, peak MNI coordinates  
x/y/z = −20.5/−88.5/38.5, peak T =4.3, partial correlation 
coefficient (pr) =0.429, P<0.001; right: cluster size =1,699, 
peak MNI coordinates x/y/z =24.5/−88.5/32.5, peak T =5.0, 
pr =0.467, P<0.001] (Figure 1). To rule out the potential 
confounds due to covariates such as age, gender and 
visual acuity, we repeated the partial correlation analyses 
controlling for these additional covariates and found that 
the positive correlations between the Mars_Final scores and 
the GMV in the bilateral visual cortex remained significant 
(left: pr =0.434, P<0.001; right: pr =0.450, P<0.001). 
However, we observed an outlier in the lower left corner 
in the scatter plots of Figure 1. After removal of the subject 
corresponding to this outlier, the positive correlations were 
still significant (left: pr =0.294, P=0.003; right: pr =0.310, 
P=0.002) (Figure 2). Furthermore, Figure 3 illustrates 
that the significant bilateral clusters are mainly located in 
bilateral V3A of the visual cortex according to the Human 
PALS-12 atlas (33), with the superior parts extending to the 
bilateral posterior parietal cortex.

Discussion

By using high-resolution structural MRI and VBM analysis, 
we found that an increase in CS scores was associated 
with increased GMV in the bilateral V3A and its superior 
parts extending to the bilateral posterior parietal cortex. 
Despite different neuroimaging techniques (structural vs. 
functional MRI) (34,35) and analytic methods (morphology 
vs. activation), our results were highly consistent with 
previous studies reporting an intrinsic relation between 

Figure 1 Brain regions showing significant positive correlations between gray matter volume and contrast sensitivity (cluster-level P<0.05, 
FWE corrected). Scatter plots show the correlations between the mean GMV of the significant clusters and the Mars_Final scores. L, left;  
R, right; GMV, gray matter volume; pr, partial correlation coefficient.
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activity in area V3A and CS (27). These findings jointly 
underscore the central role of V3A in CS processing. In 
addition, the visual cortical system can be segregated into 
two parallel hierarchical processing pathways anatomically 
and functionally, that is, ventral visual pathway from V1, 
V2, V4 to the inferior temporal cortex representing object 
shape and identity (“what”) and dorsal visual pathway from 
V1, V3A, MT/V5 to parietal cortex representing objects 
location or spatial relationships (“where”) and the more 
updated visuomotor control (“how”) (36,37). Our results 
support that CS processing mainly depends on the dorsal 
stream compromising V3A and posterior parietal cortex.

However, there is evidence that other areas of the visual 
cortex are also involved in CS. For examples, Tootell et al. 
reported that middle temporal visual area (MT) and V3 had 
a much higher CS using functional MRI in human (38). 
Moreover, Sclar et al. found that neurons in the area MT 
were more sensitive to CS than any cell in other regions 

along the magnocellular pathway in macaque monkeys by 
using electrophysiological methods (39). Some possible 
reasons may account for these additional findings. First, the 
study of Tootell et al. used moving contrast stimuli while our 
research used stationary contrast stimuli. One may speculate 
that MT and V3 are more activated by moving contrast 
stimuli rather than stationary contrast stimuli. Second, the 
purpose of the present study was to identify neuroanatomical 
substrates responsible for inter-individual differences in CS, 
while the prior studies aimed to identify neural correlates 
engaged in CS processing. Therefore, although these relevant 
regions (MT and V3) may be implicated in CS processing, 
their morphology does not relate to individual CS levels. Our 
findings suggest that when focusing on stimulus-unspecific 
brain morphology that is considered an inherent trait and 
independent of states, it is more the structure of V3A, rather 
than other relevant visual areas, which is related to inter-
individual CS differences. 

Figure 2 Scatter plots are showing the correlations between the mean GMV of the significant clusters and the Mars_Final scores after 
removal of the outlier. GMV, gray matter volume; pr, partial correlation coefficient.
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In some clinical studies, CS has been linked to a variety of 
neurological and psychiatric disorders. For example, previous 
studies have demonstrated that CS is impaired in Alzheimer’s 
disease (16,17) and CS measure can accurately classify 
mild cognitive impairment versus healthy controls (40),  
suggesting that CS may have promise as a novel Alzheimer’s 
disease biomarker. In another study, Stenc Bradvica et al.  
found that CS dysfunction was present as the earliest 
symptoms of Parkinson’s disease, and could facilitate 
differential diagnosis between Parkinson’s disease and 
essential tremor (41). Besides, Fam et al. found that visual 
CS was significantly lower in depressed patients and poorer 
visual CS was related to greater severity of depressive 
symptoms (42). Based on these findings, we assume that 
the affected posterior parietal region may partially explain 
the relationship between CS and disease-related cognitive, 
motorial and psychological impairment because the 
posterior parietal cortex has a functional and anatomical 
connection to the prefrontal cortex (43) and involves various 
cognitive domains (44-46). Therefore, clinicians should pay 
more attention to CS in patients with these brain disorders 
and CS test may assist clinicians in the early diagnosis and 
effective treatment.

There are several limitations to this study. First, the 
HCP sample included only healthy young adults with 
an age range from 22 to 36 years may lead to the failure 
to cover a good range of the CS variable, which may 
limit the sensitivity of the study and generalizability of 
the findings. To further improve our understanding of 
individual variability in CS, future research is encouraged 
by enrolling a cohort of subjects with different degrees of 
CS damage and broader age range. Second, while the Mars 
Contrast Sensitivity Test is the most frequently used test 
for the assessment of CS, it also depends on other visual 
functions such as visual acuity, which could have influenced 
our interpretations to some extent. Third, the correlational 
nature of analyses does not resolve causality. Cortical 
morphological variability may contribute to individual 
differences in CS performance. However, we cannot rule 
out the possibility that different CS experience might lead 
to changes in cortical morphology.

In conclusion, we found an association between CS and 
morphology in the V3A and adjacent posterior parietal 
cortex, suggesting the critical role of the dorsal visual stream 
in CS processing. These findings may provide insights into 
the neuroanatomical mechanism of CS and its relation to 
some brain disorders. 
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