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Introduction

Stem cell therapies (SCT) hold great potential for treating 
various human diseases and regenerating tissues; however, 
the heterogeneity and plasticity of stem cells render such 
SCT either beneficial (cell engraftment, differentiation, 
integration) or detrimental (e.g., the death of transplanted 
stem cells and subsequent inflammation and cancerous 
changes), depending upon the residual microenvironment 
(host inflammatory responses) at the recipient site (1). Such 
detrimental effects include the use of stem cell derivatives 
[e.g., conditioned medium (CM) and microvesicles (MVs)] to 
regenerate lung tissues on the release of TGF-β and IL-6 (2).  

To address these issues, we described a comprehensive 
biological Global Positioning System (bGPS) to track 
transplanted stem cells (3) with eight desired elements for 
tracking and monitoring the implanted stem cells to ensure 
successful SCT: these include (I) sensitivity for single cell 
detection, (II) real-time positioning, (III) an inducible 
system, (IV) retractable, (V) targeted and durable, (VI) 
monitoring cell fate, (VII) compliant with the FDA GMP 
guidelines for clinical applications, and (VIII) quantification 
capacity (refer to Table 1) (3). Thus far, none of the existing 
imaging modalities meets all of these criteria (5); however, all 
currently available platforms appear to be complementary, 
conjuring up hope for integration. The measurable fabric 
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matrix of such integration has yet to be fully elucidated and 
developed.

Tracking of implanted cells can be generally performed 
by (I) labeling cells using passive or active transport or (II) 
integrating a specific reporter gene to the targeted cells. 
The signal from the cells are then observed with magnetic 
resonance imaging (MRI), bioluminescence imaging (BLI), 
fluorescence imaging (FLI), positron emission tomography 
(PET), or single photon emission computed tomography 
(SPECT). The advantages and disadvantages of each 
imaging system are summarized in Table 1, as detailed in 
other reviews (4). However, none of the modalities can 
provide comprehensive and detailed visualization of the 
implanted stem cells to meet those eight criteria (3). As 
endoscopy can access internal organs (gastrointestinal tract, 
vaginal tract, and airway) and can treat and monitor the 

tissue simultaneously, we will discuss the clinical impact of 
endoscopic-based imaging techniques, focusing on the tools 
and methods that have been developed and tested in recent 
years. For each endoscopic imaging technique, we will 
summarize the currently used (I) cell labeling methods, (II) 
imaging probes, and (III) advantages and disadvantages.

Fluorescence endomicroscopy (FE)

FE or confocal laser endomicroscopy (CLE) is a new 
imaging tool that allows minimally-invasive, real-time 
in vivo imaging with sub-cellular spatial resolution (6). It 
combines the advantages of the confocal microscope to 
image biological tissue with high spatial resolution and the 
endoscope to reach tissues intravitally. FE has been applied 
in colon cancer detection (7) and the longitudinal study of 

Table 1 Comparison of different whole-body imaging modalities and endoscopic imaging modalities for cell tracking. Specifications of whole-
body imaging modalities are cited from previous literature (4)

Imaging modality
Spatial 

resolution
Acquisition 

time
Labeling strategy Advantages Disadvantages

Bioluminescence 
imaging (BLI)

5–20 mm Seconds Reporter gene Cheap, simple, high 
throughput

Small animals only, 
low resolution, only 2D 

images

Fluorescence 
tomography (FMT)

2–3 mm Seconds to 
minutes

Reporter gene, 
fluorescence dye

Cheap, simple Low resolution, cells need 
to be close to surface

Ultrasound (US) 150 μm– 
2 mm

Seconds to 
minutes

Reporter gene, antibody 
with microbubble

Cheap, relatively simple Limited 3D capabilities, 
low signal to noise ratio

Single photon 
emission computed 
tomography (SPECT)

1–2 mm; 
8–12 mm

Minutes Reporter gene, incubation 
with radiotracer

3D imaging Anatomic reference 
required, radioactive 

tracer required

Positron emission 
tomography (PET)

~1 mm;  
4–6 mm

Seconds to 
minutes

Reporter gene, incubation 
with radiotracer

3D imaging Anatomic reference 
required, radioactive 

tracer required

Magnetic resonance 
tomography (MRI)

25–500 μm; 
0.5–5 mm

Minutes to 
hours

Internalization or surface 
labeling with nanoparticles 

or specific ions

3D imaging, good soft 
tissue contrast, no 

radiation, high resolution

Very expensive, 
complicated

Computed 
tomography (CT)

<50 μm;  
<1 mm

Seconds to 
minutes

Internalization or surface 
labeling with nanoparticles

3D imaging, relatively 
cheap, high resolution

Use ionizing radiation

Fluorescence 
endomicroscopy (FE)

1–20 μm Seconds to 
minutes

Reporter gene, 
endogenous and 

exogenous fluorophore

Cheap, simple Penetration depth limited 
to ~250 μm from probe

Multiphoton 
endoscopy (MPE)

1–3 μm Seconds to 
minutes

Reporter gene, 
endogenous and 

exogenous fluorophore

Higher sensitivity, 
penetration depth than 

FE

Often requires bulky 
pulsed laser

Photoacoustic 
endoscopy (PAE)

~100 μm Seconds to 
minutes

Internalization or surface 
labeling with nanoparticles

Deeper penetration than 
FE and MPE, 3D imaging

Lower spatial resolution 
than the optical imaging
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live cells (8).
 In stem cell research, FE has been used to study stem 

cell niches (9), homing and engraftment (10,11), and to 
investigate the safety of the implanted stem cells (12). 
Some studies showed the potential application of FE in 
monitoring stem cells during organ repair such as lung (13). 
Perez et al. labeled mesenchymal stem cells (MSCs) with 
fluorescence dye (Vybrant DiD Cell-Labeling Solution) 
which were injected into damaged lung tissue. Then, FE 
was used to monitor and quantify those cells over several 
days in live rats. This report was the first demonstration of 
stem cell tracking using FE in live animals (13). 

Cell labeling

The cell labeling method for FE is similar to standard 
fluorescence imaging. Labeling can be performed through 
endogenous fluorophores, exogenous fluorescence dyes, and 
genetic modification. A cellular auto-fluorescence signal can 
be utilized to distinguish cellular morphological changes 
without exogenous contrast agents. Lin et al. demonstrated 
the FE system could detect a tissue auto-fluorescence signal 
from ex vivo human esophageal tissue by UV excitation 
(266 and 325 nm) (14). Membrane dyes, such as DiD and 
topical methylene blue, have been used to stain cells for 
endomicroscopy imaging (13,15,16). In other cases, MSCs 
are engineered to co-express the tumor necrosis factor 
(TNF)-related apoptosis-inducing ligand (TRAIL) and 
enhanced green fluorescent protein (EGFP) to track the 
integrity of the implanted stem cells in the tumor (17). 

Endoscopic probe

Most FE utilizes a fiber-bundle to image the tissue. 
Currently, there are two products on the market: FIVE1 
from Optician and Cellvizio from Mauna Kea Technologies. 
Cellvizio uses two lasers (488 and 660 nm) and two channels 
to detect fluorescence signals from two spectral regions. The 
probe diameter is 2.6 mm, and the field of view is around 
240 μm. The image acquisition speed is 12 frames/sec.  
This system is much faster than MRI and CT. Recently, 
a side-view endomicroscope has also been developed and 
tested, as shown in Figure 1A and B (8). 

Advantages and limitations

Fiber-probe FE has a higher spatial resolution, sensitivity, 
and is cheaper compared to MRI, ultrasound, and CT 

imaging techniques. The lateral resolution of FE depends 
on the type of fiber bundle and the lens which is typically 
2.5–5 μm (18). The sensitivity of FE to detect the reporter 
is high (10−9–10−11 M) compared to MRI (10−3–10−5 M) 
(19,20). While MRI and CT require bulky and costly 
equipment, FE can be performed through the working 
channel of a conventional endoscope and serve as a point-
of-care imaging tool. The manufacturing cost is also much 
less than MRI, CT, and PET. Additionally, FE can access 
the targeted tissue intravitally through flexible optical 
fibers. Therefore, the imaging depth of FE is not limited 
to the surface of the tissue, which is the case of the whole-
body fluorescence imaging system (21). However, if the size 
of the fiber-bundle is equal to or bigger than the anatomical 
cavities, such as terminal bronchioles and the internal tracts 
of small animals, noninvasive imaging through FE may be 
challenging. For example, one of the smallest commercially 
available fiber-based FE probe is Cellvizio, and the probe 
size is about 0.6 mm (6). However, the airway structure 
of the rat can be smaller than 0.4 mm. It is possible to 
intentionally puncture the biological tissue through the FE 
probe to image the targeted region, but this procedure is 
invasive and can be very hazardous in small animals such as 
a rat. 

Multiphoton endoscopy 

 Multiphoton microscopy (MPM) is a powerful imaging 
technique that provides functional histopathological 
information of biological tissue with sub-cellular resolution, 
minimum photothermal damage, and less tissue scattering 
(22,23). Due to the nonlinear two-photon effect of near-
infrared light, two-photon microscopy can image deeper 
tissue with less photo-damage compared to the fluorescence 
microscope, which makes it ideal for in vivo applications (24).  
Similar to the previously introduced FE technologies, 
multiphoton endoscopic imaging allows in vivo and in situ 
visualization of the histopathological process and can be 
used to monitor stem cell behavior. In stem cell research, 
MPM has been used to investigate in vivo MSC homing and 
evaluate cellular response (25,26). Rompolas et al. tracked 
the hair-follicle stem cells and progeny using a transgenic 
mouse. The fluorescence signal from epithelial nuclei was 
visualized using an MPM by inducing expression of a fusion 
protein of histone H2B with a green fluorescent protein 
(GFP) by the keratin 14 promoter (K14H2BGFP). Then 
the stem cells and their progeny were identified based on 
their unique morphological features (26). However, few 
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studies of stem cell tracking using multiphoton endoscopy 
have been reported as of February 2019. 

Cell labeling

Similar to fluorescence microscopy, the targeted cells can 
be visualized through staining using exogenous contrast 
agents, such as Au nanoparticles (AuNPs) (27-30),  
EGFP (31), and Quantum dots (QDs) (32). Also, taking 
advantage of two-photon effects, endogenous fluorophores, 
such as reduced nicotinamide adenine dinucleotide (NADH) 
and oxidized flavin adenine (FAD), can be targeted for label-
free cell imaging (33-35). Second harmonic generation 
(SHG) is another label-free imaging technique based on 
the non-linear effect of light which is often used to visualize 
the collagen architecture within the tissue (36,37). Also, a 
genetic marker, such as GFP, can be used to identify the 
transplanted stem cells (38). 

 Endoscopic probe

Combining the custom double-c lad f iber  (DCF) 

and achromatic  miniature object ive,  Liang et  a l . 
developed a miniature flexible fiber-based endoscopic 
probe for two-photon imaging (39) .  The custom 
DCF is made of a si l ica single-mode core, and it 
suppresses  in-f iber nonlinear luminescence.  The 
outer  d i ameter  o f  the  probe  i s  a round  2 .1  mm  
(Figure 2A). Alternatively, the microelectromechanical system 
(MEMS) scanner-based multiphoton endoscopy has been 
developed by several groups (36,37,40). The advantage 
of MEMS is a large scanning angle compared to PZT-
based fiber scanning with less off-axis aberration. Liu et al. 
demonstrated SHG endoscopy using a rotational MEMS 
motor and a custom-built 1-micrometer ultrashort-pulse fiber 
laser (Figure 2B) (37). A 360-degree wide-field view of an 
SHG signal was acquired using a rotational scanning probe. 
Duan et al. achieved a lateral resolution of 2 μm, large FOV of 
300×300 μm2 and fast image acquisition speed of 5 frames/sec 
with a 3.4 mm outer diameter (OD) probe (Figure 2C,D) (40).

Advantages and limitations

Similar to FE, multiphoton endoscopic imaging can 

Figure 1 Schematics of a fluorescence endomicroscope (FE). (A) An FE based on the Gradient-index (GRIN) lens. This endoscope was 
developed for colorectal imaging (8). (B) Mechanical design of the GRIN lens-based FE probe. A custom-built 360-degree rotation mount 
combined with the side-view endomicroscope can provide a large scanning area within the colon.
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visualize in vivo tissue with subcellular resolution, high-
sensitivity, and high acquisition speed close to real time. 
Also, two-photon excitation of near-infrared lowers the 
risk of photo-damage making it ideal for in vivo inspection 
and tracking of stem cells without damaging them. The 
limitation of two-photon microscopy is that it requires a 
bulky and expensive high-speed pulsed laser.

Photoacoustic endoscope (PAE) 

PA imaging is a new imaging modality based on the 
photoacoustic effect in which the absorbed energy from the 
laser is transformed into kinetic energy through thermal 
expansion of the sample and detected by an ultrasound 
transducer. It combines the advantages of optical imaging 
to obtain high resolution, molecular sensitivity, and 
spectroscopic information and ultrasound imaging to 
acquire tomographic information of deep tissue. 

 Stem cells typically do not have optical contrast by 
themselves. However, numerous studies have used various 
contrast agents to monitor and track stem cells in vivo. 
Metal nanoparticles, such as gold, seem to be the most 
popular choice of contrast agents for PA imaging due 
to their high absorption coefficient and tunable optical 

properties (41). Recently, Kim et al. implanted stem cells 
labeled with Prussian blue nanoparticles (PBNPs) into 
a nude mouse. The labeled stem cells show a strong 
photoacoustic signal when imaged at 730 nm and were 
monitored for up to 14 days in vivo (42). 

Cell labeling

Gold nanoparticles in the form of spheres (43), rods (44), 
and star shapes (45) have been commonly used to track stem 
cells in vivo. Nam et al. showed the longitudinal monitoring 
of stem cell behaviors up to one week using gold nanosphere 
labeled MSCs captured in the PEGylated fibrin gel injected 
into the limb of a Lewis rat (43). Jokerst et al. showed 
the increased uptake of gold nanorods by 5-fold into the 
MSCs by coating with silica. Increased signal-to-noise ratio 
allowed visualization of up to 100,000 cells. No cytotoxicity 
or changes in cell proliferation were observed (44).  
Due to the high energy absorption of gold, it can act as a 
photothermal therapy agent as well as a contrast agent. Liang 
et al. conjugated gold nanostars with CD44v6 monoclonal 
antibodies to target gastric cancer stem cells (GCSCs) for PA 
imaging and photothermal therapy. CD44v6-Gold nanostars 
actively targeted the GCSCs up to 4 h post-injection (45). 

Figure 2 Different types of a multiphoton endomicroscope for two-photon imaging and second harmonic generation (SHG). (A) Two-
photon endoscope based on a double-clad fiber. The scanning of the probe is provided by a PZT tube. A custom-made double-clad fiber 
significantly reduces the in-fiber fluorescence noise signal (39). (B) Schematic of the micromotor-based two-photon endoscope. The 
rotational scanning provides a wide field of view compared to the forwarding scanning-type probe (37). (C) Schematic of multiphoton 
endomicroscopy based on a 2D Micro-Electro-Mechanical Systems (MEMS) scanning mirror. A diachroic mirror (M2) selectively passes the 
excitation beam and reflects the fluorescence light (40). (D) Picture of 2D MEMS scanning multiphoton endomicroscope (40).
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Endoscopic probe

The photoacoustic endoscope (PAE) integrates a 
light-emitting optical fiber, ultrasound receiver, and 
circumferential scanning mechanism. Flexible shaft-
based proximal rotation is a commonly used scanning 
mechanism in the PAE (Figure 3A,B) (48-50). This scanning 
mechanism does not have a mechanical scanning device 
at the distal portion of the probe, and thus, the probe can 
be miniaturized. However, the downside of this rotation 
scheme is the non-uniform distortion (NURD) and the 
slow speed of the rotation. Another type of PAE uses a 
micromotor for the circumferential scanning at the distal 
end of the imaging probe (Figure 3C). The ring ultrasound 
transducer and the optical fiber are co-aligned with each 
other (47,51). Recently, an all-optical photoacoustic probe 
has been developed based on the Fabry-Perot (FP) sensor 
(Figure 4A,B) (50). Since the optical ultrasound sensor can 
be much smaller than the electrical ultrasound transducer, 
the PAE can be miniaturized using an all-optical design. 

Advantages and limitations

The advantage of the PAE is the penetration depth. It can 

image deeper than fluorescence endoscopy, two-photon (2P) 
endoscopy, and optical coherence tomography (OCT). Also, 
compared to ultrasound which only provides structural 
information, the PAE can give information on optical 
contrast and thermoelastic contrast with a higher spatial 
resolution (51). However, the limitation is the large size of 
the imaging probe since it has to fit both the ultrasound 
transducer and optical fiber. For an application such as 
intravascular imaging, the probe size has to be no more than 
1 mm.

Multimodality endoscopic imaging 

Since each imaging technology has unique advantages 
and disadvantages, researchers have developed reporters, 
genes, and probes that can be imaged with multiple imaging 
modalities (52,53). Multimodality imaging can minimize the 
drawbacks of using each imaging tool alone, increase the 
signal specificity and sensitivity, and gain a complete picture 
of stem cell behavior (52). Nam et al. combined ultrasound 
(US) and photoacoustic tomography (PAT) to monitor stem 
cell behaviors in vivo longitudinally (43). The mesenchymal 
stem cells (MSCs) labeled with gold nanotracers (AuNTs) 
were injected in the lower limb of a Lewis rat and imaged 

Figure 3 Different types of a photoacoustic (PA) endoscope. (A) Side view and top view of a catheter-based PA probe. The ultrasound 
transducer is placed next to the multi-mode fiber (MMF) to achieve optical/acoustic beam overlap (46). (B) PA signal from an ex vivo rabbit 
coronary artery acquired using the catheter-based PA probe. The white arrow indicates the PA signal from lipid deposition (46). (C) System 
diagram of micromotor-based PA probe. Reproduced from (47), with the permission of AIP Publishing.
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with US/PAT for up to 10 days. Taking advantage of the 
high spatial resolution and molecular-specific contrast 
of PAT and deep penetration depth of the US, this 
study demonstrated the feasibility and benefits of using 
multimodal imaging for stem cell imaging.

Cell labeling

In one study by Wang et al., polyethylene glycol (PEG) 
functionalized single-walled carbon nanotubes (PEG-
SWNT) were used to label human MSCs for in vivo 
Raman/MRI/PA triple-modal imaging (54). SWNTs 
have strong inherent resonance Raman scattering that 
provides ultrasensitive Raman imaging (55). They also 
have a strong optical absorption coefficient that allows 
deep tissue imaging through photoacoustic imaging (56). 
The metallic nanoparticles can be conjugated with carbon 
nanotubes to serve as the T2-contrast for MRI (54). In 
another study, Zhang et al. demonstrated two-photon/
photoacoustic dual-modality imaging using MSCs labeled 
with gold nanocages (57).

Endoscopic probe

While few studies have shown stem cell tracking using 
multimodality endoscopic probes, a lot of literature 
has reported multimodality endoscopic imaging probes 
with different resolutions and sensitivities. A miniature 
endoscopic probe that integrates OCT, US, and PAI has 
been developed and demonstrated for imaging of human 

arteries and ovarian tissue (Figure 5A,B) (58,60). Similar to 
the PA endoscopic probe, an optical fiber and ultrasound 
transducer are placed at the distal end of the endoscope. 
OCT allows the visualization of tissue structure 2 mm 
below the surface and PAI gives molecular contrast and 
blood vessel information. US provides information on 
deeper tissue structure than OCT. In a recent study, Li 
et al. showed an OCT/FI endoscope for imaging the 
gastrointestinal tract (Figure 5C,D) (59). FI provided 
molecular contrast with sub-cellular resolution. This 
probe also used a Micro-Electro-Mechanical Systems 
(MEMS) micromotor for scanning OCT and the FI beam. 
These imaging platforms are complementary to magnetic 
resonance imaging (MRI) which assessed the structural 
integrity of adipose-derived mesenchymal stem cell (MSC)-
based tissue engineering for arthroscopic rotator cuff 
repair with the 28 months of follow-up (61), offering a new 
landscape for stem cell therapy.

Advantages and limitations

The advantages of multimodality imaging are that it can 
provide comprehensive information on implanted stem cells 
and the microenvironment. By combining a high-resolution 
imaging modality, such as fluorescence imaging, multi-
photon microscopy (MPM), and Raman imaging, with 
techniques that allow large-area scannings, such as OCT, 
MRI, PAI, and US, we can track the stem cells at different 
scales. On the other hand, combining multiple imaging 
modalities can increase the cost, complexity, and the size of 

Figure 4 All-optical PA endoscope. (A) Schematic of the forward-viewing PA endoscopic system based on a Fabry-Perot ultrasound sensor. 
The imaging probe is made of a 3.2-mm-diameter fiber bundle to get a wide field-of-view. (B) Three-dimensional PA tomographic image of 
an avian embryonic vasculature obtained using the all-optical PA endoscopic probe. Vasculatures at different depths are color-coded (50).
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the endoscopic probe. 

Conclusions

Stem cell therapy is a rapidly growing field in medical 
research as well as in the clinic, demanding effective 
imaging to track down the fate of implanted stem cells. 
Many molecular imaging techniques can be translated 
into an endoscope to provide high-resolution longitudinal 
monitoring of implanted stem cells. Fluorescence/confocal 
endomicroscopy and MPM endoscopy have a high potential 
to monitor stem cells in vivo with cellular resolution using 
endogenous fluorophores, exogenous fluorophores, or 
genetically-modified cells. Photoacoustic endoscopy is the 
new imaging modality that can image much deeper into 
the tissue and provide a molecular contrast using a contrast 
agent such as gold nanoparticles. 

Although endoscopic imaging has its limitations, such as 
a small field of view and shallow imaging depth, compared 
to CT, MRI, and US imaging, we believe specific stem 
cell therapies will significantly benefit from functional 
endoscopic imaging. For example, adult tracheobronchial 
stem cells have recently been demonstrated to be an 

effective therapeutic option to cure airway disease, repair 
damaged airway tissue, and replace malfunctioning cells (62).  
Functional endoscopy allows tracking and monitoring of 
those implanted stem cells in situ with cellular resolution. 
Also, most of the endoscopic imaging probe can be 
combined with a conventional bronchoscope to provide 
multimodal imaging. Traditional cell tracking techniques, 
such as MRI and CT, will likely be combined with cellular-
resolution endoscopic imaging in the future to monitor 
the fate of implanted stem cells effectively. The ultimate 
goal of relevant stem cell therapy imaging lies in the 
spatiotemporal determination of the ideal “therapeutic 
window” (63) for tracking subclonal evolution at the 
single cell level (64) in prevention and a “wait-and-watch” 
approach by continuous biomarker profiling of diseases 
during an entire lifetime (65).
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