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Background: The reproducibility and non-redundancy of radiomic features are challenges in accelerating 
the clinical translation of radiomics. In this study, we focused on the robustness and non-redundancy of 
radiomic features extracted from computed tomography (CT) scans in hepatocellular carcinoma (HCC) 
patients with respect to different tumor segmentation methods.
Methods: Arterial enhanced CT images were retrospectively randomly obtained from 106 patients. As 
a training data set, 26 HCC patients were used to calculate the features’ reproducibility and redundancy. 
Another data set (55 HCC patients and 25 healthy volunteers) was used for classification. The GrowCut 
and GraphCut semiautomatic segmentation methods were implemented in 3D Slicer software by two 
independent observers, and manual delineation was performed by five abdominal radiation oncologists 
to acquire the gross tumor volume (GTV). Seventy-one radiomic features were extracted from GTVs 
using Imaging Biomarker Explorer (IBEX) software, including 17 tumor intensity statistical features, 16 
shape features and 38 textural features. For each radiomic feature, intraclass correlation coefficient (ICC) 
and hierarchical clustering were used to quantify its reproducibility and redundancy. Features with ICC 
values greater than 0.75 were considered reproducible. To generate the number of non-redundancy feature 
subgroups, the R2 statistic method was used. Then, a classification model was built using a support vector 
machine (SVM) algorithm with 10-fold cross validation, and area under ROC curve (AUC) was used to 
evaluate the utility of non-redundant feature extraction by hierarchical clustering.
Results: The percentages of excellent reproducible features in the manual delineation group, GraphCut and 
GrowCut segmentation group were 69% [49], 73% [52] and 79% [56], respectively. Sixty-five percent [46] of 
the features showed strong robustness for all segmentation methods. The optimal number of cluster subgroup 
were 9, 13 and 11 for manual delineation, GraphCut and GrowCut segmentation, respectively. The optimal 
cluster subgroup number was 6 for all groups when the collectively high reproducibility features were selected 
for clustering. The receiver operating characteristic (ROC) analysis of radiomics classification model with and 
without feature reduction for healthy liver and HCC had an AUC value of 0.857 and 0.721 respectively.
Conclusions: Our study demonstrates that variations exist in the reproducibility of quantitative imaging 
features extracted from tumor regions segmented using different methods. The reproducibility and non-
redundancy of the radiomic features rely greatly on the tumor segmentation in HCC CT images. We 
recommend that the most reliable and uniform radiomic features should be selected in the clinical use of 
radiomics. Classification experiments with feature reduction showed that radiomic features were effective in 
identifying healthy liver and HCC.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most 
prevalent cancers in the world and has a poor prognosis (1). 
It is the leading cause of cancer death in men before the 
age of 60, followed by lung and stomach cancer, which are 
the dominant types of cancer with respect to the number 
of cases and deaths between the ages of 60 to 74 years in 
China (2).

As a fundamental component of clinical oncology, medical 
imaging plays a pivotal role in cancer staging, treatment 
planning, and treatment response monitoring, especially in 
radiotherapy (3-5). Due to the emergence of personalized 
medicine and targeted therapy, the need for quantitative 
image analysis has increased with the explosion of standard 
medical data. A series of publications have reported a 
strong relationship between medical imaging features 
and the underlying tumor genetics, which may provide 
a biological basis for clinical applications of quantitative 
imaging (6-8). Moreover, technological progress in 
computational imaging, data mining and predictive analysis 
broaden the scope of imaging in clinical oncology (9).  
In recent years, a technique for converting medical 
images into minable data by extracting a large number of 
quantitative imaging features, termed “radiomics”, has 
become an emerging field in quantitative imaging using 
advanced methods (10). Due to advances in the acquisition 
and analysis of medical imaging, it is currently possible to 
objectively and quantitatively describe tumor phenotypes 
(11,12). Furthermore, by utilizing quantitative imaging 
features as predictors of cancer genetics and clinical 
outcomes, quantitative imaging biomarkers (i.e., radiomics) 
may have important applications in personalized tumor 
therapy (12).

However, before radiomic features can be applied 
in clinical practice, several challenges, including the 
standardization and robustness of selected features, must be 
addressed (11,13). One of the main challenges of radiomics 
is the reproducibility of quantitative imaging features 
(9,14,15). Not all radiomic features are recommended for 

use due to a lack of stability. For instance, if the effect of 
tumor segmentation variability (attributable to differences 
in segmentation results obtained via manual delineation 
and semi-automated approaches) on radiomic features is 
unknown, tumor phenotypes may not be characterized 
accurately, and study findings may not be reproducible. 
Therefore, to provide robust and non-biased descriptors, it 
is essential to objectively and reproducibly quantify various 
imaging features. Potential image feature redundancy is 
another main challenge in radiomics (16,17). The radiomic 
approach generates hundreds of parameters, many of 
which may be redundant (18). Redundant features may 
add complexity to a radiomic study. A non-redundant set 
of radiomic biomarkers must be obtained to minimize 
overweighting of redundant imaging features.

With respect to tumor segmentation methods, few 
studies have evaluated the reproducibility of quantitative 
computed tomography (CT)-based imaging features in 
HCC. In this work, we present an experimental study of 
the robustness and reproducibility of radiomic features 
from arterial phase CT scan in HCC patients in terms of 
tumor segmentation variability. A hierarchical clustering 
method (19,20) was performed to reduce the redundancy 
of reproducible radiomic features. Our study may provide 
useful guidelines for selecting reasonable radiomic features 
in clinical practice for the design of HCC radiomic 
studies. This research may also be beneficial for radiomic 
investigations involving standardization of the quantification 
and predictive values of radiomic features. The workflow of 
this study is depicted in Figure 1.

Methods

Patient CT images

A total of 106 patients at Shandong Cancer Hospital 
Affiliated to Shandong University between December 
2015 and October 2017 were randomly enrolled in this 
research. As a training data set, 26 HCC patients were used 
to calculate the features’ reproducibility and redundancy. 
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Another data set (55 HCC patients and 25 healthy 
volunteers) was used for classification. All patients underwent 
liver CT scan (Phillips Medical Systems, Netherlands, CT 
Lightspeed 16) in the arterial phase of enhancement. The 
matrix size was 512 × 512 with a pixel spacing of 0.97 × 0.97 
× 3.0 mm3 in the left–right, antero-posterior and cranio-
caudal directions, respectively. This work was approved 
by the ethics committee of Shandong Cancer Hospital 
Affiliated to Shandong University (No. 201704088). The 
need for informed consent was waived by the Medical 
Ethics Committee because the study was an observational, 
retrospective study using a database from which the patients’ 
identifying information had been removed.

Tumor and healthy liver segmentation

Since many tumors have indistinct borders, segmentation is 
the most critical, challenging, and contentious component 
of radiomics (21). In this paper, manual delineations and 
two semi-automatic segmentation methods were applied 
to identify the differences in reproducibility of radiomic 
features resulting from the impact of segmentation 
methods.

(I) The gross tumor volume (GTV) of the primary 
tumor on the CT scans (window width 200 HU; 
window level 40 HU) for each patient was manually 
contoured independently by five specialized 
abdominal radiation oncologists. None of the 
radiation oncologists had access to clinical patient 
information other than the CT scans.

(II) For semi-automatic segmentation, the GrowCut 

a lgor i thm and GraphCut  a lgor i thm were 
implemented separately in 3D-Slicer software 
(www.slicer.org). Then, two experienced abdominal 
radiation oncologists independently modified the 
semi-automatic segmentation results using the 
3D-Slicer software.

(III) For healthy liver segmentation, 3 cylindrical volumes 
of interest (VOIs) with diameter approximate  
30 mm and height 9 mm were randomly defined 
from parenchyma while avoiding the vessels.

Moreover, to assess the accordance of the manual 
delineation results and the semi-automatic segmentation 
results, the Hausdorff distance (HD) and the Dice’s 
similarity coefficient (DSC) were calculated in this study.

Radiomic features extraction

All radiomic feature calculations were performed using 
Imaging Biomarker Explorer (IBEX) software (MD 
Anderson Cancer Center, TX, USA), which is an open 
infrastructure software platform that streamlines common 
radiomic workflow tasks (22). In total, we extracted 
71 quantitative image features (comprising 17 features 
describing tumor intensity, 16 shape features and 38 textural 
features), which were divided into 5 groups according to 
the feature calculation method: intensity histogram (17 
features), co-occurrence matrix (22 features), neighbor gray-
tone difference matrix (5 features), gray-level run-length 
matrix (11 features), and geometric shape (16 features). The 
definitions and interpretation of these features have been 
described previously (7,9).

Figure 1 The workflow of this study.
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Reproducibility of radiomic features 

To quantify the feature reproducibility, the intra-class 
correlation coefficient (ICC) was employed. The ICC is 
an inferential statistic that describes how strongly units 
in the same group resemble each other. The ICC ranges 
from 0 to 1, where 0 indicates null and 1 indicates perfect 
reproducibility. The ICC was calculated as follows (23):

 [1]

( ) ( )1
R E

R E C E

MS MSICC kMS k MS MS MS
n

−
=

+ − + −

where MSR = mean square for rows (observations, fixed 
factor), MSE = mean square error, MSC = mean square 
for columns (observers, random factor), k = number of 
observers involved, and n = number of subjects.

We adopted Cicchetti’s quoted guidelines for interpretation 
for the ICC inter-rater agreement measures (24):

(I) Less than 0.40—poor;
(II) Between 0.40 and 0.59—fair;
(III) Between 0.60 and 0.74—good;
(IV) Between 0.75 and 1.00—excellent.
In this study, we defined ICC≥0.75 as high reproducibility.

Non-redundancy of obtained radiomic biomarkers

In our experiment, hierarchical clustering was used to 
acquire the non-redundant imaging biomarkers based on 
the radiomic features with excellent reproducibility. We first 
computed the similarity measurement between all pairs of 
input features to be clustered (25). Two of the most similar 
clusters were combined into one cluster in the first step. 
The final result of the cluster was one individual radiomic 
feature or several radiomic features. Second, we built 
the relationship between the similarity threshold and the 
number of non-redundant clusters. After the similar clusters 
were generated, the redundant radiomic features within 
each cluster were combined into a new radiomic feature. 
The value of the new radiomic feature was the average value 
of the radiomic features in the cluster (20). To generate the 
number of non-correlated subgroups, R2 statistic method 
was used. A detailed description of R2 can be found in 
Supplementary Method.

In order to evaluate the utility of non-redundant feature 
extraction by hierarchical clustering, we performed an 
experiment to classify healthy liver tissue and HCC utilizing 
original radiomic features and cluster features. In this 
process, a supervised machine learning algorithm named 

support vector machine (SVM) was used. First, we trained 
the classification model based on 55 radiomic features 
including 17 intensity features and 38 textural features. 
Second, classification model trained with 6 non-redundant 
cluster features were calculated for comparison. Classification 
models were trained using the repeated (3 repeat iterations) 
10-fold cross validation of training data, and the predictive 
performance was evaluated using area under curve (AUC) of 
receiver operating characteristic (ROC).

Due to the different value ranges of various radiomic 
features, z-score normalization was used to standardize all 
radiomic feature values before the cluster was finalized (20). 
Z-score normalization was performed as follows:

xz µ
σ
−

=  [2]

where μ is the mean value of the radiomic feature and σ is 
the standard deviation of the radiomic feature. All radiomic 
features were then scaled to a normalized value range.

Results

Segmentation results

The median (range) tumor volumes obtained by manual 
delineation, GrowCut segmentation and GraphCut 
segmentation were 21 (4.3–183.4) cm3, 16 (4.4–173.7) cm3 
and 15 (4.7–159.5) cm3, respectively. The mean HD and 
mean DSC achieved 33.8 voxel and 0.842 respectively, 
between manual delineation results and GrowCut 
segmentation results. For manual delineation results 
and GraphCut segmentation results, the mean HD and 
the mean DSC were 31.3 voxel and 0.816 respectively. 
Volume variance may suffer from high uncertainty caused 
by segmentation methods. In addition, the value of the 
extracted radiomic features may differ due to variances in 
tumor segmentations uncertainty. Thus, it is important to 
identify whether the features extracted from the two types of 
semiautomatic segmentations capture the same tumor image 
properties as manual delineation. Therefore, we normalized 
every feature value with respect to the three segmentation 
methods. Figure 2 presents the normalized feature range 
between the manual and semi-automatic segmentations. 
The normalized value of the extracted radiomic features 
based on semi-automatic segmentations presented a smaller 
range compared with manual delineation. Furthermore, 
as shown in Figure 2, the GrowCut algorithm exhibited 
greater stability than the GraphCut algorithm in terms of 



457Quantitative Imaging in Medicine and Surgery, Vol 9, No 3 March 2019

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2019;9(3):453-464qims.amegroups.com

the value of the extracted radiomic features. 

Reproducibility of radiomic features on multiple 
segmentation methods

To quantitatively compare the reproducibility of the 
radiomic features for HCC for the three segmentation 
methods, we divided the ICC value into four groups: poor 
(less than 0.40), fair (between 0.40 and 0.59), good (between 
0.60 and 0.74) and excellent (between 0.75 and 1.00). 
Figure 3 presents the percentage of ICC values for the three 
segmentation methods. The radiomic features extracted 
from the semi-automatic segmentation methods had 
higher reproducibility than the features extracted from the 
manual segmentation. Notably, the excellent reproducibility 
percentage in the GrowCut algorithm group was higher 
than that in the GraphCut algorithm group (79% vs. 
73%). The percentage of excellent-reproducibility features 
describing tumor intensity in the manual delineation group, 
GraphCut algorithm group, and GrowCut algorithm 
group was 65% (11 features), 58% (10 features) and 76% 
(13 features), respectively. The percentage of excellent-

reproducibility features describing shape features in the 
manual delineation group, GraphCut algorithm group, 
and GrowCut algorithm group was 69% (11 features), 
69% (11 features), and 63% (10 features), respectively. The 
percentage of excellent-reproducibility features describing 
textural features in the manual delineation group, GraphCut 
algorithm group, and GrowCut algorithm group was 71% 
(27 features), 82% (31 features), and 87% (33 features), 
respectively. In addition, the ICC value was over 0.75 for all 
segmentation methods for approximately 65% (46 features) 
of the features.

Feature redundancy reduction

Figure 4 depicts the hierarchical cluster tree and the 
relationship between the similarity threshold and the 
number of clusters for the excellent-reproducibility 
radiomic features in the three segmentation methods. 
As shown in Figure 4A,B,C, several redundant radiomic 
features were clustered into the same subgroup because of 
very similar values (Z-scores). The R2 value was calculated 
at similarity threshold intervals of 0.05 (Figure 4D). The 

Figure 2 Comparison of normalized feature range between manual and semi-automatic segmentation. The correspondence between 
numbers and features is shown on the right.
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R2 value was discrepant in partial areas for the different 
segmentation methods. On the basis of the observed results, 
the suitable number of non-correlated subgroups were 
selected as shown in Figure 4E. The optimal number was 9, 
13 and 11 for manual delineation, GraphCut segmentation 
and GrowCut segmentation, respectively. However, if 
we applied the same reproducibility features (all ICC 
values between 0.75 and 1.00) to the cluster for the three 
segmentations, different results were obtained for the 
hierarchical cluster tree and the relationship between the 
similarity threshold and the number of clusters (Figure 5).  
As shown in Figure 5D, the optimal number of non-
correlated subgroups was 6 in all cases. The clustered 6 non-
redundant feature groups and the features in each group are 
summarized in Table 1. Additionally, significant difference 
was observed in clusters 1 to 5 (Figure S1). Figure 6 depicts 
the ROC plots of the two classification models for healthy 
liver tissue and HCC. ROC analysis showed that the AUC 
value was 0.857, with 0.866 sensitivity and 0.840 specificity 
in the classification with feature reduction. However, the 
AUC value was only 0.721, with 0.889 sensitivity and 0.640 
specificity in the classification without feature reduction. A 
detailed description can be found in Supplementary Results.

Discussion

Many studies have demonstrated that radiomic features are 
related to tumor histology (26), tumor stage (27), patient 

survival (28), metabolism (29), and several additional 
clinical outcomes (30-32). Recently, a group of experts 
assembled from Cancer Research UK (CRUK) and the 
European Organization for Research and Treatment of 
Cancer (EORTC) produced 14 key recommendations 
for accelerating the clinical translation of radiomics (33). 
Two of the recommendations were imaging biomarker 
standardization and continual revisiting of imaging 
biomarker precision (33). Research on the reproducibility 
and non-redundancy of radiomic features is therefore 
essential to promote standardization and improve the 
precision of data from multi-modality medical images across 
institutions. Tumor segmentation is the most critical and 
contentious component of radiomics because the analysis 
of subsequent feature data rely on the tumor segmentation 
results (11,34). As the routine method of segmentation 
in the clinic, manual delineation is time-consuming and 
prone to high variability due to the indistinct borders of 
many tumors. Semi-automatic approaches are fast and can 
reduce the inter-observer variability (9,34). Furthermore, 
for a specific cancer and imaging modality, it is essential 
to identify the data variability with respect to the tumor 
segmentation process. Few studies have evaluated the 
reproducibility and the non-redundancy of radiomic 
features in HCC CT scans. Here, we explore this question 
with the aim of providing fundamental data and obtaining 
the most reliable and non-redundant radiomic features of 
HCC. In addition, we intend to promote standardization 
and improve precision in the context of HCC radiomics 
study.

In this report, we present an experimental study of the 
reproducibility and non-redundancy of radiomic features 
in HCC CT scans. Consistent with the overwhelming 
evidence in the literature (9), we observed that the semi-
automation of the GTV of the primary tumor provides 
a better alternative to manual delineation for feature 
quantification by yielding more reproducible imaging 
descriptors. However, we also found that the results may be 
influenced by the semi-automated algorithm. The number 
of high-reproducibility features generated in the GrowCut 
algorithm group was greater than that generated in the 
GraphCut algorithm group. The number of non-redundant 
feature groups for the excellent-reproducibility radiomic 
features may also be influenced by the segmentation 
method. Nevertheless, the variability can be reduced by 
selecting the collectively high-reproducibility features for 
clustering. Because of imaging changes in cancer tissue are 
due to changes at the cellular level, a significant difference 
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of clustered features may be observed in healthy and 
abnormal tissue. The classification results also showed that 
radiomic features with redundant reduction were more 
effective in identifying healthy liver and HCC. Therefore, 
the non-redundant features have strong discriminative 
power. This can be explained by the fact that redundant 
features do not increase the information of the data, but 
rather that the complexity of the model increased, and the 

correlation of redundant features were not processed when 
model training.

To ensure the reliability of the radiomic features, accurate 
and robust tumor contouring is essential. Semi-automatic 
segmentation of the primary tumor on CT demonstrated 
high agreement with manual delineation, and strong 
correlation with the macroscopic diameter is considered 
the ‘‘gold standard’’ (35). However, not all semi-automatic 

Figure 4 The hierarchical cluster tree and the relationship between the similarity threshold and the number of clusters for the excellent-
reproducibility radiomic features in the three segmentation methods. (A,B,C) The cluster trees for the excellent-reproducibility radiomic 
features in the manual delineation group, GraphCut segmentation group and GrowCut segmentation group, respectively. (D) The 
relationship between the R2 value and the similarity threshold. (E) The relationship between the number of subgroups and the similarity 
threshold. 
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algorithms are appropriate for HCC delineation. GrowCut 
is an interactive region-growing segmentation strategy. 
The algorithm uses a competitive region-growing approach 
and is considered to provide good accuracy and speed for 
both two- and three-dimensional image segmentation (34). 
GraphCut is also an interactive segmentation strategy that is 
often used to find the globally optimal segmentation of the 
N-dimensional image (36). Each semi-automated algorithm 

may have specific applications, especially in medical images, 
due to distinctions in capturing tumor boundaries and/or 
the characteristics of tumor anatomical morphology. 

As a rule of thumb, to examine the prognostic power 
of radiomic features and reduce the false discovery rate, 
datasets consisting of 10–15 patients per feature evaluated 
have been recommended (37). Hence, 26 patients with 
HCC were enrolled when assessing the reproducibility and 
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redundancy in this study. Based on the results presented 
here, we anticipate that semi-automatic segmentation is 
likely to improve the reproducibility of imaging markers. 
Furthermore, to improve accuracy and maximally eliminate 
segmentation effects, a proper semi-automatic algorithm 
should be considered for various tumors with different 
imaging modalities. This study indicates that hierarchical 
clustering can provide robust radiomic feature clusters and 
reduce feature redundancy.

Because many radiomic features may be unreliable, 
reproducibility should be assessed early in radiomic 
signature development. Meanwhile, there is potential 

redundancy in hundreds of radiomics features which is 
extracted from defined regions of interest (ROIs). The 
redundant features may result in a complicated radiomic 
study. Moreover, it is essential that multicenter studies 
qualify radiomic features for clinical use due to the 
involvement of different research institutions, which usually 
utilize different tumor delineation methods. Our research 
identified the most reliable and uniform radiomic features 
that were independent of the tumor segmentation. These 
findings may be beneficial for multicenter trials focused on 
the clinical use of radiomics.

In cancer research, intrinsic intratumor heterogeneity 
should be fully captured in medical images (38). To 
investigate hypermetabolism, the necrotic area and hypoxic 
area of the tumor must be identified. In future work, 
intratumor segmentation will be used to identify subregions 
of HCC based on functional imaging. In turn, the radiomic 
features of these HCC subregions will be further studied. 
Due to the size of the present cohort, we were unable to 
associate these image descriptors with patient outcome. In 
future research, we will reveal useful prognostic imaging 
biomarkers and explore the correlation between radiomic 
features and clinical data. Moreover, molecular biology 
experiments should reveal the mechanisms responsible 
for the ability of quantitative features to predict clinical 
prognosis.

Conclusions

Our study reveals that variations exist in the reproducibility 
of quantitative imaging features extracted from tumor 
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Table 1 The clustered 6 non-redundant feature groups and the features in each group

Cluster group Reproducible and non-redundant quantitative imaging feature group

1 IH-Energy, NGTDM-Busyness, SHAPE-Compactness1, SHAPE-ConvHullVol, SHAPE-ConvHullVol_3D, SHAPE-
Volume, SHAPE-Mass, SHAPE-SurfaceArea, SHAPE-MeanBreadth, SHAPE-Max_3D_Diam, SHAPE-Number_Of_
Voxel, GLRLM-R.L.Nonuniformity, GLRLM-G.L.Nonuniform

2 IH-GlobalEntropy, IH-Variance, GLCM-Entropy, GLCM-SumEntropy, GLCM-DiffEntropy, GLCM-Dissimilarity, 
NGTDM-Contrast, GLRLM-S.R.L.G.L.Empha, GLRLM-S.R.Emphasis, GLRLM-S.R.H.G.L.Empha, GLRLM-R.
Percentage

3 IH-10Percentage, IH-90Percentage, IH-99Percentage, IH-GlobalMean, IH-RootMeanSqua, IH-GlobalMedian, 
GLCM-AutoCorrelation, GLCM-SumAver, GLCM-SumVariance, GLRLM-H.G.R.L.Empha

4 IH-GlobalUnif, GLCM-InveDiffNorm, GLCM-Homo1, GLCM-Homo2, GLCM-Energy, GLCM-MaxProb, GLRLM-L.
R.H.G.L.Empha, GLRLM-L.R.Ephasis, GLRLM-L.R.L.G.L.Empha

5 NGTDM-Coarseness, SHAPE-SurfAreaDens

6 GLRLM-L.G.L.R.Empha
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regions segmented using different methods.  The 
reproducibility and non-redundancy of the radiomic 
features rely greatly on the tumor segmentation in 
HCC CT images. Our study shows that semi-automatic 
segmentation is likely to improve the reproducibility of 
imaging markers and hierarchical clustering can provide 
robust radiomic feature clusters and reduce feature 
redundancy. Furthermore, to guarantee the segmentation 
precision and maximally eliminate segmentation effects, 
a proper semi-automatic algorithm should be considered 
for various tumors with different imaging modalities. We 
recommend that the most reliable and uniform radiomic 
features should be selected in the clinical use of radiomics.
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Supplementary

Supplementary method

In order to determine the optimal number of clusters in 
hierarchical clustering trees, The R2 statistic method was 
used. It was defined as follows:

2 1 GPR
W

= −  [3]

Where PG= sum of squared deviation within clusters, W= 
sums of squared deviation for total.

The detailed calculating process was as follows:
(I) The matrix M contains N variables which were 

arranged in rows.

11 12 1

21 22 2

1 2

1 2
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p
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x x x
x x x
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(II) Calculate the sum of squared deviation for total W:

( ) ( ) ( ) ( )2 2 2 2

11 1 1 1 1N p p Np pW x x x x x x x x= − + + − + + − + + −  

( ) ( ) ( ) ( )2 2 2 2

11 1 1 1 1N p p Np pW x x x x x x x x= − + + − + + − + + −   [5]

(III) If M was divided into G groups, then becomes 
matrix below:
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Where n1+n2+…+nG = N.
(IV) Calculate the sum of squared deviation within 

clusters PG:

PG=W1+W2+…+WG [7]

Where W1, W2,…,WG = sum of squared deviation 
for total in each cluster.

( ) ( ) ( ) ( )1 1

2 2 2 2(1) (1) (1) (1)

1 11 1 1 1 1n p p n p pW x x x x x x x x= − + + − + + − + + −  

( ) ( ) ( ) ( )1 1

2 2 2 2(1) (1) (1) (1)

1 11 1 1 1 1n p p n p pW x x x x x x x x= − + + − + + − + + −  

 
[8]

( ) ( ) ( ) ( )2 2 2 2( ) ( ) ( ) ( )

11 1 1 1 1G G

G G G G

G n p p n p pW x x x x x x x x= − + + − + + − + + −  

( ) ( ) ( ) ( )2 2 2 2( ) ( ) ( ) ( )

11 1 1 1 1G G

G G G G

G n p p n p pW x x x x x x x x= − + + − + + − + + −  

[9]

(V) Then the Eq. [1] was used to calculate R2.

In this study, a high threshold resulted in fewer 
subgroups, whereas a low threshold resulted in a large 
number of groups. The suitable number of non-redundant 
subgroups was based on the condition of a sufficiently 
large value of R2; however, the number of subgroups was 
comparatively small and the value of R2 did not observably 
increase.

The steps are as follows:
	 First, we normalized the original data of each 

feature in cluster 1, 2,  . . . ,  using Min–Max 
Normalization; the formula is as follows:

min
norm

max min

X XX
X X

−
=

−  [10]

	 Secondly, we calculated the mean value of each cluster 
for the HCC and healthy group (Tables S1,S2);

	 Finally, a Wilcoxon test was used for each cluster to 
compared the difference between  the two groups 
(Figure S1). P<0.05 was considered statistically 
significant.

Supplementary results

Detailed results and descriptions of machine learning based 
classification: 

(I) Classification method name: support vector 
machine (SVM), a supervised machine learning 
algorithm.

(II) A total of 106 sets of arterial CT images, including 
26 HCC patients  ( for  reproducibi l i ty  and 
redundancy assessment), 55 HCC patients and 25 
healthy patients (for classification).

(III) Modeling data composition (Table S3).
All feature values were normalized into range [0, 1], and 

each feature in the above table was the average value of six 
feature groups. All the feature was normalized using Z-score 
normalization: in response, 1 for HCC and 0 for healthy.

(I) Parameters:
(i) SVM, with Gaussian kernel function was 

implemented in MATLAB R2014a.
(ii) Classification models were trained using the 

repeated (3 repeat iterations) 10-fold cross 
validation of training data and their predictive 
performance was evaluated using area under 
ROC curve (AUC).

(iii) 10-fold cross validation: it partitioned all the 
data into 10 individual subsets randomly with 
equal sized patients. A single subset is retained 
as validation data for testing the SVM classifier 
which is trained by other 9 subsets.

(II) Inputs and AUC of SVM models (Table S4).
(III) ROC curve (Figures S2,S3).
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Figure S1 Normalization clustered features value of healthy liver tissue and HCC. Significant difference was observed in cluster 1 to 5. 
HCC, hepatocellular carcinoma.

Table S1 The number of clusters and corresponding R2 values for reproducible features in each of three segmentation groups

Similarity 
threshold

Number of clusters R2

Manual GraphCut GrowCut Manual GraphCut GrowCut

0.00 48 52 56 1.0000 1.0000 1.0000

0.05 20 22 23 0.9806 0.9792 0.9753

0.10 14 16 18 0.9692 0.9690 0.9665

0.15 12 14 16 0.9501 0.9556 0.9578

0.20  9 13 15 0.9191 0.9537 0.9352

0.25 9 11 13 0.9191 0.9217 0.9088

0.30 8 11 11 0.9107 0.9217 0.8949

0.35 7 11 9 0.8845 0.9217 0.8525

0.40 7 9 8 0.8845 0.8850 0.8291

0.45 7 9 8 0.8845 0.8850 0.8291

0.50 7 9 7 0.8845 0.8850 0.8171

0.55 6 7 6 0.8623 0.8271 0.7963

0.60 6 7 6 0.8623 0.8271 0.7963

0.65 6 7 6 0.8623 0.8271 0.7963

0.70 6 7 6 0.8623 0.8271 0.7963

0.75 6 7 6 0.8623 0.8271 0.7963

0.80 6 7 5 0.8623 0.8271 0.6549

0.85 4 4 4 0.6242 0.5993 0.6302

0.90 3 4 4 0.5959 0.5993 0.6302

0.95 2 3 2 0.4092 0.4159 0.3735

1.00 2 2 2 0.4092 0.3707 0.3735



Table S2 The number of clusters and corresponding R2 values for reproducible features in all three segmentation groups

Similarity 
threshold

Number of clusters R2

Manual GraphCut GrowCut Manual GraphCut GrowCut

0.00 46 46 46 1.0000 1.0000 1.0000

0.05 17 18 17 0.9809 0.9870 0.9813

0.10 12 12 12 0.9723 0.9773 0.9747

0.15 11 10 10 0.9624 0.9639 0.9659

0.20  8 9 9 0.9231 0.9420 0.9587

0.25 8 7 8 0.9231 0.9314 0.9417

0.30 6 7 7 0.9039 0.9314 0.9370

0.35 6 6 6 0.9039 0.9079 0.9118

0.40 6 6 6 0.9039 0.9079 0.9118

0.45 6 6 6 0.9039 0.9079 0.9118

0.50 6 6 6 0.9039 0.9079 0.9118

0.55 6 6 6 0.9039 0.9079 0.9118

0.60 6 6 6 0.9039 0.9079 0.9118

0.65 6 6 6 0.9039 0.9079 0.9118

0.70 6 6 6 0.9039 0.9079 0.9118

0.75 6 6 6 0.9039 0.9079 0.9118

0.80 6 6 5 0.9039 0.9079 0.7787

0.85 4 4 4 0.6759 0.7028 0.7318

0.90 3 4 4 0.6479 0.7028 0.7318

0.95 3 3 3 0.6479 0.5215 0.5571

1.00 2 2 2 0.4581 0.4653 0.5309

Table S3 The assembly of training data

Feat.1 Feat.2 Feat.3 Feat.4 Feat.5 Feat.6 Response

Pat.1 X1, 1 X2, 1 X3, 1 X4, 1 X5, 1 X6, 1 1

Pat.2 X1, 2 X2, 1 X3, 1 X4, 1 X5, 1 X6, 1 0

… … … … … … … …

Pat.106 X1, 106 X2, 106 X3, 106 X4, 106 X5, 106 X6, 106 1

Table S4 Inputs and AUC of SVM models

SVM models Inputs AUC

Classification with feature reduction Six clustered features 0.857

Classification without feature reduction All 55 original features 0.721



Figure S2 ROC curve for classification model without feature reduction. ROC, receiver operating characteristic.

Figure S3 ROC curve for classification model with feature reduction. ROC, receiver operating characteristic.
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