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Treatment response prediction of rehabilitation program in 
children with cerebral palsy using radiomics strategy: protocol for 
a multicenter prospective cohort study in west China
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Background: Cerebral palsy (CP) is a major cause of chronic childhood disability worldwide, causing 
activity limitation as well as impairments in sensation, cognition, and communication. Leveraging biomarkers 
to establish individualized predictions of future treatment responses will be of great value. We aim to develop 
and validate a model that can be used to predict the individualized treatment response in Children with CP. 
Methods: A multicenter prospective cohort study will be conducted in 4 hospitals in west China. One 
hundred and thirty children with CP will be recruited and undergo clinical assessment using the Peabody 
Developmental Motor Scales, Manual Ability Classification System (MACS), Hand Assessment for Infants 
(HAI), Assisting Hand Assessment (AHA), and Gross Motor Function Classification System (GMFCS). The 
data collected will include MRI image, clinical status, and socioeconomic status. The clinical information 
and MRI features extracted using radiomics strategy will be combined for exploratory analysis. The accuracy, 
sensitivity, and specificity of the model will be assessed using multiple modeling methodologies. Internal and 
external validation will be used to evaluate the performance of the radiomics model. 
Discussion: We hypothesized that the findings from this study could provide a critical step towards the 
prediction of treatment response in children with CP, which could also complement other biomarkers in the 
development of precision medicine approaches for this severe disorder.
Trial registration: The study was registered with clinicaltrials.gov (NCT02979743).
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Introduction

Cerebral palsy (CP) is a motor disorder accompanied by 
disturbances of sensation, cognition, communication, 
perception, and behavior, by epilepsy, and by secondary 
musculoskeletal problems (1). There is a substantial 
public health cost with the economic burden estimated 
at USD$900,000 per person in the USA and Europe (2), 
highlighting the importance of effective intervention in CP. 
The effective treatment should be directed at stimulating 
the child’s development with the aim to achieve maximal 
independence in activities of daily life. Rehabilitation 
strategies are typically multidisciplinary. Conventional 
rehabilitation programme includes physical therapy (PT) 
and occupational therapy (OT). PT is an integral part of CP 
treatment. Although its effectiveness in promoting physical 
function is uncertain, PT aids in encouraging caretakers 
to learn how best to handle, toilet, wash, and feed their 
children and to promote posture, mobility, and transfer. 
OT seeks to improve function, but focus on maximizing a 
child’s ability to accomplish activities of daily life, education, 
and work (3-5). Although these are particularly helpful 
in maximizing available hand function, the efficiency of 
conventional treatment in children at individual level is still 
undetermined.

Advancement in the magnetic resonance imaging 
(MRI) techniques in recent decades provides an unique 
opportunity to search for functional biomarkers for CP. 
Equipped also with advanced radiomics, researchers have 
made unprecedented progress in discovering biomarkers 
that can increasingly enable identification of individual 
patients (6-9). However, it is still much more challenging to 
identify patients who will have effective treatment response 
(10,11). Using these biomarkers to make individual 
predictions of future treatment responses in the early phase 
of CP will be clinically important.

In the proposed study, we aim to predict the individual 
responses to the treatment. The results of this study may 
represent an important step towards the development of 
translational tools in personalized treatment approaches for 
treatment in newly diagnosed CP in the future.

Objectives

Primary objective
This study aims to develop and validate an individual-based 
model for prediction of treatment response based on MRI 

and clinical measures in children with CP.

Secondary objective
To establish a practical method for automatic detection 
and segmentation of periventricular white matter injury 
(PWMI). Cortical thickness (CT), fractional anisotropy 
(FA), and related network measures (structural covariance 
network based on CT, and DTI network based on FA) are 
being quantified.

Methods

Study design and rationale

Study design
This study wil l  be implemented as a multicenter 
prospective cohort study. The study has been registered 
with clinicaltrials.gov (NCT02979743). This study will be 
reported in accordance with the standard protocol items: 
recommendations for clinical trials (SPIRIT) (12). The flow 
chart of this study protocol is shown in Figure 1.

Study setting
The First Affiliated Hospital of Xi’an Jiaotong University 
(No. 277, Yanta West Road, Xi’an City, Shaanxi Province, 
China); Xi’an Brain Disease Hospital of Traditional Chinese 
Medicine (No. 368, Kuangshan Road, Xi’an City, Shaanxi 
Province, China); The Affiliated Hospital of Zunyi Medical 
University (No. 149, Dalian Road, Huichuan District, 
Zunyi City, Guizhou Province, China); The First Affiliated 
Hospital of Henan University of Traditional Chinese 
Medicine (No. 19, Renmin Road, Zhengzhou City, Henan 
Province, China).

Ethics and dissemination
All participating centers have approved the study protocol. 
This study has been approved by the Institutional Review 
Board of the First Affiliated Hospital of Xi’an Jiaotong 
University (KYLLSL-2015-179-01).  An informed 
consent form will be obtained from the subjects’ parents 
or guardians. Participating families will receive detailed 
summaries of the results. The results of this study will be 
presented at national and international conferences and 
submitted to peer-reviewed journals. Subjects will have the 
freedom to withdraw from the study at any time. Since this 
study is supported by the national foundation, the access to 
the full protocol, participant-level data, and statistical code 
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will be decided by the government.

Participants

The children will be recruited from inpatients at the four 
above-mentioned hospitals. The anticipated date for this 
study is from January 2017 to December 2019.

Inclusion criteria
Children presenting with all the following conditions will 
be considered for enrollment into this study: (I) diagnosis 
of spastic CP by pediatric neurologists; (II) aged 6 to  
72 months; (III) GMFCS and MACS levels I–III; (IV) 
PWMI as described on the MRI imaging report; (V) 
following the conventional rehabilitation programme.

Exclusion criteria
Children presenting with any one or more of the following 
will be excluded from this study: (I) receiving other 
treatments (i.e., orthopedic surgery, or BoNT-A injections 
within 6 weeks) may affect the efficacy; (II) accompanied by 
other diseases (i.e., congenital muscular disease, hereditary 
disease, progressive central nervous system diseases, cancer, 
severe heart disease, or severe infectious disease); (III) 

insufficient cooperation or cognitive understanding to 
participate in the assessment; (IV) contraindication to MRI 
or obvious MRI image artifacts.

Withdrawal criteria
Subjects will be withdrawn from the study at the discretion 
of the investigator or the sponsor if judged non-compliant 
with study procedures or if there are safety concerns.

Data collection

Upon screening, the following data will be collected: 
demographic data (sex, age, body weight and side of 
injury); medical history; concomitant medications (e.g., 
epilepsy, intellectual disability); findings from a complete 
physical examination and neurological examination; 
neuropsychological assessment; and family socioeconomic 
status. Inclusion and exclusion criteria will be assessed. 
Structural brain MRI will be carried out if the patient meets 
the inclusion and exclusion criteria. These details will be 
collected for identification of prediction factors and to help 
establish predictive variables.

A follow-up assessment will be scheduled after 3 months 
of treatment. Data from the following examinations will 

Figure 1 Flow chart of the study protocol. MCID, minimal clinically important difference.

Children with CP in 4 hospitals 
underwent conventional 

therapy in 2017-2019 

MRI, clinical, and 
socioeconomic assessment 

before treatment 

Clinical assessment after 
treatment 

Radiomics analysis 
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Meeting exclusion criteria 

Loss to follow 
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be collected: physical and neurological examinations; 
neuropsychological assessment.

Data monitoring

All participants will be evaluated by the trained therapists 
and undergo brain MRI scan. Imaging data will be 
checked for quality and protocol conformity after each 
scanning session. Clinical symptoms and MRI findings 
will be input into the electronic data capture system. All 
documents collected in this study will be stored safely 
and confidentially. On all study-specific documents, other 
than the signed consent, the subject will be referred to by 
number/code, not by name. Study documentation will be 
archived for a period of 6 years after the study. Data will 
be statistically analyzed by a professional statistician. Only 
study members will have access to the data.

Blinding

The radiologists responsible for reporting the MRI 
results will be blinded to all other imaging results, 
clinical information, and neurobehavioral scores. The 
neonatologists carrying out the clinical assessments will be 
blinded to the MRI findings. Follow-up assessments will be 
scored by well-trained physical and occupational therapists 
who are not involved in the treatment and data collection. 
These therapists will be blinded to the perinatal history, 
primary assessment, and MRI findings.

Conventional therapy

The children will follow the regular routine of the 
conventional rehabilitation programme. This includes 
hand splinting, muscle strengthening and stretching, using 
neurodevelopmental facilitation techniques, and so on, 
for 2 hours per day, 5 days per week, for 3 months. The 
conventional treatments can include PT and OT. PT is a 
crucial part of CP treatment. PT helps caretakers to learn 
how best to handle, toilet, wash, and feed their children and 
to promote posture, mobility, and transfer. OT focuses on 
improving functions, and seeks to maximize a child’s ability 
to accomplish activities in daily life, education, and work 
(3-5). These are particularly useful in maximizing available 
hand function. The children undergo rehabilitation 
according to their doctors’ clinical care, but they do not 
receive any intentional rehabilitation program. During 
the period, they can freely start, change or cease any 

conventional treatments.

Outcome measures

Primary outcome measures
The primary outcome is the change in value of motor 
scales at the third month from a baseline measured by the 
Peabody Developmental Motor Scales, Second Edition 
(PDMS-2). PDMS-2 is a standardized and norm-referenced 
test used for the assessment of upper limb functions. It 
includes gross motor (reflexes, stationary, locomotion, and 
object manipulation) and fine motor (grasping and visual-
motor integration) functions. The PDMS-2 scores have 
good test-retest reliability (intraclass correlation coefficients 
=0.88–1.00), with sensitivity-to-change coefficients ranging 
from 1.6 to 2.1, and responsiveness coefficients ranging 
from 1.7 to 2.3 (13). The patients will be divided into two 
groups according to minimal clinically important difference 
(MCID) (group A ≥4.5, group B <4.5) (14,15). The 
MCID focuses on the change scores from pretreatment to 
post-treatment, and provides the smallest change that is 
important by a respondent.

Secondary outcome measures
The secondary outcome measures include neurobehavioral 
development scores: Gross Motor Function Measure 
(GMFM) score, Gross Motor Function Classification 
System (GMFCS), Manual Ability Classification System 
(MACS), Hand Assessment for Infants (HAI), Assisting 
Hand Assessment (AHA), Pediatric Evaluation of Disability 
Inventory (PEDI), and neuroplasticity in vivo MRI.

(I) GMFM score: the GMFM is a widely accepted 
scale used to evaluate gross motor function that 
can quantitatively assess the dysfunction and 
developmental delay of patients with CP. The scale 
comprises five dimensions divided by 88 items, 
with a total score of 264 (16). This tool has been 
validated in the Chinese population (17,18).

(II) GMFCS: the GMFCS is a five-level classification 
system, with level I indicating the best voluntary 
movement and level V representing the worst 
voluntary movement (19,20). This tool has been 
validated in the Chinese population (17).

(III) MACS score: the MACS measures five levels of 
the abilities of children with CP to use their hands 
to handle objects in daily activities, with level 
I indicating that objects are handled easily and 
successfully and level V indicating that the child 

C:/Users/wo/AppData/Local/Youdao/Dict/Application/6.3.69.8341/resultui/frame/javascript:void(0);
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is not able to handle objects or to complete even 
simple actions with his/her hands (21-23).

(IV) HAI: HAI is the first assessment tool that can 
quantify hand function in infants. It is valid for 
measuring bilateral hand use and quantifying side 
difference between hands in infants between 3 and 
12 months corrected age (24,25).

(V) AHA: AHA is a hand function evaluation instrument, 
which measures and describes how children with 
an upper limb disability in one hand use his/
her affected hand (assisting hand) collaboratively 
with the non-affected hand in bimanual play. The 
AHA measures how effectively the affected hand 
and arm is used in bimanual performance. The 
assessment is performed by observing the child's 
spontaneous handling of toys in a relaxed and 
playful session. This makes the AHA a measure of 
usual performance. AHA has been frequently used 

to assess motor function in children with bilateral 
and unilateral SCP because of good inter-rater 
reliability (26-28).

(VI) PEDI score: the PEDI assesses key functional 
capabilities and performance in children of 6 months 
to seven years of age (29). This tool has been 
validated in the Chinese population (30).

The secondary outcome measure will also include 
neuroplasticity changes, as measured by MRI. MRI is a 
powerful translational imaging technique able to extract 
functional, structural, and biochemical information from the 
entire brain (31). Specifically, the brain structural change, 
including CT, surface area, and volume, will be measured. 
White matter microstructure, measured by diffusion tensor 
imaging, will be assessed.

Acquisition of MRI images
Brain MRI will be performed using 3.0-T scanners with 
8-channel head coils at baseline. All children will be 
required to sleep soundly and to wear sponge earplugs for 
hearing protection. Each subject’s sleeping routine will be 
adjusted in order to reduce motion artifacts and ensure 
a complete MRI examination. The subject’s head will be 
immobilised using moulded foam. The children who can 
not remain still will be sedated with 10% chloral hydral 
(25–50 mg/kg) to reduce motion artifacts during the MRI 
examination. The potential risks of the chloral hydrate will 
be fully explained to the parents of the children. The patient 
selection, monitoring, and management will be performed 
in strict compliance with the guidelines (32). Heart rate, 
transcutaneous oxygen saturation, and respiration rate will 
be monitored throughout the procedure.

The brain MRI will be performed using an optimized 
protocol with 3-T MRI scanners across the study site. 
Three-dimensional fast spoiled gradient-recalled echo 
(3D-FSPGR) T1WI and T2-FLAIR (fluid attenuated 
inversion recovery) will be performed with an eight-
channel head coil (Table 1). A single-shot echo planar 
imaging sequence will be performed for the acquisition of 
DTI (Table 2). The total scan time will be approximately  
20 minutes. Providing that children are well prepared for 
the examination, the completion rate for all three sequences 
is close to 90% at The First Affiliated Hospital of Xi’an 
Jiaotong University, so this protocol should be suitable for 
implementation at the other study sites. Each subject’s vital 
signs will be monitored during the MRI examination; if an 
adverse event occurs, the scan will be stopped immediately 
with intervention depending on the circumstances. The 

Table 1 Three-dimensional T1-weighted imaging parameters used 
with the different scanners in operation at the four participating 
centers

Variable GE Philips Siemens

Repetition time (ms) 10.4 7.5 1,900

Echo time (ms) 4.6 3.7 3.37

Slice thickness (mm) 1 1 1

Gap (mm) 0 0 0

Field of view (mm2) 256×256 256×256 256×256

Matrix size 256×256 256×256 256×256

Table 2 Diffusion tensor imaging parameters used with the 
different scanners in operation at the four participating centers

Variable GE Philips Siemens

Repetition time (ms) 11,000 9,000 8,800

Echo time (ms) 74.7 91 57

Numbers of diffusion 
gradient directions

35 35 35

b values (s/mm2) 0, 1,000 0, 1,000 0, 1,000

Slice thickness (mm) 2.5 2 2

Gap (mm) 0 0 0

Field of view (mm2) 240×240 240×240 240×240

Matrix size 256×256 256×256 256×256
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details of the protocol used at each participating site are 
shown in Tables 1,2.

Structural MRI image analysis
T1-weighted structural images will be preprocessed using 
SPM12 and computational anatomy toolbox (CAT) based 
on MATLAB (33,34). CT will be calculated. The main 
steps are summarized as follows. The original T1 high-
resolution anatomical images will be visually checked 
to ensure that there is no obvious artifact, incomplete 
scan, or poor contrast, then these images will be format-
converted and manually reoriented. The format-converted 
and reoriented T1 images will be entered in preprocessing 
pipeline in CAT12 with the default parameters, except 
for the brain template using a pediatric template for 6- to 
12-year-old children from the Imaging Research Center at 
Cincinnati Children’s Hospital Medical Center (CCHMC), 
USA. Briefly, this automated method allows for central 
surface reconstruction and CT measurement in one step, 
then the topological defects of cortical surface mesh will 
be repaired by using a spherical harmonic method. Prior 
to the statistical analyses, the individual CT maps will be 
smoothed by using a Gaussian filter with full-width at 
half-maximum of 15 mm (35). We will compute structural 
covariance network based on interregional CT correlation 
and graph-theoretical analysis toolbox.

Diffusion MRI image analysis
DTI-derived FA and mean diffusivity maps will be obtained 
after the brain extraction and the eddy current correction 
by using FMRIB’s Diffusion Toolbox (FDT) in the 
FMRIB’s Software Library (FSL) (36). FA will be estimated 
from pre-processed diffusion data using a diffusion tensor 
model. The diffusion metrics of bilateral corticospinal 
tract (CST), posterior thalamic radiation (PTR), genu of 
corpus callosum (GCC) and splenium of corpus callosum 
(SCC) will be quantified. Whole-brain voxel-based analysis 
of diffusion parameters will be performed using optimised 
tract-based spatial statistics (37). Deterministic tractography 
will be performed using automated fiber quantification (38). 
The structural network of the brain will be constructed 
based on the diffusion data, including cortical parcellation, 
tractography, and generation of a connectivity matrix (39).

Harmonization
Because of multi-site neuroimaging studies, there is a 
need for handling non-biological variance introduced by 
differences in MRI scanners and acquisition protocols. 

Such unwanted sources of variation, which we refer to 
as "scanner effects", can hinder the detection of imaging 
features associated with clinical covariates of interest and 
cause spurious findings. In this study, we will use ComBat 
(40,41), a technique adopted from the genomics literature 
and recently applied to diffusion tensor imaging data, to 
combine and harmonize CT values across scanners and the 
unwanted inter-site variability in FA and MD maps.

Sample size

The statistical power measures are calculated using 
the G*Power 3.1.9.2 Version (Christian-Albrechts-
University, Kiel, Germany) (42,43). Power calculations 
has been performed using the observed mean (0.592, 
0.584) and standard deviation of FA (0.02, 0.01) of affected 
corticospinal tract between patients who respond vs. don't 
respond to intervention (44). Significant improvement 
(responders) on FA is defined as greater than 5% as 
described pre-intervention. Based on these data, sample 
sizes of 104 are required to obtain a statistical power of 95% 
with a significance level of 5% and a maximum dropout rate 
of 20%. A total of 130 children will be enrolled.

Statistical analysis

Statistical analysis will be conducted using SPSS 20.0 
(IBM, Armonk, NY, USA). Continuous variables will 
be expressed as the mean ± SD if normally distributed 
and median (range) if not. Categorical variables will be 
presented as number and percentage. Mann-Whitney U 
test with the Bonferroni correction will be used to assess 
the structural and diffused imaging differences between 
treatment responders and non-responders. The spearman 
correlation coefficient will be used to associate the selected 
features and clinical indices (e.g., perinatal history, clinical 
information, and socioeconomic status) with the response/
nonresponse outcome. Missing data will be handled using 
the full information maximum likelihood in the estimation 
of path models, which is robust against biases introduced 
by data missing at random. Models will be constructed to 
identify predictors of the treatment response. Variables 
that are statistically significant (P<0.05) in univariable 
analyses will be entered in multivariable models. To control 
scanner effects, which is a potential source of variation, 
our multivariable models will contain confounder variable 
represents different scanners along with patient’s age 
and gender. The results will be corrected for multiple 
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comparisons using a Monte Carlo simulation, with 10,000 
iterations (family-wise error).

Radiomics pipeline (Figure 2), (II) first, the regions of 
interest (ROIs) will be drawn to segment periventricular 
white matter lesions, which is defined as T2 hyperintense 
areas on T2-FLAIR images, using ITK-SNAP Version 
3.6.0 (45). The ROIs will be drawn by a neuroradiologist  
(5 years’ experience in radiology), and confirmed by another 
neuroradiologist (10 years’ experience in radiology). (II) 
Second, radiomics features of ROIs will be extracted using 
the Artificial Intelligence Kit Version 3.0.1A (Life sciences), 
which is a software of GE Healthcare (46). Radiomics 
features will include histograms, form factor parameters, 
grey-level co-occurrence matrix (GLCM), and grey-level 
run-length matrix (GLRLM). The extracted features will 
be selected by the analysis of variance and Mann–Whitney 
U-test, correlation analysis, Spearman’s correlation, and the 
LASSO in sequence. (III) Third, the whole dataset will be 
divided into a “Training Cohort” and a “Test Cohort” with 
a proportion of 7:3. A model will be built by a multivariable 
logistic regression analysis, using the optimal characteristic 
parameters of dimension reduction by LASSO. (IV) 
Fourth, the selected combination of features will be used 
to define models with 10-fold stratified cross-validation on 
the training cohort. Several classification algorithms will 
be evaluated using: random forests (RF), support vector 
machine (SVM), K-nearest neighbors (KNN), and logistic 

regression (LR). The parameters of those estimators will 
be optimized by cross-validated grid-search. The selected 
classifiers will be trained with the whole dataset and applied 
on the test set using the same preprocessing method. 
The cross-validation step will be repeated 100 times with 
shuffled folds composition. Receiver operating characteristic 
(ROC) curves will be used to assess the classification validity 
of the models for differentiation responders from non-
responders. The significance levels of all ROC analyses will 
be tested (47). The thresholds for sensitivity, specificity, 
positive and negative predictive values will be determined 
by Youden J statistics.

Inter and intra-observer ICC of the two neuroradiologists 
will be assessed. Finally, we will increase the number of 
features that are included in the model in a forward stepwise 
fashion according to their P-value at univariate analysis and 
we will calculate the corresponding classifiers test metrics. 
A nomogram will be developed for visualisation of an 
individual-level prediction model. Significance levels will be 
set to 0.05.

Confidentiality

The original data will be preserved by The First Affiliated 
Hospital of Xi’an Jiaotong University, China. Unless 
required by law, patient information will not be publicly 
disclosed divulged. Anonymized study data will be published 

Figure 2 Radiomics pipeline. (A) First step is consisted of ROI segmentation; (B) radiomics features (histograms, form factor parameters, 
GLCM, and GLRLM) are extracted using the Artificial Intelligence Kit Version 3.0.1A; (C) the whole dataset is divided into a “Training 
Cohort” and a “Test Cohort”. The “Training Cohort” will be used to build a model with the optimal combination of parameters. The model 
will be based on a 10-fold cross-validation. The diagnostic performance of the final model will be calculated based on the “Test Cohort”. 
ROI, region of interest; GLCM, grey-level co-occurrence matrix; GLRLM, grey -level run-length matrix.

a) ROI segmentation

b) Feature extraction

C) Model

Training cohort

Final model

ROC analysis

Model training
10-fold cross validation

(Selection of optimal 
hyperparameters)

Test cohortHistograms

Form factor parameters 

GLCM 

GLRLM 
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for scientific purpose.

Trial status

This trial is currently recruiting participants.

Discussion

This protocol will combine brain MRI and clinical 
information to establish an individual-based model for 
prediction of treatment response in children with CP.

This study will have some important strengths. It will 
use an advanced radiomics method to extract significant 
imaging and clinical features for development of a model 
that can predict the treatment response in CP children at 
an individual level. Most of the previous studies of CP have 
been retrospective and included relatively small sample 
sizes. Furthermore, researchers have focused mainly on 
MRI changes in microstructure caused by the treatment. 
Previous studies have suggested that the location and 
volume of lesions and certain structural parameters can 
predict adverse motor or cognitive outcomes in these 
children (48-50). However, all those studies compared 
group-level data, and the predictive values reported need 
further validation. This study will provide an individual-
based model for prediction of treatment response via 
a prospective cohort design, which can be expected to 
contribute to decision-making for intervention. Moreover, 
the combination of multiple modalities in our study, rather 
than relying on a single modality, will improve our ability to 
predict treatment response in children with CP.

An individualized MRI examination procedure for CP 
children has been developed and implemented in the four 
hospitals to ensure safety and feasibility. In addition, the 
neurological assessments are widely used in routine clinical 
practice. With the multi-site neuroimaging studies, there is 
a need for methods that can overcome the non-biological 
variance introduced by differences in MRI scanners and 
acquisition protocols between centers. These sources of 
bias can hinder the detection of features associated with 
the clinical covariates of interest and lead to spurious 
findings (51-54). The ComBat method has been found to 
be an effective harmonization technique that both removes 
unwanted variation introduced by different sites in multi-
center studies and preserves biological variation in the data 
(51,52). In addition, the brain pathogenic patterns of CP 
differs significantly (55), which makes lesion segmentation 

more challenging. Furthermore, post-processing of MRI 
images of CP brain is difficult (56). Thus we will attempt 
to apply a deep learning algorithm to deal better with this 
critical issue. Finally, this study is expected to develop 
an automatic detection and segmentation pipeline for 
CP by multiple training and testing of manually applied 
labels on FLAIR. This method will not only help in rapid 
identification of the responsible lesions, but also provide 
a new reference to post-processing of images for other 
pediatric brain diseases.

The study has several limitations. Although CP can be 
associated with motor, cognitive, and visual impairments, 
in this study we mainly focus on upper limb function for 
improving the sensitivity, specificity, and accuracy of our 
prediction model. We plan to investigate other deficits in 
the future based on the readouts developed in this protocol. 
Functional MRI has great potential for characterizing 
typical development and abnormality (57). However, given 
the poor ability of children to tolerate MRI scanning, 
functional MRI is not included in our present study.
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