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Introduction

The wrist is one of the most commonly affected joints 
in rheumatoid arthritis (RA) and is usually involved at 
an early stage of the disease. Early rheumatoid arthritis 
(ERA) is defined as RA with symptom duration of less than  
24 months. MRI of the wrist is now commonly used to 
evaluate the degree of inflammation in patients with ERA 

(1-3). Determining the level of inflammatory change 
present has implications for (I) determining treatment need, 
(II) monitoring treatment response, and (III) predicting 
disease outcome.

There are two components to wrist inflammation 
in RA patients. The first is soft tissue inflammation, 
namely synovitis (inflammation of the joint synovium), 
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and tenosynovitis (inflammation of the tendon sheath  
synovium) (2). The second is bony inflammation with 
osteitis, manifest on MR imaging as bone marrow oedema 
(BME) (2). Osteitis is a precursor of bone erosion (4).

Currently, the Rheumatoid Arthritis MRI score 
(RAMRIS) (5,6) system is routinely used to semi-
quantitatively quantify inflammation on MRI in RA 
patients, with the severity of synovitis/tenosynovitis and 
osteitis being graded visually (7-9). RAMRIS can be 
applied to both the wrist and metacarpophalangeal joints 
though incorporating the metacarpophalangeal joints does 
not strengthen association with patient-related outcomes 
compared with studying the wrist alone (10). The time 
taken to perform RAMRIS and its semi-quantitative 
nature limits uptake into routine clinical practice (10). A 
fully automated quantitative system would be preferable. 
One important step in an automated process is accurate 
segmentation of the wrist bones. 

Previous work on MRI wrist bone segmentation 
involved either (I) atlas- (7,11,12) or (II) seed-based (13-15) 
algorithms applied to T1-weighted spin echo sequences. 
Little work has been done on segmenting wrist bones 
directly from T2-weighted fat-suppressed images, which 
are the preferred images to depict BME (16). Convolution 
neural network (CNN) has been used to good effect 
for medical image segmentation and may be applicable 
to wrist bone segmentation. To test this possibility, a 
robust CNN, known as the U-net, designed for medical 
image segmentation (17), was implemented and tested. 
Our preliminary findings indicated that U-net yielded 
an unsatisfactory result for coronal T2W fat-suppressed 
images with the network consistently trapped in local 
minima that returned poor labels. The main factor that 
led to this unsatisfactory result was the conflict between 
unwanted tendons and wanted wrist bones, both of which 
appeared as elongated objects of low signal intensity with 
weak discriminatory contrast on coronal T2-weighted fat-
suppressed images.

Although the inability of a trained and converged CNN 
to handle specific features is usually the result of either 
inadequate network depth, biased training samples or 
undesirable initial parameters, this can be mitigated by 
state-of-the-art hardware, more data, and/or, pertinent 
strategies that exploit uncommon characteristic features. 
In this study, we classified and separated images with the 
candidate features into individual groups, which were 
trained independently with the same model to yield multiple 
model parameter sets, allowing performance comparable 

to a deeper network to be achieved without additional 
resources. To do this, we proposed a novel strategy of 
coupling the image classification network Inception V3 (18) 
and the image segmentation network U-net to, first, classify 
the wrist region into groups of contiguous 2D images 
possessing different features and, second, to segment these 
images into different groups using multiple independently 
trained U-nets for wrist bone segmentation. 

Methods

Data acquisition

MRI data from a cross-sectional prospective study of 
treatment naïve ERA patients recruited between October 
2012 to January 2016 was utilized. The study protocol 
was approved by the local Ethics Committee with signed 
informed consent being obtained from each patient. All 
51 patients (mean age: 53±12 years) fulfilled the 2010 
American College of Rheumatology (ACR)/European 
League Against Rheumatism classification (EULAR) 
criteria for RA (19) with symptom-duration of less than  
24 months at the time of recruitment. 

MRI of the most symptomatic wrist was performed in 
all patients. Wrists were scanned in the prone position 
on a 3.0T system (Achieva TX, Philips Healthcare, Best) 
with a dedicated wrist coil to optimize signal reception.  
T2-weighted fat-suppressed coronal images were chosen 
for segmentation as each bone margin is clearly seen 
on coronal images and BME is only clearly seen on this 
sequence (6). The sequence used has a TE, TR, flip angle 
and field-of-view (FOV) of 70 ms, 3,121 ms, 90° and  
80 mm × 80 mm respectively. Each coronal image had a 
448×448 reconstruction matrix yielding a uniform pixel size 
of 0.178 mm × 0.178 mm with 1.65 mm inter-slice spacing.

Manual segmentation was undertaken by tracing the 
margin of each carpal bone on continuous images using 
the software ITK-SNAP, an open source medical image 
segmentation tool (20). The distal portion of the radius and 
ulna, as well as the proximal portions of the five metacarpal 
bones were also segmented.

Image classification

In early testing, we found U-net unhelpful for bone 
segmentation on coronal T2-weighted fat-suppressed 
images due to a conflict between unwanted hypointense 
tendons and wanted wrist bones, which are anatomically 
quite closely apposed. To overcome this issue, we first 
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systematically classified MR images and trained multiple 
U-nets for wrist bone segmentation. The T2-weighted fat-
suppressed coronal images in the training dataset were first 
classified into three groups as follows: 

(I) Type A: superficial images; 
(II) Type B: images with tendons;
(III) Type C: other images. 
Type A is defined as images reconstructed at superficial 

locations that do not include any bony structures. Type 
B refers to images that include both tendons and bone 
areas, both of which are represented as hypointense objects 
on T2W fat-suppressed images. Any other images were 
classified as type C, which contained mainly bone areas and 
no tendons. The rationale behind this classification was to 
separate the source of conflicting features, which originates 
from the co-existence of elongated soft tissue and bony 
structures. A typical example of the classification is shown 
in Figure 1.

To illustrate this, DICE evolution during training of 
networks under identical conditions for 50 epochs with and 
without classification is shown (Figure 2). An epoch refers to 
a single training cycle in which the complete training dataset 
is passed once through the neural network. DICE provides 
an objective reference to the networks’ performance. 
Training with classification achieved overall better results 
than training without classification. The curves also support 
our impression that the major factor limiting in U-net’s 
performance was the coexistence of tendons and elongated 
bony structures, present in type B images. 

Classification was done automatically by training and 
utilizing the Inception V3 network (18). The Inception 
network is a well-established image classification network 
that was originally adopted for classifying images of nature, 
but soon became used to classify medical images for detection 
and diagnosis (21-23). The high-level feature classification 
capability of the trained network is comparable to human 
classification under controlled conditions (24). In our case, 
we utilized the network to classify images into types A–C. 
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Figure 2 Dice similarity coefficient (DICE) evolution relative to 
number of training epochs. Three U-nets are trained against non-
classified, type B and type C images respectively under identical 
conditions for a total of 40 epochs. DICE converge was quickest 
for type C images, and slightly slower for type B and non-classified 
images. Non-classified groups had an unstable progression. The 
final convergences of the curves suggest the combined performance 
for type B and type C segmentation is better than that of non-
classified segmentation. 

Figure 1 Classified coronal images. Typical examples of coronal T2W fat-suppressed MR images classified into (A) type A, (B) type B and 
(C) type C images. The red circle highlights cluster of pixels representing tendons, which are similar in computational features to the wrist 
bones. This hinders performance and increases training difficulty for single U-net architecture. 

A B C
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Segmentation

U-net was employed for segmentation with a minor 
modification to the original U-net design being made to 
best suit this particular application. Batch norm kernels 
were added as the first layer and at the beginning of each 
downward transition convolutional layer of U-net. The 
extra batch norm layers helped avoid vanishing or exploding 
gradients in the training process (25). Upwards transition 
merging was replaced by a plain bilinear interpolation 
instead of a concatenation. 

Type B and type C classified images were fed separately 
into two individually trained U-nets and the results 
reconstructed to give pixel-wise structural-likelihood which 
was used for bone segmentation.

Bone segmentation results from network output then 
underwent post-processing: two binary image filters, 

namely a hole-filling filter and a median-edge-smoothing 
filter, were applied sequentially to each of the slices in the 
network output. We used a constant radius of 3×3×1 px3 for 
the median-edge-smoothing filter. Connected components 
with a volume <15 mm3 were considered as noise and 
removed (Figure 3).

Testing and training

The image dataset from 51 patients was randomly divided 
into testing and training subgroups comprising 11 and 40 
patients respectively, yielding a total of 222 and 818 coronal 
slices respectively. Each wrist MR examination was graded 
by RAMRIS based on the degree of synovitis/tenosynovitis, 
bone erosion and BME. The mean RAMRIS scores of 
the two groups were similar at 14.3±15.3 and 16.2±13.2 
(P=0.677). Each coronal image was first assigned with a 
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Figure 3 Segmentation process flow chart. The input volumes were first decomposed into stacks of 2D images. These images were classified 
automatically into three types through the trained Inception V3 network. By definition, type A images do not contain any useful labels and were 
not further processed. The remaining type B and type C images were fed into two individually trained U-nets. The labels resulted from the 
network calculations were then reconstructed into label volumes. Finally, the label volumes underwent post-processing to refine the results.
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unique image number and then manually classified into type 
A, B or C to serve as the classification ground-truth. Image 
type data was provided with a unique image ID that was 
referenced to reconstruct the segmented images back into a 
volume.

Training

The networks were implemented and trained with the 
PyTorch API (26) on a machine with an NVIDIA TITAN 
Xp graphic processing unit (GPU). For both networks, 
we optimized the parameters by using stochastic gradient 
descent (SGD) to minimize the negative-log-likelihood loss 
L which was defined as:

1 1
[ ( ), ; ] 1n[ ( )]

N c

i i
i c

L P X Y P x c y cθ
= =

= − = =∑∑  [1]

where P(X) is the network output, xi, yi are the i-th 
component of predicted label X and ground-truth Y, C is 
the number of classes, N is the total number of components 
in X or Y, each element of P(X) is a length C vector 
{ ( ); [1, ]}C iP x c c C= ∈  which stored the probabilities predicted 
by the model with parameters while each component of Y 
should only contain one truth value. The networks were 
iterated until convergences were observed. The learning 
rates rk and momentum mk were decayed before the (k+1)-th 
epoch by following the equation:

1
k

k kr r e τ−
+ =  [2]

1 max{0.1, }k
k km m e β−
+ =  [3]

We ran the network for a large number of epochs to 
ensure convergence. Some key training parameters were 
tabulated in Table 1.

Performance evaluation

The classification accuracies were evaluated by simple 
accuracy. A confusion matrix was plotted from the test 
result. Columns represent the predicted values by the 
network and rows the truth values. 

For the segmentation, fitness was evaluated by DICE (27)  
and Jaccard similarity coefficient (JAC) (9), which are 
defined as follows for binary labels:

2DICE=
2

TP
TP FP FN+ +

 [4]

DICEJAC=
2 DICE−

 [5]

The error was evaluated with global consistency error 
(GCE) (28) and the distance of volume between output 
and ground-truth evaluated by volumetric distance  
(VD) (29) normalized to the range 0–1. Definitions are 
listed as follow: 

VD=
2

FN FP
TP FP FN

−
+ +

 [6]

( 2 )( 2 )
1GCE= min

( 2 )( 2 )

FN FN TPFP FP TN
TP FNTN FP

FN FN TNFP FP TPn
TN FNTP FP

++ + ++ 
++ + ++ 

 [7]

for the upper equations, TP, FP, TN and FN represent true-
positive, false-positive, true-negative and false-negative 
statistics respectively, and n is the number of voxels.

We also compared our results with recent work that 
involves atlas-based segmentation against coronal T1-weight 
fat-saturated images (11). The recall rate (RR), also known 
as the percentage match or positive predictive value, was 
defined according to (11):

Table 1 Training key parameters

Training parameters
Network

Inception V3 Modified U-Net

Initial learning rate 1×10−5 1×10−4

Initial momentum 0.9 0.2

Training batch size 80 6

Learning rate decay τ 0.005 0.1

Momentum decay ꞵ 6.67×10−4 0.02

Total epoch ran 1,000 300

The parameters used during training of the Inception V3 and UNETs are listed. The networks were trained for a large number of epochs to 
ensure convergence. The decay constants τ and β adjusted the learning rate and momentum according to equation 2 and 3 respectively.
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RR= TP
TP FN+

 [8]

To provide quantitative references for segmentation 
performance from both technical and clinical perspectives, 
the results are evaluated by-image and by-case respectively. 
This is because our technique processes data image-by-
image independent of inter-image information while clinical 
relevance relates to the complete wrist volume. 

Results

A total of 222 test images were classified. Accuracy was 
82.0%, with 6 (2.7%) of the 222 images misclassified as type 
A. The confusion matrix listing the hit/miss frequency is 
shown in Table 2. 

Trained models were used to process the testing data. 
Similarity and distance metrics were evaluated image by 
image for different severity of BME and RAMRIS. A 
single U-net was also trained with identical parameters 
and tested on non-classified data to show improvements 
after employing the classification. In the image by image 
comparison, images with either empty predicted label or 
empty ground truth were excluded as comparison metrics 
are not well defined in these cases (Table 2). Exclusion was 
not necessary for case-by case comparison as none of the 
involved label images were empty. Results are shown in 
Tables 3-5. 

All statistical analyses were performed using SPSS (30). 
ANOVA and least significant distance were used to evaluate 
the mean difference and performance comparisons by-image 
while Mann-Whitney test was used for comparisons by-case.

Table 2 Confusion matrix of classification results

Guess/truth A B C Total

A 24 9 0 33

B 6 100 15 121

C 0 10 58 68

Total 30 119 73 222

Columns represent the predicted values by the network and 
rows the truth values. The trained Inception V3 network attained 
an 82% accuracy with a 2.7% rate of mis-classifying type B or 
type C images to type A.

Table 3 Quantitative analysis of segmentation performance 

Tested group N 
Similarity Distance

DICE JAC VD GCE

By image

Non-classified 188 0.81±0.15 0.70±0.17 0.08±0.12 0.06±0.03

Type B 109 0.83±0.10 0.72±0.12 0.07±0.08 0.04±0.03*

Type C 73 0.90±0.04* 0.83±0.06* 0.02±0.03* 0.07±0.02*

Type B + type C 182 0.86±0.09* 0.76±0.12* 0.05±0.07* 0.05±0.03

Type B (manual) 120 0.83±0.10 0.72±0.12 0.07±0.08 0.04±0.03*

Type C (manual) 68 0.91±0.03* 0.84±0.05* 0.02±0.02* 0.07±0.02*

Type B + type C (manual) 188 0.86±0.09* 0.76±0.12* 0.05±0.07* 0.05±0.03

By case

Non-classified 11 0.87±0.01 0.78±0.02 0.02±0.02 0.05±0.01

With classification 11 0.89±0.01* 0.80±0.02* 0.02±0.01 0.04±0.01

Manual classification 11 0.89±0.01* 0.80±0.02* 0.02±0.01 0.04±0.01

The experiment was repeated for automatic and manual image classification, using the non-classified group as a control. The evaluation 
was done image-by-image and case-by-case to provide insight into both technical and clinical perspectives. The overall performance of 
the segmentation attained DICE 0.86 when compared by image and 0.89 when compared by case. Statistically significant improvement 
(P<0.05) to mean DICE and JAC (P<0.05) were observed by introducing the classification step. There are no significant differences between 
the manual and automatic classification groups. *, a significant mean difference (P<0.05) between “Tested” group and “Not-classified” group. 
DICE, dice similarity coefficient; JAC, Jaccard similarity coefficient; VD, volumetric distance; GCE, global consistency error.
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Coupling U-net with classification achieved 0.86 DICE 
coefficient compared with 0.81 DICE without classification 
for by-image comparison and 0.89 DICE coefficient 
compared with 0.87 DICE without classification for by-
case comparison (Table 3). The smaller difference in the by-

case comparisons was mainly due to the inclusion of empty 
images. Type B images of patients with severe ERA (RAMRIS 
score ≥30, or BME score ≥15) most strongly influenced 
segmentation accuracy (Tables 4,5). 

Graphical results showed that the algorithm delivered 

Table 4 Quantitative analysis of segmentation performance by images grouped by RAMRIS 

Tested group RAMRIS N 
Similarity Distance

DICE JAC VD GCE

Non-classified 0–14 114 0.83±0.11 0.72±0.14 0.07±0.09 0.05±0.03

15–30 35 0.81±0.22 0.71±0.21 0.08±0.15 0.05±0.04

≥31 39 0.78±0.16 0.66±0.19 0.11±0.17 0.07±0.04

Type B 0–14 65 0.85±0.07 0.74±0.10 0.05±0.05 0.04±0.03

15–30 21 0.85±0.07 0.74±0.10 0.05±0.05 0.05±0.03

≥31 23 0.76±0.15 0.63±0.17 0.13±0.13 0.05±0.03

Type C 0–14 46 0.90±0.04 0.82±0.06 0.03±0.03 0.07±0.02

15–30 12 0.92±0.02 0.85±0.04 0.01±0.01 0.06±0.02

≥31 15 0.90±0.04 0.82±0.06 0.02±0.01 0.09±0.03

Type B + type C 0–14 111 0.87±0.06 0.77±0.10 0.04±0.04 0.05±0.03

15–30 33 0.88±0.07 0.78±0.10 0.04±0.05 0.05±0.03

≥31 38 0.82±0.13 0.71±0.17 0.09±0.11 0.06±0.04

The table shows how various degrees of ERA progression, reflected by RAMRIS score, can affect the segmentation algorithm. It is 
performance is slightly compromised for high RAMRIS cases (i.e., ≥31), influencing segmentation of type B images most severely. 
RAMRIS, RA-MRI scoring system; DICE, dice similarity coefficient; JAC, Jaccard similarity coefficient; VD, volumetric distance; GCE, 
global consistency error. 

Table 5 Quantitative analysis of segmentation performance by images grouped by BME

Tested group BME N 
Similarity Distance

DICE JAC VD GCE

Non-classified 0–14 149 0.82±0.14 0.72±0.16 0.07±0.11 0.05±0.03

≥15 39 0.78±0.16 0.66±0.19 0.11±0.17 0.07±0.04

Type B 0–14 86 0.85±0.07 0.74±0.10 0.05±0.05 0.04±0.03

≥15 23 0.76±0.15 0.63±0.17 0.13±0.13 0.05±0.03

Type C 0–14 58 0.90±0.04 0.83±0.06 0.02±0.03 0.07±0.02

≥15 15 0.90±0.04 0.82±0.06 0.02±0.02 0.09±0.03

Type B + type C 0–14 144 0.87±0.06 0.77±0.09 0.04±0.04 0.05±0.03

≥15 38 0.82±0.13 0.71±0.17 0.09±0.11 0.06±0.04

This table shows how various degrees of BME, manifest as high intensity voxels within low intensity bony structures, can affect the 
segmentation algorithm. Performance was compromised at high BME, mostly affecting segmentation of type B images. BME, bone marrow 
oedema; DICE, dice similarity coefficient; JAC, Jaccard similarity coefficient; VD, volumetric distance; GCE, global consistency error.
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Figure 4 Automated bone segmentation versus manual segmentation. The three images on the upper row are manually segmented T2W 
fat-suppressed MR images with the ground-truth displayed as opaque white labels and model predicted label as transparent red labels. The 
three images on the bottom row show selected slices with different degrees of bone marrow oedema and model predicted label with the 
yellow arrow pointing to oedematous regions. Images in the right-most column were captured at an identical location in the patient with the 
most severe RA-MRI scoring system (RAMRIS) score (=40) in the testing set. The algorithm delivers satisfactory accuracy even with quite 
severe oedema being present.  

good accuracy for T2-fat-suppressed segmentation with 
oedematous tissues (Figure 4). This can be seen visually in 
Figure 5, where meshes were rendered on a single testing 
case. The calculated Hausdorff distance, which provides a 
measure of mesh differences (31) between the predicted and 
manually drawn label, was small (Figure 5). 

Recently, a feasibility study addressing fully automated 
evaluation of BME was conducted, using an atlas-based 
method to segment carpals from T1-weighted fat-saturated 
images (11). The reported RR was 0.58–0.82 for different 
carpal bones. In that study, although the predicted label 
mostly lies within the manually labelled region, it tends to 
miss out a relatively high portion of the carpal volume. In 
comparison, our method achieved a mean RR of 0.88±0.02 

based on segmentation direct from T2W fat-saturated 
images.

Discussion

We have proposed a multi-step and automated CNN-based 
process to segment wrist bones from T2W fat-saturated 
images of ERA patients. Regarding the classification step, 
although the accuracy of Inception V3 was good, the overall 
accuracy of classification was not as high as expected. 
Misclassification into type A occurred at a rate of 2.7%, 
strongly affecting segmentation accuracy as these type A 
slices were not processed for segmentation. This inaccuracy 
is also likely resulted from network overfitting as the 
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Figure 5 Surface rendering of segmented wrist bones showing (A) the manually draw ground truth (left), (B) the model output label and (C) 
the Hausdorff distance sampled on ground truth mesh for a single case in the study. The Hausdorff distance calculates the distance between 
the sampled point and its closest counter-part in the target mesh. Most margins has an error <1 mm. 

Inception network demonstrated a 99.9% accuracy during 
training. An increased in sample size will help to reduce this 
inaccuracy.

The algorithm was made more robust by verifying if type 
A image positions were within type B and C images. Falsely 
classifying type A images into type B and C images only 
occurs in about 4% cases. 

For segmentation, there was a consistent underestimation 
of wrist bone volume by U-net (Figure 4). The wrist 
bone labels are slightly smaller than the ground truth 
in most cases. This is not a significant limiting factor as 
underestimation of the wrist bone margin is preferred over 
overestimation since the latter will lead to the inclusion 
of inflammatory soft tissue surrounding the bone which 
will affect BME quantification. The average volumetric 
distance is small at only 2% when compared by-case. 
Global consistency error values also indicate the algorithm 
is reasonably consistent with margins drawn manually by a 
trained expert.

This study has some limitations. First, the segmentation  
labels do not differentiate between carpal bones. Quantification 
of BME considers the volume of oedematous tissue relative 
to the whole label rather than on a bone-by-bone basis. 
Multi-label segmentation by out-of-the-box U-net was 
tested without success. This limitation is to be anticipated 

because 2D features between different carpals are similar, 
and U-net is weak in defining positional information. We 
have not tested our data on 3D segmentation networks 
and thus, cannot make any inferences as to whether 3D 
segmentation is superior to 2D segmentation by U-net. 
Nevertheless, we do expect that additional post-processing, 
such as connected component analysis or surface point 
cloud k-mean clustering, may be helpful in further refining 
the U-net segmented binary label into different wrist bones. 

Second, the study focused on the wrist bones rather 
than the metacarpal joints. Focusing on the wrist allows 
higher resolution data acquisition. Also incorporating the 
metacarpophalangeal joints does not seem to strengthen 
association with patient-related outcomes compared 
with studying the wrist alone (10). We anticipate that the 
technique could be easily extended to larger field-of view 
images as the anatomy of the metacarpals and phalanges is 
not as complex as the carpus. 

In conclusion, a novel strategy of coupling Inception V3 
image classification network with segmentation network 
U-net to achieve segmentation of the wrist bones in ERA 
patients from T2W fat-saturated images was presented. 
The proposed method is comparable to existing atlas-based 
methods that utilize T1W sequences. We also showed that 
adding a classification step can improve training stability, 
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lessen difficulty and improve the performance of wrist bone 
segmentation by CNN.

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest 
to declare.

Ethical Statement: The study protocol was approved by the 
local Ethics Committee with signed informed consent being 
obtained from each patient.

References

1. Haavardsholm EA, Bøyesen P, Østergaard M, Schildvold 
A, Kvien TK. Magnetic resonance imaging findings in 
84 patients with early rheumatoid arthritis: Bone marrow 
oedema predicts erosive progression. Ann Rheum Dis 
2008;67:794-800.

2. Østergaard M, McQueen F, Wiell C, Bird P, Bøyesen 
P, Ejbjerg B, Peterfy C, Gandjbakhch F, Duer-Jensen 
A, Coates L, Haavardsholm EA, Hermann KGA, 
Lassere M, O’Connor P, Emery P, Genant H, Conaghan 
PG. The OMERACT Psoriatic Arthritis Magnetic 
Resonance Imaging Scoring System (PsAMRIS): 
Definitions of key pathologies, suggested MRI 
sequences, and preliminary scoring system for PsA 
hands. J Rheumatol 2009;36:1816-24.

3. Tam LS, Griffith JF, Yu AB, Li TK, Li EK. Rapid 
improvement in rheumatoid arthritis patients on 
combination of methotrexate and infliximab: Clinical and 
magnetic resonance imaging evaluation. Clin Rheumatol 
2007;26:941-6.

4. McQueen FM, Stewart N, Crabbe J, Robinson E, Yeoman 
S, Tan PL, McLean L. Magnetic resonance imaging of the 
wrist in early rheumatoid arthritis reveals a high prevalence 
of erosions at four months after symptom onset. Ann 
Rheum Dis 1998;57:350-6.

5. Østergaard M, Peterfy C, Conaghan P, McQueen F, 
Bird P, Ejbjerg B, Shnier R, O’Connor P, Klarlund M, 
Emery P, Genant H, Lassere M, Edmonds J. OMERACT 
rheumatoid arthritis magnetic resonance imaging 
studies. Core set of MRI acquisitions, joint pathology 
definitions, and the OMERACT RA-MRI scoring system. 

J Rheumatol 2003;30:1385-6.
6. Østergaard M, Peterfy CG, Bird P, Gandjbakhch F, 

Glinatsi D, Eshed I, Haavardsholm EA, Lillegraven S, 
Bøyesen P, Ejbjerg B, Foltz V, Emery P, Genant HK, 
Conaghan PG. The OMERACT rheumatoid arthritis 
magnetic resonance imaging (MRI) scoring system: 
Updated recommendations by the OMERACT MRI in 
arthritis working group. J Rheumatol 2017;44:1706-12.

7. Alphonse E, Roex H. Early Detection of Rheumatoid 
Arthritis using extremity MRI: Quantification of Bone 
Marrow Edema in the Carpal bones. Available online: 
http://resolver.tudelft.nl/uuid:7145d7a6-25bb-42a4-ba48-
240d70a68792

8. Chand AS, McHaffie A, Clarke AW, Reeves Q, Tan 
YM, Dalbeth N, Williams M, McQueen F. Quantifying 
synovitis in rheumatoid arthritis using computer-assisted 
manual segmentation with 3 tesla MRI scanning. J Magn 
Reson Imaging 2011;33:1106-13.

9. Crum WR, Camara O, Hill DLG. Generalized overlap 
measures for evaluation and validation in medical image 
analysis. IEEE Trans Med Imaging 2006;25:1451-61.

10. Glinatsi D, Baker JF, Hetland ML, Hørslev-Petersen K, 
Ejbjerg BJ, Stengaard-Pedersen K, Junker P, Ellingsen 
T, Lindegaard HM, Hansen I, Lottenburger T, Møller 
JM, Ørnbjerg L, Vestergaard A, Jurik AG, Thomsen HS, 
Torfing T, Møller-Bisgaard S, Axelsen MB, Østergaard 
M. Magnetic resonance imaging assessed inflammation 
in the wrist is associated with patient-reported physical 
impairment, global assessment of disease activity and 
pain in early rheumatoid arthritis: longitudinal results 
from two randomised controlled trials. Ann Rheum Dis 
2017;76:1707-15.

11. Aizenberg E, Roex EAH, Nieuwenhuis WP, Mangnus 
L, van der Helm-van Mil AHM, Reijnierse M, Bloem 
JL, Lelieveldt BPF, Stoel BC. Automatic quantification 
of bone marrow edema on MRI of the wrist in patients 
with early arthritis: A feasibility study. Magn Reson Med 
2018;79:1127-34.

12. Gemme L, Nardotto S, Dellepiane SG. Automatic MPST-
cut for segmentation of carpal bones from MR volumes. 
Comput Biol Med 2017;87:335-46.

13. Conte D, Foggia P, Tufano F, Vento M. An Enhanced 
Level Set Algorithm for Wrist Bone Segmentation. 
Image Segmentation, Image Segmentation, Pei-Gee Ho, 
IntechOpen. (April 19th 2011). Available online: https://
www.intechopen.com/books/image-segmentation/an-
enhanced-level-set-algorithm-for-wrist-bone-segmentation

14. Włodarczyk J, Czaplicka K, Tabor Z, Wojciechowski W, 



589Quantitative Imaging in Medicine and Surgery, Vol 9, No 4 April 2019

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2019;9(4):579-589qims.amegroups.com

Urbanik A. Segmentation of bones in magnetic resonance 
images of the wrist. Int J Comput Assist Radiol Surg 
2015;10:419-31.

15. Włodarczyk J, Wojciechowski W, Czaplicka K, Urbanik 
A, Tabor Z. Fast automated segmentation of wrist 
bones in magnetic resonance images. Comput Biol Med 
2015;65:44-53.

16. Manara M, Varenna M. A clinical overview of bone 
marrow edema. Reumatismo 2014;66:184.

17. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional 
networks for biomedical image segmentation. In: Navab 
N, Hornegger J, Wells W, Frangi A. editors. Medical 
Image Computing and Computer-Assisted Intervention – 
MICCAI 2015. Cham: Springer, 2015.

18. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. 
Rethinking the Inception Architecture for Computer 
Vision. In: The IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), 2016:2818-26.

19. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, 
Bingham CO, Birnbaum NS, Burmester GR, Bykerk VP, 
Cohen MD, Combe B, Costenbader KH, Dougados M, 
Emery P, Ferraccioli G, Hazes JMW, Hobbs K, Huizinga 
TWJ, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease 
P, Ménard HA, Moreland LW, Naden RL, Pincus T, 
Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, 
Upchurch KS, Vencovský J, Wolfe F, Hawker G. 2010 
Rheumatoid arthritis classification criteria: An American 
College of Rheumatology/European League Against 
Rheumatism collaborative initiative. Arthritis Rheum 
2010;62:2569-81.

20. Yushkevich PA, Piven J, Hazlett C, Smith G, Ho S, Gee 
JC, Gerig G. User-guided 3D active contour segmentation 
of anatomical structures: Significantly improved efficiency 
and reliability. Neuroimage 2006;31:1116-28.

21. Chang J, Yu J, Han T, Chang HJ, Park E. A method for 
classifying medical images using transfer learning: a pilot 
study on histopathology of breast cancer. In: 2017 IEEE 
19th International Conference on e-Health Networking, 
Applications and Services (Healthcom). Piscataway, NJ: 
IEEE; 2017:1-4.

22. Midya A, Chakraborty J, Pak LM, Zheng J, Jarnagin 
WR, Do RKG, Simpson AL. Deep convolutional neural 
network for the classification of hepatocellular carcinoma 
and intrahepatic cholangiocarcinoma. Proc. SPIE 10575, 
Medical Imaging 2018: Computer-Aided Diagnosis, 
1057528 (27 February 2018). Available online: https://doi.
org/10.1117/12.2293683

23. Torres Figueroa F, Salinas Miranda E, Bravo Sarmiento 
MA, Triana G, Arbeláez Escalante PA. Bone age 
detection via carpogram analysis using convolutional 
neural networks. 13th Int Conf Med Inf Process Anal 
2017;1057217:45.

24. Tschandl P, Kittler H, Argenziano G. A pretrained 
neural network shows similar diagnostic accuracy to 
medical students in categorizing dermatoscopic images 
after comparable training conditions. Br J Dermatol 
2017;177:867-9.

25. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep 
Network Training by Reducing Internal Covariate Shift. 
Available online: http://proceedings.mlr.press/v37/ioffe15.pdf

26. Paszke A, Chanan G, Lin Z, Gross S, Yang E, Antiga L, 
Devito Z. Automatic differentiation in PyTorch. In: The 
NIPS workshop on the future of gradient-based machine 
learning software & techniques, 2017.

27. Dice LR. Measures of the Amount of Ecologic Association 
Between Species. Ecology 1945;26:297–302.

28. Martin D, Fowlkes C, Tal D, Malik J. A database of 
human segmented natural images and its application 
to\nevaluating segmentation algorithms and measuring 
ecological statistics. Proc Eighth IEEE Int Conf Comput 
Vision ICCV 2001;2:416-23.

29. Taha AA, Hanbury A. Metrics for evaluating 3D medical 
image segmentation: Analysis, selection, and tool. BMC 
Med Imaging 2015;15:29.

30. IBM SPSS Inc. SPSS Statistics for Windows. IBM Corp 
Released 2012 2012;Version 20:1-8.

31. Aspert N, Santa-cruz D, Ebrahimi T. MESH: measuring 
errors between surfaces using the Hausdorff distance. In: 
IEEE International Conference on Multimedia and Expo. 
Lausanne, Switzerland: IEEE, 2002:705-8.

Cite this article as: Wong LM, Shi L, Xiao F, Griffith JF. 
Fully automated segmentation of wrist bones on T2-weighted 
fat-suppressed MR images in early rheumatoid arthritis. 
Quant Imaging Med Surg 2019;9(4):579-589. doi: 10.21037/
qims.2019.04.03


