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Introduction

To quantitatively analyze global and regional cardiac 
function of the left ventricle (LV) from cine magnetic 
resonance (MR) images, clinical parameters such as ejection 
fraction (EF), systolic and diastolic volumes, and myocardial 
mass are required (1,2). Calculation of these parameters 
depends upon accurate delineation of endocardial, 
epicardial, papillary and trabecular muscles’ contours. 
Manual delineation is time-consuming and has high 
interobserver variability. Moreover, in clinical practice the 
manual delineation is typically limited to the end diastolic 
(ED) and end systolic (ES) phases due to time constraints, 
which is insufficient to fully analyze wall motion or compute 

the peak ejection and filling rates. As a result, an accurate, 
rapid, fully automatic LV contour detection (segmentation) 
algorithm analyzing all phases of the cardiac cycle is highly 
desirable.

A number of methods have been proposed for (semi-) 
automatic LV segmentation including: probability atlas (3), 
dynamic programming (4), fuzzy clustering (5), deformable 
model (6,7), active appearance model (8), active shape 
model (9), variational and level sets (10,11), graph cuts (12),  
and image-driven approaches (13,14). For a complete 
review of recent literatures describing cardiac segmentation 
techniques see (15). Despite recent advances, accurate LV 
segmentation is still acknowledged as a difficult problem, 
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and typically faces three main challenges: (I) the difficulty in 
localizing the LV and distinguishing it from other features 
and artifacts; (II) the lack of edge information where 
contours are required; and (III) the shape variability of the 
endocardial and epicardial contours across slices, phases, 
and subjects.

In this work, we describe our method for the fast, robust, 
and fully automatic LV segmentation from short axis 
(SAX) cine MR images. The method localizes the LV and 
segments its major features including the endocardial and 
epicardial contours, and papillary and trabecular muscles 
in all phases. The segmentation algorithm was evaluated 
with a database of clinical cardiac MR studies with diverse 
pathology.

Materials and methods

Study population and imaging

For this study, data from two scanners were analyzed: GE 
(1.5 T, CV/i Excite, GE Healthcare, Milwaukee, WI), 
Philips (1.5 T, Achieva, Philips Medical Systems, Best, 
Netherlands). Cine steady state free precession (SSFP)  
MR-SAX images were obtained with imaging during 10-15 s  
breath-holds, with coverage from the atrioventricular ring 
to the apex. Patients with motion artifact, banding artifact 
or gross abnormality (e.g., due to a tumor) were excluded 
from the study.

GE scanner
Data from 133 patients were retrospectively analyzed  
(35 female, 98 male; age: 59.4±16.1 yrs). Imaging parameters 
were as follows: repetition/echo times, 3.7/1.6 ms;  
flip angle, 45º; matrix size, 256×256; field of view, 320 mm × 
320 mm; contiguous sections, 10-14; section thickness were 
8-10 mm; slice gap, 0 mm; and number of phases, 20. The 
patient datasets were classified into four groups representing 
diverse morphologies, based on the following clinical 
criteria: (I) heart failure with infarction (HFI) group had  
EF <40% and ev idence  of  la te  gadol in ium (Gd) 
enhancement; (II) heart failure with no infarction (HFNI) 
group had EF <40% and no late Gd enhancement; (III) 
LV hypertrophy (HYP) group had normal LV EF (>55%) 
and a ratio of LV mass/body surface area >83 g/m2 (16); 
and (IV) healthy (HEA) group had EF >55% and no 
hypertrophy. Patient selection ensured the group sizes 
were approximately equal (HFI N =34, HFNI N =30, HYP  
N =32, HEA N =37).

Philips scanner
Six datasets were analyzed (6 male; age: 61.5±12.4 yrs). 
Imaging parameters were as follows: repetition/echo times, 
3.9/1.9 ms; flip angle, 60º; matrix size, 320×320; field of 
view, 330 mm × 330 mm; contiguous sections, 15-20; 
section thickness, 8 mm; slice gap, 0 mm; and number of 
phases, 25.

Manual contours
The endocardial and epicardial contours were drawn by 
three well-trained readers for all slices at the ED and ES 
phases, and confirmed by a cardiologist with 10 years of 
experience in cardiac imaging, and these manual contours 
were the evaluation reference standard. The inter- and 
intra-observer variability has been previously reported (17).  
The convention of including papillary muscles and 
trabeculations within the endocardial contour was 
followed (16). The most basal LV slice was defined as the 
one preceding the atrium having the ED blood pool ≥50% 
encircled by myocardium, and included the LV outflow 
tract (LVOT). The apical slice was defined as the ones that 
beyond the papillary muscles to the apex. The patients 
consented to research use of their imaging data, with 
approval by our institutional ethics review board.

Segmentation algorithm

The calculation starts from the middle slice, and each 
image is processed sequentially in the basal direction, 
followed by sequential processing from the middle slice 
to the apex (18). The images for each cardiac phase are 
calculated independently. First, the myocardium is located 
by calculating the centroid of the LV blood pool on the 
middle slice at the specified phase based on a roundness 
metric technique (Figure 1A-D). Second, the endocardial 
and papillary muscles’ and trabeculations’ contours are 
detected by applying the optimal threshold method of  
Otsu (19) watershed, and 1D fast Fourier transform  
(FFT) (20) method (Figure 1E-I). Finally, the epicardial 
contour is calculated by mapping the pixels from Cartesian 
to polar coordinates, and using a multiple seed, region-
growing method (Figure 2). Refer to the Supplementary 
Material for a detailed description of the image processing.

Evaluation and statistical analysis

In order to quantitatively evaluate the automatically 
detected endocardial and epicardial contours of the ED 
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Figure 1 Left ventricle (LV) localization, endocardial contour detection and outflow tract segmentation. A-D. LV localization procedure; 
E-H. LV endocardial contour detection; I-L. Identify and segment basal slice with LV outflow tract. A. Target image with rectangular 
region-of-interest (ROI) and image center, (green square and point); B. ROI image; C. Binary image; D. Surviving objects’ convex hulls 
(red), the corresponding roundness metrics (green), and the detected LV blood pool centroid (red point); E. Target image; F. Binary image 
masked by ROI. G. Located LV blood pool; H. Smoothed endocardial contour (red), and papillary muscles and trabeculations (black regions 
in the smoothed endocardial contour); I. Basal slice image with LV outflow tract (LVOT); J. Binary image masked by ROI; K. Blood pool 
including LV; L. Watershed results, Watershed results, with detected LV blood pool (red), LVOT (yellow), right ventricle outflow tract 
(orange). Other colored objects indicate regions from right ventricle and atrium

and ES phases of all slices, four quantitative measures were 
assessed (17). Average perpendicular distance (APD) is the 
distance from the automatic contour to the corresponding 
manually drawn expert contour, averaged over all contour 
points. Dice metric (DM) (21) is a measure of contour 
overlap utilizing the area of automatically (A) and manually 
segmented (M) contours, and their intersection area (I) with 
formula DM = I/[0.5× (A+M)]. In addition, the percentage 

of patients where the blood pool is correctly localized and 
distinguished from other features was calculated (LV located).

Paired sample, two-tailed Student’s t-test statistics 
(α=0.05) were computed to determine if the functional 
values calculated were significantly different when using 
automatic contours instead of manual contours. The end 
systolic volume (ESV), end diastolic volume (EDV), EF 
and left ventricular mass (LVM) were evaluated. The 
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manually and automatically determined ESV, EDV, EF and 
LVM were also compared by means of linear regression 
to determine the correlations. Bland-Altman plots were 
calculated to assess the bias and limits of agreement between 
manual and automatic contours.

To investigate the impact of methodological difference 
on clinical care, EF used for patient classification in this 
study (HFNI: EF <40%, HFI: EF <40%, HYP: EF >55%, 
HEA: EF >55%) were applied to the corresponding patient 
group to evaluate whether clinical classification would differ 
based on manual and automated results. The categorical 
variable of agreement between the manual and automated 
results was assessed with Cohen’s Kappa statistics.

The computation time was tested on consumer hardware 
(2×2.8 GHz Quad-core Intel Xeon Mac Pro, Apple) with a 
non-optimized Matlab code (Mathworks) implementation.

To provide a direct basis of comparison for our results, 
the APD, DM and EF were calculated with commercial, 
automatic segmentation software [QMass® MR 7.5, 

Medis Medical Imaging Systems (22), Leiden] using our 
GE data. We adopted a threshold of APD >10 mm to 
eliminate clearly erroneous contours detected by QMass. 
For these cases, the automatic contour was replaced by the 
corresponding manual contour to simulate the expected 
usage of the automatic contours and subsequent calculation 
of APD, DM and EF.

Results

The contour evaluation results averaged across all subjects, 
for all slices at the ED and ES phases of each group, are 
shown in Table 1. Representative segmentation contours 
for one dataset are shown in Figure 3. For three of the 133 
datasets, the segmentation algorithm failed to locate the 
LV automatically, thus manual corrections were applied. 
The HYP group had the largest APD for both endo- 
and epicardial contours, and the smallest DM for the 
endocardial contours. The APD was small indicating good 
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Figure 2 LV segmentation of epicardial contour. A. Scan lines (green) for mapping the pixels from Cartesian to polar coordinates; B. Result 
of image transform; C. Region growing binary image; D. Image after filling holes; E. Edge points (green); F. Epicardial contour before (green) 
and after fast Fourier transform smoothing (red)

Table 1 Evaluation of contours calculated with the proposed method

Scanner vendor Patient group LV located (%)
APD (mm) DM

endo epi endo epi

GE

HFI 100 (34/34) 1.86 1.90 0.92 0.94

HFNI 96.7 (29/30) 1.89 1.88 0.92 0.94

HYP 93.8 (30/32) 2.67 2.08 0.85 0.93

HEA 100 (37/37) 1.89 1.81 0.89 0.93

Mean 97.7 (130/133) 2.08 1.92 0.90 0.94

Philips 100 (6/6) 1.90 2.14 0.91 0.93

APD, Average perpendicular difference; DM, Dice metric; endo, endocardial contour; epi, epicardial contour; LV, left ventricle.  

Patients were grouped according to pathology: HEA, healthy; HFI, heart failure with ischemia; HFNI, heart failure with no ischemia; 

HYP, hypertrophy
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agreement between individual contours. The APD for GE 
data was 2.08 and 1.92 mm (1.7 and 1.6 pixels) for endo- 
and epi-cardial contours, and the APD for Philips data was 
1.9 and 2.14 mm (1.5 and 1.8 pixels), respectively.

The paired sample t-test and linear regression results 
for ESV, EDV, EF and LVM between manual and the 
automatic methods are shown in Table 2. There were no 
significant differences found between automatically and 
manually determined ESV, EDV, EF and LVM. The 
automatically determined ESV and EDV for individual 
patient groups showed excellent correlations (R≥0.89) with 
those derived from manual contours. The EF and LVM of 
the automatically and manually analyzed studies correlated 

very well generally, with lower correlations evident for the 
HYP and HEA groups. Grouping together all subjects and 
pathological categories, the coefficient of determination (R2) 
between the manual and automatic methods was high for all 
functional parameters (ESV: 0.98, EDV: 0.98, EF: 0.90, and 
LVM: 0.88). 

The Bland-Altman analysis (Figure 4) confirmed the 
good agreement between the automatic and manual 
contours with negligible biases (1.51 mL, 1.69 mL, –0.02%, 
–0.66 g for ESV, EDV, EF and LVM, respectively). The 
limits of agreement (±1.96 SD) were as follows: ±22.1 mL 
(ESV), ±11.6% (EF), ±25.0 mL (EDV), and ±28.8 g (LVM). 

The patient classification agreement between automated 

Figure 3 Representative segmentation results. SxPy indicates the image for slice x and cardiac phase y. The contours of the endocardium 
(green), papillary muscles and trabeculations (yellow), and epicardium (red) are shown.
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Table 2 Evaluation of functional parameters

Patient  

group

ESV (mL) EDV (mL) EF (%) LVM (g)

Difference P R2 Difference P R2 Difference P R2 Difference P R2

HFI 2.72±13.77 0.26 0.98 1.47±17.11 0.62 0.96 –0.43±4.36 0.57 0.77 5.34±16.56 0.07 0.78

HFNI 3.19±12.51 0.17 0.97 2.47±13.18 0.31 0.97 –0.51±4.33 0.53 0.90 2.20±15.32 0.44 0.90

HYP –0.41±12.59 0.86 0.80 1.73±13.87 0.49 0.91 1.01±9.45 0.55 0.51 –3.22±11.80 0.13 0.95

HEA 0.71±4.99 0.39 0.94 1.21±4.75 0.13 0.98 –0.15±4.28 0.84 0.73 –1.51±13.89 0.51 0.71

Overall 1.51±11.30 0.13 0.98 1.69±12.76 0.13 0.98 –0.02±5.93 0.97 0.90 0.66±14.72 0.60 0.88

Difference: mean ± standard deviation of paired difference (manual measurement minus automated measurement). Probabilities 

(P) were obtained by paired sample t-test. For linear regression the automatically obtained values (y) were plotted as a function of 

the manual values (x) to calculate the fits and coefficients of determination (R2). EDV, end diastolic volume; EF, ejection fraction; 

ESV, end systolic volume; LVM, left ventricular mass; HEA, healthy; HFI, heart failure with ischemia; HFNI, heart failure with no  

ischemia; HYP, hypertrophy

Figure 4 Bland-Altman plots for functional parameters. The horizontal lines show the mean ±1.96 SD of the paired sample differences. 
Symbol shapes indicate the groups: heart failure with ischemia (square), heart failure with no ischemia (star), hypertrophy (diamond), and 
healthy (circle). ESV, end systolic volume; EDV, end diastolic volume; EF, ejection fraction; LVM, left ventricular mass

(m
L)

(mL) (mL)

(m
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and manual contours were good (HFNI: Kappa statistic 0.84, 
P-value <0.001, HFNI: Kappa statistic 1, P-value 0, HYP: 
Kappa statistic 0.57, P-value 0.004, HEA: Kappa statistic 
0.51, P-value 0.002). The agreement is highly significant.

The average computation time of LV location was 
0.096 s per subject. The average computation time for 
segmentation was 0.8 s per image. Moreover, the algorithm 
segmented the basal slice with LVOT by a fast watershed 
technique (0.027 s per image). Manual analysis for EF 
calculation (ES and ED phases) required 10-15 min per 
subject.

The QMass contour evaluation results were calculated 
for comparison and shown in Table 3. All contours were 
detected. The average APD for endocardial and epicardial 
contours was higher (3.30, 3.99 mm) than for the proposed 
algorithm. The EF difference (QMass EF- manual EF) 
shows that QMass overestimated the EF (except for the 
hypertrophy patient group), although this was statistically 
insignificant for all groups.

Discussion

This study demonstrates that the proposed image driven 
segmentation algorithm rapidly and accurately quantifies 
clinically relevant parameters with minimal user input. This 
method is based on the assumptions that (I) the heart is 
approximately in the centre of the original image, and (II) 
the left ventricular blood pool is approximately circular. 
These assumptions are routinely satisfied in cine SSFP MR 
imaging, and therefore the method should be suitable for 
datasets with a wide range of anatomy, function, and image 
contrast as required for clinical use.

Novel aspects of this algorithm include that it obviates 
initialization by manually drawn contours, prior statistical 
shape model, or gray-level appearance model. In addition, 

the algorithm locates the LV automatically by utilizing a 
roundness metric that is fast (0.096 s per subject) and robust 
(97.7% located), which compares favorably to another 
automatic LV location technique (23).

The algorithm detects not only endocardial contours 
and epicardial contours, but also the papillary muscles’ and 
trabeculations’ contours. Clinical studies have employed 
different quantification methods for calculation of LV 
volume, mass, and EF by including or excluding papillary 
muscles and trabeculations’ in the ventricular cavity. 
Recent studies have shown that the papillary muscles and 
trabeculations’ have a significant impact on calculation of 
LV volume, mass (24) and EF (25). Therefore the proposed 
method provides additional important options for daily 
clinical application.

A difficult challenge of LV segmentation is the accurate 
delineation of the epicardial contours. The typical 
problem is the ballooning of epicardial contours at the 
junction between myocardium and lung parenchyma 
and subdiaphragmatic tissues, due to the small intensity 
differences between these tissues. Following transformation 
from Cartesian to polar coordinates, the multiple-seed 
region-growing method was found to provide a robust 
solution that accounted for intensity gradients at edges that 
differed around the myocardium

Accurate assessment of quantitative LV parameters is 
essential for all imaging techniques. For instance, current 
guidelines for the implantation of cardioverter defibrillators 
use a selection criterion based upon EF, mandating that an 
accurate quantitative method be used to determine EF (26). 
Furthermore, reducing the quantity of patients required 
for clinical research studies depends upon increasing the 
interstudy reproducibility. CMR currently has the best 
interstudy reproducibility of any imaging technique for 
both mass and volume in the left and right ventricles, 

Table 3 Evaluation of contours calculated with QMass

Patient group
APD (mm) DM EF

endo epi endo epi Difference P

HFI 2.83 3.73 0.87 0.89 4.00±3.83 0.08

HFNI 3.15 5.18 0.86 0.85 1.73±6.09 0.62

HYP 4.09 4.24 0.76 0.86 –3.21±13.08 0.23

HEA 3.40 3.16 0.80 0.89 0.28±8.94 0.89

Overall 3.30 3.99 0.83 0.88 0.75±8.93 0.74

APD, Average perpendicular difference; DM, Dice metric; EF, ejection fraction; endo, endocardial contour; epi, epicardial contour; 

HEA, healthy; HFI, heart failure with ischemia; HFNI, heart failure with no ischemia; HYP, hypertrophy
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and is considered superior to that of two dimensional 
echocardiography (1).  Interstudy reproducibil ity, 
determined from the standard deviation of the differences 
in two measurements of a parameter over a reasonable time 
period wherein no clinical change is expected, is currently 
influenced by inter- and intra-observer variability (27,28). 
Automatic segmentation algorithms will further reduce 
interstudy variability, therefore reducing patient numbers 
required. This advantage together with the time efficiency 
for quantitation by study readers will reduce the costs of 
clinical trials while improving data quality (2).

Among the four groups, the results of the hypertrophy 
group were least successful for both the endocardial and 
epicardial contours because the concomitant hypertrophy 
of the papillary muscles obscured the target contours. 
Table 2 shows that there were good correlations for all 
of the four groups between automatically and manually 
determined clinical parameters, as expected from the small 
APD and large DM. These results compare favorably to 
recent literature describing automatic or semi-automatic 
segmentation methods (Table 4). Although dataset specifics 
are not uniform and thus hinder direct comparison, this 
meta-analysis provides additional confidence in our method.

The mean difference shown in Table 2 compares well 

Table 4 Literature values of left ventricle contour errors

Method
Distance (mm)* Number of 

subjectsendo epi

Lorenzo-Valdes 2004 (3) 2.21 2.99 12

Kaus 2004 (6) 2.28 (ES), 

2.76 (ED)

2.62 (ES), 

2.92 (ED)

169

Lötjönen 2004 (29) 2.01 2.77 25

Van Assen 2005 (30) 2.24 2.83 14

Uzümcü 2006 (31) 1.86 1.77 20

Fradkin 2008 (32) 1.27 1.56 35

van Assen 2008 (33) 1.34 1.27 15

Jolly 2009 (34) 2.48 2.91 19

Peter 2009 (35) 0.69 0.83 42† 

Grosgeorge 2010 (36) 3.24 (ES), 

2.92 (ED)

N/A 59

Sun 2010 (37) 0.87 N/A 40

*, Different distance measures were utilized, with similarity 

to APD; †, Image volumes. Subject number unknown. ED, 

end diastolic; ES, end systolic; endo, endocardial contour; 

epi, epicardial contour

to interobserver variation of manually drawn contours 
in previous reports (17,38). The Bland-Altman plots 
demonstrate negligible biases for ESV, EDV, EF and LVM, 
and the limits of agreements were reasonable considering 
the image quality heterogeneity of the datasets. While the 
proposed method is fully automatic, setting and adjusting 
the parameters interactively by checking the contours 
visually could further improve results.

In  conc lus ion ,  the  proposed  fu l l y  au tomated 
segmentation technique is fast, robust and effective for the 
quantification of cine cardiac MR in clinical practice.
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LV location

This section presents a method based on a roundness metric 
to automatically locate the LV blood pool’s centroid on the 
middle slice at the specified phase. This procedure consists 
of five steps (refer to Figure 1A-D):

(I) Choose the middle (normally in the mid-cavity level) 
slice image in a given phase (e.g., ED) as the target image;

(II) Specify a centered, fixed rectangular region of 
interest (ROI) on the target image. The size of the 
rectangular is 110×110 pixels (Figure 1A);

(III) Apply the optimal threshold method of Otsu (19) to 
convert the ROI to a binary image (Figure 1C); 

(IV) Remove all objects smaller than a predefined 
threshold (40 pixels) and compute the convex hull of the 
surviving objects;

(V) Compute the roundness metric  of each 
surviving convex-hulled object, where A is area and P is 
perimeter length. R =1 for a circle. The object with the 
largest roundness metric is recognized as the LV blood pool  
(Figure 1D), and a 11×11 mask is defined centered on 
the centroid of the LV blood pool for the subsequent 
segmentation.

LV endocardial contour detection

The endocardial contour is detected by the following steps 
(refer to Figure 1E-L):

(I) Specify a ROI dilated from the previously identified 
LV blood pool;

(II) Apply the optimal threshold method of Otsu to 
convert the ROI to a binary image (Figure 1F);

(III) The LV blood pool object is identified by choosing 
the object that has maximum overlap with the predefined 
mask centered on the LV blood pool centroid (Figure 1G);

(IV) Compute the convex hull of the refined blood pool 
(Figure 1H);

(V) Smooth the convex hull’s contour by applying the 1D 
fast Fourier transform (FFT) (20). We first compute the FFT 
of the x coordinate of the contour point index, multiply the 
result by a low pass filter transfer function (retaining the 
four lowest frequency components), then take the inverse 
transform to produce the smoothed x coordinate. Repeat 
for y coordinates (Figure 1H);

(VI) Identify and segment basal slice with LVOT. If the 
ratio of current contour’s major axis length (L) to preceding 
contour’s L is larger than a predefined threshold (1.2, in this 
work), basal slice with LVOT is identified. Then, the blood 
pool is separated from the LVOT by the following steps: 
Calculate the Euclidean distance transform of the binary 
object, i.e., compute the distance between each object 
pixel and its nearest background pixel. Then calculate the 
watershed regions of the distance image (Figure 1I-L). Then 
compute the smoothed contour (as in step V).

Detection of contour delineating LV papillary 
muscles and trabeculations

Black pixels in the smoothed LV blood pool (Figure 1H) are 
detected as papillary muscles and trabeculations.

Epicardial contour detection

The epicardial contour is calculated by the following steps 
(refer to Figure 2A-F):

(I) Map the pixels from Cartesian to approximately 
polar coordinates, as suggested previously (18). An outer 
boundary is calculated by dilation of the endocardial 
contour. The two contours are interpolated to the same 
number of points, and paired to derive scan lines, each 
of a predefined length (20 pixels) (Figure 2A). The result 
is a rectangular image that extends from the endocardial 
contour (top row) outward (bottom row) (Figure 2B);

(II) Use each top-row pixel as a region growing seed, 
with all grown regions summed and converted to a binary 
image (Figure 2C). For region growing, intensities are 
normalized by the original image’s maximum;

(III) Fill image holes by morphological operations  
(Figure 2D);

(IV) The end point of each column’s grown region 
determines an edge point (Figure 2E);

(V) Inverse transform the edge point coordinates to 
the original (Cartesian) coordinate space to determine the 
epicardial contour (Figure 2F);

(VI) Smooth the contour by applying the 1D fast Fourier 
transform (Figure 2F). 

Supplementary Material


