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Biological aged brain

Aging has become the next global public health challenge (1).  
For the first time in history, the number of people aged 
65 years and older in the world outnumbers children aged 
younger than 5 years (2-4). A total of 10–20% of people 
aged 60–80 years are estimated to have one of three 
neurological diseases, including stroke (5,6), Alzheimer’s 
disease (7), and Parkinson’s disease (8,9). The notion 
that the aged brain differs from the young brain is not a 
new one. Intuition alone emphasizes notable differences 
in maturation, processing speed, and baseline function 
between the preadolescent and the elderly brain. In order to 
advise on healthy ageing, it is critical to first understand the 
fundamental biological differences between the young and 
old brain. The anatomical aged brain is marked by distinct 
changes in brain volume, general cognition, vasculature, and 
neurovascular coupling (10) (Figure 1). For the purposes of 
this concise review paper, the young brain is considered to 

be a preadolescent brain before neural pruning; the elderly 
brain is considered to be in the middle stages of degradation 
around the US senior citizen average age of 62. Further, 
imaging discussed in this paper considers both healthy and 
degenerative disease affected aging.

The volume and size of the brain is one of the most 
obvious targets of age. Over time, the aged brain loses 5% 
of its volume with each decade past the age of 40, with this 
rate of mass loss often escalating after the age of 70 (10-18).  
Additionally, there is specific volume loss in white matter 
tracts and myelin degeneration (19-26). Loss of white 
matter tracts behaves in a “last-in-first-out” manner 
beginning in posterior, frontal, and parietal sections of the 
brain and first degrading tracts that typically form towards 
the end of puberty (19). Of the subdivisions of the brain, 
the prefrontal cortex and striatum seem to be most affected 
by this age-induced deterioration while the occipital lobe 
remains the least affected (10,27). The hippocampus also 
suffers degradation, and this can be linked to a vast number 
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of age-related memory disorders (10,28-31). Substantial 
loss in brain volume over time heavily impacts imaging 
and statistical significance when a healthy aged brain is 
compared to a structurally different, healthy adolescent 
brain.

The aged brain also presents differences in cognition. 
Incorrectly attributed to decreased volume, cognitive 
decline is better explained by changes in dendritic shape 
and connection (32-36). Deterioration of dendritic spine 
length or shape heavily impacts the functionality of neural 
networks and can be linked to age related impairments 
in processing and integrating information (32,36). Even 
discounting aged related disease, the aged brain has stark 
differences in cognition and processing that impact elderly 
citizens in society. The biggest changes in cognition occur 
in reasoning, episodic and semantic memory tasks, and 
integration speed (37-42). Most notably, younger brains 
perform better in tasks that require problem-solving or 
adaptable application of skills, whereas older brains perform 
better at tasks that require accessing stored information or 
applying an often practiced skill (37).

Change in vasculature and blood pressure in the brain 
is the third most notable effect of age (43-50). Blood 
vessels become more fragile with time and use and become 
vulnerable to white matter lesions, clots, and tears (51). 
Atrophy and grey matter loss can additionally result in 
higher blood pressure (10,52-55). Changes in blood vessel 

size and durability are associated with increased risk of 
dementia, Alzheimer’s disease, and stroke (10). These 
changes should be paid special attention in imaging because 
they are present even in the normal ageing process and can 
be indicators of predisposition for age related degenerative 
diseases.

Finally, even in healthy ageing, the brain has reduced 
increases in blood flow at moments of key firing and in 
response to various stimulations. This phenomenon, named 
neurovascular coupling or functional hyperemia, is the 
brain’s method of supplying sufficient amounts of oxygen 
and vital nutrients via blood flow during elevated brain 
activity and activation (56). The study of the relationship 
between blood micro-vessels and astrocytes is paramount 
in the analysis of healthy ageing. Healthy ageing also 
impacts both elements of this mechanism. It has been 
suggested that dysfunction in both the astrocyte end of 
calcium signaling and the blood vessel mechanism through 
cellular oxidative stress or IGF-1 deficiency could affect 
the efficiency of neurovascular coupling in the brain (56). 
This mechanism has particular importance in brain imaging 
because functional magnetic resonance imaging (fMRI) 
fundamentally relies on measuring this speed of reactance. 
The blood oxygenation level dependent (BOLD) signal in 
fMRI is heavily related to the magnitude of oxygenation in 
the brain and, in aged brains, the decreased neurovascular 
coupling can be used as an indicator of age-related 
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Figure 1 Horizontal slice magnetic resonance imaging scans of a healthy 20-year-old brain (left) and a healthy 86-year-old brain (right). 
Side by side comparison to show the anatomical changes to brain structure in only the presence of aging. Notable differences occur in the 
widening of the third ventricle, the left lateral ventricle, the vermian subarachnoid space, and left circular sulcus. Widening can be noted by 
the greater presence of dark space on the scans.
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neurodegenerative diseases (57). Indeed, neurovascular 
coupling has already been considered in a large number of 
aged brain imaging and research (58-61).

Challenges of imaging the aged brain

As discussed above, the rate, type, and general presentation 
of ageing presents drastically differently in each person, 
in health or in disease. This makes standardizing imaging 
and designing experiments that are widely applicable a very 
challenging task (Figure 2). For example, MRI is arguably 
one of the most powerful forms of imaging in anatomical 
and functionality studies that relies heavily on BOLD 
signals (63-69). However, changes in blood vasculature 
and neuronal structure of the brain can be misinterpreted 
in MRI as activity or lack thereof in functionality studies 
(70,71). The standard hemodynamic response function 
(HRF) is fit to data for younger brains and applying this 
standard to a different vasculature system can result in 
a less accurate fit and misleading result (70). This issue 
also manifests itself in structural standards to identify 
aging-induced anomaly. Spatial normalization is applied 
in imaging to account for small differences in structure 
between individuals. However, the standard will continue 
to bend a participant’s images to match the HRF which 
can lead to overestimation errors in structural analysis (70). 

In fact, all statistical analysis using young brain data must 
fundamentally warp the data of older brains because of 
the identified structural and functional differences. This 
presents the big challenge of lacking a proper standard 
against which to compare healthy aged brains.

Beyond the functional challenges, there are also many 
participant and involvement based challenges when imaging 
elderly volunteers. Health becomes a larger factor in activity 
of elderly adults, so running self-selecting studies could 
result in bias due to which adults feel healthy enough to 
participate (37,72-74). Participants with decreased mobility 
or limited independence will by nature of their living 
circumstances be underrepresented in such studies. Since 
the participant pool is limited by health and mobility among 
other factors, the problem of getting a statistically relevant 
sample size then arises (73).

Similarly, longitudinally assessing healthy ageing through 
imaging tools becomes increasingly difficult when studying 
elderly adults. Longitudinal studies are the most helpful tool 
in quantifying change over time, but they require multiple 
visits or attempts at a task with a healthy participant, and 
this is not always the easiest parameter to achieve (37,75-82).  
Participants are always at risk of developing a cognitive or 
physical impairment during the course of a study even if 
they began the trial neurologically and physically fit. Such 
consistency is hard to achieve due to the changing nature 
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Figure 2 Extrapolated points of difference between younger brains and older brains during functional neuroimaging study completed by 
Reuter-Lorenz and Lustig (62). Regions of impairment indicate loss of function with age and areas of compensation (usually paired with 
regions of impairment) are areas of higher activation in older brains trying to operate at a functional level in the task.
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of physical health and the long symptomatic manifestation 
time of cognitive disorders.

Impact (meeting the need)

Increasingly, our society is becoming more and more 
flushed with elderly citizens. With better health care and 
longer lifespans, the number of Americans over the age of 
65 is projected to reach 88.5 million in the year 2050 (37). 
Healthy ageing is taking center stage as society must learn 
how to cater to this new generation of older adults who 
are experiencing cognitive decline despite being free of 
degenerative disorders. These changes to their cognition, 
for example memories as shown in Figure 3, however small, 
are impacting the daily lives of an increasing number of 
people and efforts must be made to further understand 
healthy ageing in order to cater to the day to day lives of the 
elderly.

Imaging the aged brain would not only give us better 
standards against which to create the benchmark of healthy 
cognitive ageing, but it would also reveal more about 
the connectivity and functional methods of the brain. If 
certain functions are discovered to be lost over time due 
to degeneration, more could be illuminated about the 
functionality of both older and younger brains. Especially 
on the technological brink of imaging, more information 
on the structure, function, and working principles of the 
brain can only help in establishing both the standard of and 
deviations from healthy brain function.

Technologies for imaging aged brains

The human brain is the most complex, powerful and 
mysterious organ of the human body (83,84). Although 

scientists have been avidly discovering the secrets of the 
brain, the knowledge accumulated so far still falls far short 
of a comprehensive understanding. Thanks to modern 
biomedical imaging technologies, our understanding of 
the brain has advanced over the last few decades at an 
accelerated speed (85,86). Looking back, the history of 
neuroscience is also a history of applying new imaging 
technologies to look at the brain in a more informative 
way. However, imaging the human brain is also the most 
challenging application for many imaging technologies 
because the brain functions as a highly-coordinated system 
with functional connections at various spatial scales ranging 
from the single cell level (e.g., within a cortical circuit) to 
the tissue level (e.g., between cortex and hippocampus) 
(Figure 4). Large efforts are currently supported by the NIH 
BRAIN Initiative to image brain functions at different scales 
and to understand the relevance of its dynamics during 
development, aging, and in disease (87,88). Human brain 
mapping has become one of the most exciting contemporary 
research areas with major breakthroughs expected in the 
following decades. So far, many imaging technologies have 
been applied for imaging aged brains in preclinical studies 
and clinical practice (89-95). These technologies can be 
grouped into three major categories based on their spatial 
resolutions and corresponding maximum imaging depths: 
microscopic imaging, mesoscopic imaging, and macroscopic 
imaging. Here, we will briefly introduce the representative 
imaging technologies in each group, together with their 
strengths and limitations in brain imaging.

Microscopic brain imaging

At the microscopic level (<10 µm), optical imaging has been 
the dominating player, providing cellular and subcellular 
images of brain structures and functions, especially at 
the neuronal level (96-102). Taking advantage of the 
short wavelengths of photons, optical imaging, including 
confocal and multiphoton microscopy (103-107), can 
achieve a spatial resolution on the level of ~1 µm, which is 
sufficient to resolve single neurons and even dendrites, the 
basic communication units of the brain. Moreover, optical 
imaging can provide rich image contrast by using a large 
library of exogenous optical labels such as fluorescent dyes, 
quantum dots, and genetically encoded fluorescent proteins. 
These optical labelling tools have been widely applied to 
small animal brain imaging providing direct or indirect 
measurements of the brain’s morphological and functional 
status, including neuronal connection, hemodynamics, 
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action potential firing, and signal transmission (Figure 5A). 
One important example is non-invasive real-time optical 
reading of the brain’s neuronal activities based on calcium 
or voltage-sensitive indicators (112-117). The advantage 
of optical imaging over electrode recording is the high 
throughput that supports simultaneous interrogation of 
thousands of neurons, allowing the study of neural circuits 
and networks. However, the drawback of optical imaging is 
also clear: the penetration depth is limited to the superficial 
brain tissue, typically less than 1 mm into the brain tissue, 
mainly because of the strong optical scattering of the tissue. 
Multi-photon microscopy takes advantage of the longer 
excitation wavelengths and has achieved a penetration 
depth of 1.5 mm (118-121). Nevertheless, optical imaging 
is mainly used for small animal brain imaging, such as on 
fruit flies, zebra fish, and mice. Invasive methods have 
also been developed to circumvent the imaging depth by 
inserting miniaturized optics into the brain tissue (122,123), 
which, however, may induce undesired damage to the brain 
functions.

Mesoscopic imaging

On the mesoscopic scale (10 µm–1 mm), several imaging 
modalities have been used for brain imaging, including 
X-ray, CT, MRI, and ultrasound imaging. Mesoscopic 
imaging can provide structural and functional information 
on the neural circuit level, and more importantly, deep 
penetration into the brain. In particular, X-ray CT and 
MRI are routinely used for human brain imaging in clinical 
practice (124,125), allowing simultaneous mapping of the 
whole brain including structures such as the gray and white 
matter volumes as well as tissue density (Figure 5B,C). More 
advanced technologies such as contrast-enhanced X-ray 
CT and MRI have been used in imaging brain vasculature 
in neurological diseases such as stroke, AD, and brain 
tumor (126,127). The advent of in vivo diffusion tensor 
imaging (DTI) allows direct measurement of the bulk tissue 
microstructure ordering by virtue of mapping water proton 
motions within the tissue microenvironment (128). DTI has 
been playing an important role in studying the aged brain, 
especially in studies on neurodegenerative processes that 
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cause changes at the microstructural level through the rate 
of myelination or demyelination, degradation of microtubules, 
or loss of axonal structure (129). Ultrasound imaging is not 
typically used for the brain, with the skull as a physical barrier 
to the acoustic waves (130,131). However, using low frequency 
ultrasound around 2 MHz, transcranial Doppler ultrasound 
imaging is able to measure the cerebral blood flow through 
the skull’s acoustic windows, including temporal, orbital, 
suboccipital, and submandibular windows (132). Transcranial 
Doppler ultrasound has been applied to study blood flow 
velocity, arterial pulsatility, and resistance with aging. 
The results have collectively shown that cerebrovascular 
hemodynamics may carry important implications in vascular 
diseases associated with advanced age, increased risk of 
cerebrovascular disease, cognitive decline, and dementia.

Macroscopic imaging

At the macroscopic level (1 mm to 1 cm), fMRI (133-135), 
PET (136-139), and diffuse optical tomography (DOT) 
(140-143) are the major imaging techniques being used to 
study brain function and metabolism. Based on different 
contrast mechanisms, all these imaging techniques can 
provide the macroscopic functional status of the brain in the 
resting state and under stress. fMRI is sensitive to the blood 
oxygenation dependent signals, which are closely correlated 
with neuronal activities through neurovascular coupling. 
As a totally noninvasive imaging modality, fMRI has been 
the most popular tool in studying the cognitive decline in 
both diseased and aged brains and has shown that healthy 
aging reduces the cerebral hemodynamic responses to visual 
challenges (144). It has also shown that the brain’s resting 
state activities are significantly different in normal aging, 
mild cognitive impairment, and Alzheimer’s disease (145).  
PET relies on the accumulation of radiolabeled tracers 
to map the brain’s metabolism status and other important 
pathophysiological indicators. Despite the low resolution 
and the ionizing radiation, PET has been a powerful 
tool in studying the brain’s normal aging process and 
neurodegenerative diseases, with its high sensitivity and 
specificity. For example, PET has been increasingly used 
in studying the rate of accumulation of pathological tau 
in normal aging and Alzheimer’s disease and has shown 
different tau deposition rates over the whole brain in the 
early Alzheimer’s disease onsets (111,138) (Figure 5D). 
DOT has been a relatively new player in functional brain 
imaging, compared with fMRI and PET. DOT shares 

the same contrast principle as fMRI, and optically detects 
the neuronal activities through the brain’s hemodynamic 
responses. Increased blood volume and oxygenation are 
two important physiological parameters measured in 
DOT. DOT typically can provide brain functions only in 
the neocortical layer, limited by the penetration depth of 
near-infrared photons through the intact scalp and skull. 
However, compared with fMRI and PET, DOT is more 
portable, much faster, and can provide real-time monitoring 
of brain function. Moreover, DOT is a much less expensive 
technology. DOT has recently gained more popularity in 
mapping distributed brain functions and networks (146), 
such as in patients with Parkinson’s disease and implanted 
deep brain stimulators that preclude fMRI.

Conclusions and prospects

As the brain ages in health and in disease, there are 
numerous structural, functional, molecular, and cognitive 
changes at a wide range of scales from cellular to whole 
organ levels. These changes are intrinsically interconnected 
through the extremely complex signal pathways and neural 
networks in the brain. Alterations of the aging brain can 
result from multifactorial processes and be reflected by 
many functional and molecular biomarkers. However, 
the knowledge accumulated so far still falls short of a 
comprehensive understanding. The knowledge gap about 
the functional disruption and remodeling of the aging 
brain is largely due to a lack of imaging technologies 
that can provide longitudinal imaging with the required 
spatial-temporal resolutions and imaging depth (147). 
Due to relatively low spatial-temporal resolution, MRI 
and PET are not suited for microscopic studies (148,149). 
Optical imaging methods lack the penetration depth for 
accessing the brain regions beyond the cortex, and thus 
cannot study the spatial heterogeneity of brain damage and  
restoration (150). Ultrasound imaging still lacks the 
sensitivity to most brain functions outside of blood flow. 
Histological examination of brain slices cannot provide 
functional information. Therefore, to better understand 
aging brains, we still need an imaging technology that can 
provide high spatial-temporal resolution, deep penetration, 
and functional information.

New imaging technologies that harness novel contrast 
mechanisms may provide new opportunities in studying 
aged brains. One example is photoacoustic tomography that 
physically combines light and ultrasound to probe the tissue’s 
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functional and molecular information with balanced spatial 
resolution, penetration depth, and imaging speed (151-158). 
Although the skull still acts as a significant barrier for the 
ultrasound waves, photoacoustic tomography shows great 
promise in human brain imaging, with advances in light 
delivery, ultrasound detection, and image reconstruction. 

Another promising technology is magnetic resonance 
fingerprinting that permits the non-invasive quantification 
of multiple important properties of the brain simultaneously 
with improved sensitivity, specificity, and speed when 
compared to conventional MRI (159,160). More importantly, 
when combined with appropriate pattern recognition and 

Figure 5 Representative brain imaging technologies. (A) Two-photon microscopy of dendrites of pyramidal neurons (shown in yellow) and 
blood vessels (shown in red) in somatosensory cortex of the Thy1-mitoCFP and Thy1-YFP mice. Adapted with permissions from (108). 
(B) Timing-invariant CT angiography image in a patient with a left-sided middle cerebral artery occlusion in the M2 segment. Adapted 
with permissions from (109). (C) Brain MRI: axial T2-weighted image of the brain demonstrates a hyperintense infiltrating mass of the 
left posterior frontal and temporal lobe with mass effect. Normal flow void is also noted through the left MCA branches. Adapted with 
permissions from (110). (D) PET scan in the parietal region in one subject with mild cognitive impairment who was reclassified on follow-
up as having Alzheimer’s disease. Red and yellow areas correspond to high amyloid senile plaque values. Adapted with permissions from (111). 
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data mining methods, magnetic resonance fingerprinting 
can potentially reduce the cost of the MRI by using lower 
magnetic field and shorter scanning times (161-163).

Further, to understand the aged brain, one also needs 
to understand how one region of the brain influences 
another. The ability to image these changes at different 
scales will help not only to understand normal brain 
functional architectures but also how complex diseases 
disrupt normal brain functions (164,165). For example, 
we could better understand how normal aging changes 
the connection between the hippocampus and cerebral 
cortex to translate the transient cortical neuronal 
activities (microscopic connection) to long-term memory 
(macroscopic connection). We may also better understand 
how Alzheimer’s disease progresses from memory loss in 
the hippocampus to impaired judgment and reasoning 
in the cortex. However, there exist substantial barriers in 
scale and contrast mechanism among the traditional brain 
imaging modalities, which can study the aged brain only 
at the microscopic scale (e.g., two-photon microscopy) 
or the macroscopic scale (e.g., fMRI) with dramatically 
different signal origins. Correlation between different 
imaging tools is truly an engineering challenge due to 
their dramatically different imaging scales and contrast 
mechanisms. To study the complex brain systems, we need 
imaging technologies that can simultaneously image the 
aged brain at both microscopic and macroscopic scales. 
In other words, to better understand the brain, in vivo 
brain imaging at different scales needs to be joined to best 
extract the information. On one hand, imaging systems that 
can operate at multiple scales have been reported (166),  
such as ultrasound and optical imaging with multiple 
detection frequencies or wavelengths, or incorporate 
multiple modalities, such as the integrated PET and X-ray 
CT (167). On the other hand, with the fast advances in 
machine learning technologies (168-170), data fusion 
among different brain imaging modalities becomes more 
practical, not only to match the anatomical structures at 
various scales, but also to correlate the functions at different 
hierarchy levels.
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