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Background

Functional magnetic resonance imaging (fMRI) is one of 
the most popular methods to probe and understand the 
human brain, offering a noninvasive way for the in vivo 
investigation of brain function (1). fMRI accounts for the 
growth of neuroscience research with some 40,000 peer-
reviewed publications in the last two decades (2,3). The 
results of fMRI studies are largely determined by fMRI 
systems and informatics tools which process complex data 
generated from fMRI scan. fMRI quality assurance (QA) 
plays a critical role to guarantee high reliability of fMRI 
studies (4-11), since fMRI QA programs and methods 
can be used for calibrating fMRI scanner (10-13), testing 

the stability of fMRI system (14-17), assessing fMRI data 
quality (15,16,18-22) and evaluating informatics tools (4-9).  
Moreover, many QA-related metrics such as test-retest 
reliability and family-wise error rate (FWER) are applied to 
evaluate the reliability of fMRI studies (3,23,24).

Many QA programs can test  basic MRI system 
performances, such as resolution, signal contrast, geometric 
distortion, intensity uniformity, and ghosting artifacts  
(25-27). These programs are helpful but inadequate for 
fMRI study. The reasons are as follows: 

Scanner temporal stability

The blood oxygenation level dependent (BOLD) signal 
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change only accounts for a small fraction of the total signal 
(less than 5% for MRI systems with a magnetic field from 
1.5 to 3 Tesla) (4,28), and extracting real BOLD signals 
from the total MR signal requires overcoming noise from 
various sources (28). To track the brain cognitive process, 
MR scanners need excellent temporal stability to acquire 
the BOLD signal over time (28). Additionally, fMRI 
usually applies fast imaging sequences such as echo planar 
imaging (EPI), which require excellent time resolutions and 
temporal stability during fMRI (4-9). EPI is sensitive to 
susceptibility effects (7). Consequently, fMRI based on EPI 
suffers from various artifacts such as Nyquist ghosting and 
geometric distortions (13). Thus, the basic QA programs 
are inadequate for fMRI studies, and QA specially designed 
for fMRI scanning conditions is needed.

Human factors

Ideally, the QA program for fMRI system is supposed 
to guarantee high-quality fMRI data (10-13). However, 
latencies such as human operation errors and subjects’ 
incompliance will lead to low-quality fMRI data (29,30), 
subjects’ unconsciously physiological movements will add 
physiological noise to fMRI data (18-22), making the QA 
of fMRI data an essential step in fMRI. Indeed, the QA of 
fMRI data can identify such errors and reduce the effect of 
data with poor quality. 

Data processing

In addition to the stable performance of the fMRI system, 
high-quality fMRI data, the success of fMRI also relies 
on reasonable data processing and statistical analysis 
(3,23,31-33). Flexibility in data processing can cause 
variations in the results since there are many software 
packages (34-36) and processing parameter combinations 
(32,33,37). Moreover, sample size, statistical analysis, 
multiple comparison correction methods also affect the 
reliability of fMRI studies (3,32,33,38). State-of-the-
art studies questioned weakly statistical analysis methods 
with a false-positive rate of up to 70% (3,38). Thus, the 
quality evaluation of fMRI processing tools and statistical 
methods are needed to ensure reliable studies.

Other factors

For fMRI study, subjects are confined in the scanner, 
which imposes several physical limitations on stimulus  

delivery (39). BOLD hemodynamic response to a stimulus 
is affected by many factors such as study paradigm, temporal 
signal-to-noise ratio (SNR) and variations in data processing 
(40,41). All these factors may result in misinterpretation 
of stimulus-related cortical mapping which cannot be fully 
addressed by basic MRI QA programs (39).

Generally, fMRI system stability, fMRI data quality, 
processing, and statistical analysis are the main factors that 
affect the reliability of fMRI studies (14-16), and fMRI QA 
programs are mainly focused on these aspects. In 1996, 
Weisskoff et al. proposed an efficient method to measure 
MR instabilities (17) that was the first to report fMRI QA 
issues to our knowledge. In 1999, Simmons et al. applied 
the Shewhart charting approach with QA phantom to 
check SNR, signal-to-ghost ratio, and signal drift for MRI 
system (28). Over time, several groups have developed 
fMRI reference phantoms to simulate BOLD signals 
and measure several metrics such as SNR and contrast-
to-noise ratio (CNR) (4-9). Leading study projects in 
neuroscience communities such as Human Connectome 
Project (HCP) (11) and Function Biomedical Informatics 
Research Network (FBIRN) (42) have developed complete 
QA processes including QA phantoms, QA protocols, and 
software to calculate QA metrics. 

As a supplement to QA of fMRI systems, real-time fMRI 
(rtfMRI) has been used for quality check of fMRI scan process 
to find errors during or shortly after fMRI scans (29). rtfMRI 
has also been used to monitor signal drift and the subject’s 
physiological motion (43,44). Online QA programs based on 
rtfMRI have been developed and applied in several studies 
(29,45,46). During the past two decades, much work has been 
focused on quality check of fMRI data (43-47). QA metrics for 
fMRI data quality check have been proposed, such as SNR, 
CNR and signal-to-fluctuation noise (SFNR) (14-16,47). Head 
motion-related metrics such as rigid-body parameters and 
framewise displacement (FD) have been applied to evaluate the 
subject’s head motion (19,22,48,49). QA modules for quality 
check of fMRI data and processing steps have begun to appear 
in fMRI processing software packages (50,51).

Although processing steps and statistical analysis methods 
are not typically QA-related issues, quality evaluation 
of processing steps and statistical analysis methods also 
play a critical role in ensuring high reliable fMRI studies 
(32,33,52). Computer-generated phantoms and simulated 
data have been applied for quality evaluation of processing 
steps and statistical analysis methods (12,53). During the last 
decade, fMRI communities have paid much attention to the 
statistical power and reliability of fMRI studies (32,33,52). 
QA metrics such as FWER and test-retest reliability have 
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Table 1 fMRI QA phantoms

References Type Description QA measurements

(32) Liquid phantom The phantom body had five layers with 14×14 square cells (5×5×10 mm3) in each 
layer. The phantom was built from MRI neutral material and filled with different 
solutions of CuSO4 water solution. The phantom body was placed on a moveable 
platform to simulate translations and rotations

Spin-history artifacts

(43) Liquid phantom The cylindrical phantom consisted of multiple axial plates with hollow spheres in 
each plate. The hollow spheres are connected by drilled capillaries. The phantom 
was made of acrylic and filled with distilled water

Geometric distortions

(7) Liquid phantom A spherical phantom filled with CuSO4 solution in a loading annulus SNR, SGR, PSC

(15-17,20) Agar phantom FBIRN’s QA phantom was a 17.5-cm-diameter spherical container filled with agar 
gel, 0.5% NaCl, 21.8 mmol/L NiCl2, providing T1 and T2 comparable to those in the 
gray matter at 1.5 T fMRI system

SNR, SFNR, PSF

(8) Type I A cylinder was divided into 8 wedge-shaped compartments. The compartments 
were filled with 1.4% or 1.6% agar gel. The cylinder was connected to a handle for 
rotational control

CNR

(9) Type I The Phantom made from PMMA had two cylinders. The inner cylinder had two 
compartments filled with 2.44% and 2.21% agarose, acting as “active” and 
“baseline” state

PSC

(10) Type I The phantom had two cylinders. The outer cylinder was filled with 2.27% agarose. 
The inner cylinder had four compartments filled with 2.21 and 2.27% agarose gels

Signal fluctuation 
sensitivity

(11) Type II SmartPhantom had two cylinders. The inner cylinder holding agarose gel was 
surrounded by two conductor loops forming a quadrature coil. The outer cylinder, 
also contained agarose gel. The inner cylinder served as the ROI, and the outer 
cylinder provided a signal background

SNR, CNR; comparison 
of processing tools 
including BrainVoyager, 
FSL, and SPM

(12) Type II The phantom consisted of a polymethylacrylate tube filled with rapeseed oil. The 
wounding lacquer-insulated wire was fixed along the central axis of the phantom. 
The wire was attached to the electronic equipment via a copper pipe

scanner calibration

(13) Type II Applied magnetic inhomogeneity phantom included a polycarbonate container 
filled with Gd-doped water. The container was supported by polyurethane foam; 
the foam had a circular perforation with cylindrical coils attached

SNR

(14) Type II The phantom consisted of a geometric grid, eight vials with aqueous solutions of 
2.4% gelatin and different concentrations CuSO4, and a cylindrical electrical cell 
filled with propylene carbonate, all surrounded by water. An electrical circuit board 
was connected to the electrical cell to interface the phantom during the fMRI scan

–

fMRI, functional magnetic resonance imaging; QA, quality assurance; SNR, signal-to-noise ratio; SGR, signal-to-ghost ratio; PSC, 
percentage signal change; PSF, percent signal fluctuation; CNR, contrast-to-noise ratio; SFNR, signal-to-fluctuation-noise ratio; ROI, 
region-of-interest; SPM, Statistical Parametric Mapping; FSL, FMRIB Software Library.

been applied for evaluating multiple comparison correction 
methods to obtain a more reliable fMRI result (3,23,38). 

In this review, studies focused on QA of fMRI were 
collected. The collected literature was divided into four 
categories: QA of fMRI systems, QA of fMRI and fMRI 
data, quality evaluation of fMRI data processing pipelines 
and statistical methods and QA of task-related fMRI. Finally, 
conclusion and future work consideration were given.

QA of fMRI systems

fMRI QA phantoms

Phantoms are used as standard QA devices to evaluate, 
analyze and tune the performance of MRI scanners  
(14-16,25). Table 1 summarizes fMRI QA phantoms and 
gives a detailed description of each phantom. 

The most often used phantoms are the so-called liquid 
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Figure 1 Two types of functional magnetic resonance imaging (fMRI) quality assurance (QA) phantoms and the controlled fMRI signal 
changes by the two types of QA phantoms. (A) 3D view of the type I QA phantom. (B) Top view of the type I QA phantom with four 
compartments filled with different concentrations of agar gel. (C) The top panel demonstrates the active signal from the inner cylinder 
rotation, and the bottom panel demonstrates the baseline signal from the outer cylinder. (D) 3D view of the type II QA phantom. (E) Top 
view of the type II QA phantom. (F) The panel demonstrates the controlled fMRI signal generated from the electric cell. The blue line 
represents fMRI image intensity; red line represents signal generated by the phantom. ROI, region-of-interest.

phantoms (25). Liquid QA phantoms play an important 
role in fMRI QA. There are reports on self-designed 
liquid phantoms for fMRI quality tests such as motion 
artifacts (12), geometric distortion (13) and stability (17). 
Simmons et al. applied Shewhart charting to record SNR, 
signal-to-ghost ratio and signal drift from liquid phantom 
image for a long time (28). Control limits were pre-
defined for Shewhart charting. If a measure in Shewhart 
charting exceeded control limits, fMRI system evaluation 
was required (28).

It is known that agarose gel is commonly used as tissue 
equivalent materials in MRI phantoms (10,11,14-16), and 
different concentrations of agarose gel mixed with copper sulfate 
or other solutions can achieve relaxation times T1, T2 and *

2T  
within the normal range of human brain tissue under certain 
magnetic strength (7,14-16). In fact, FBIRN has adopted an 
agar phantom for its fMRI QA programs (10,11,14-16).

Concerning fMRI phantoms that mimic BOLD signal 
changes, there are two major types, as shown in Table 1 and 
Figure 1. One type (type I phantom illustrated in Figure 1) 
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uses agarose gel as filling material and mechanical rotation 
to simulate BOLD fMRI signal changes (4-6). This type 
of fMRI phantom usually has two cylinders (5,6), the outer 
cylinder and inner cylinder, as illustrated in Figure 1A. 
However, the phantom by Tovar et al. has only one cylinder, 
which has a similar function to the inner cylinder of others (4). 
The outer cylinder acts as the “baseline” that does not rotate 
during fMRI scanning. The inner cylinder acts as the “active” 
cylinder and is connected to a manual handle or an electric 
motor to allow controllable rotations during fMRI. The active 
cylinder is segmented into different compartments filled 
with slightly different concentrations of agarose gel. During 
the rotation of the inner cylinder, different compartments 
with different concentrations of agar gel enter and leave 
the region-of-interest (ROI) as depicted in Figure 1B.  
Because magnetic susceptibility changes as a function of 
the agar gel concentration (4-6), the rotation of the inner 
cylinder provide dynamic changes in *

2T , which can mimic 
the active and baseline states of the brain in fMRI, as shown 
in Figure 1C. The BOLD-like signal provided by the type I 
phantom can be detected under conventional fMRI scanning 
conditions using EPI sequences (4-6). QA metrics such as 
CNR and SNR are measured with this type of phantom for 
fMRI system QA. In summary, although the type I phantom 
is simple to assemble, it is inconvenient to alter the signal 
intensity during fMRI (54). In addition, for different strength 
of the magnetic field, the relaxation times T1, T2 and *

2T  
are different (4-9,54), which means for fMRI system with 
different magnetic strength, the concentration of agar gel 
should be changed and the phantom should be re-filled (14-
16,54). And agarose gel suffers from dehydration (10,11,13), 
so the phantom will have air gaps as time passes by.

The other type of fMRI phantom (type II phantom in 
Figure 1) applies electrical properties such as radiofrequency 
(RF) (7-9) or impurity ion currents in polar materials (54) 
to generate magnetic inhomogeneities in the magnetic 
field of MRI, leading to a change in the fMRI signal. As 
illustrated in Figure 1D,E, the type II phantom has one 
electric cell inserted into a container (7-9), while Qiu’s 
phantom has several reference cells to provide a reference 
signal in comparison to the active signal from the electric 
cell (54). To use RF to generate magnetic inhomogeneities, 
the container is filled with proton-rich medium, e.g., 
agarose gel with copper sulfate (7), oil (8), or Gd-doped 
water (9). When the electric cell induces current into the 
medium, magnetic field distortion is generated. MR scanner 
will detect this distortion as the fMRI signal changes  
(7-9). Cheng et al. have proved the feasibility of the type II 

phantom using typical fMRI acquisition methods and fMRI 
data processing tools that include Statistical Parametric 
Mapping (SPM), FMRIB Software Library (FSL) and 
BrainVoyager (7). For Qiu’s phantom, impurity ion 
currents in propylene carbonate were tested on a 1.5 Tesla 
MRI system using a spin-echo and EPI sequence, and the 
applicability of such phantoms was proved (54). The electric 
cell of the type II phantom is connected to a controlled 
computer via an optical fiber to allow a controllable signal 
change, as demonstrated in Figure 1F. 

fMRI QA metrics

QA metrics are used for quantitative evaluations of fMRI 
systems. Since fMRI signal is sensitive to noise (4,28), metrics 
for system noise evaluation were proposed such as SNR and 
CNR (5,7,15,17,28). To our knowledge, the existing fMRI 
QA metrics are as follows: percent signal fluctuation (PSF) 
(5,14-16,55 ), CNR (5,17,55), signal fluctuation sensitivity (6), 
SNR (7,15,17,28,56), percentage signal change (PSC) (9,15), 
SFNR (15,16,55-57), signal-weighted SFNR, instability 
SFNR, background SFNR, physiological SFNR (16), percent 
signal drift (15), radius of decorrelation (15), signal-to-ghost 
ratio (28) and temporal SNR (47,57). A detailed summary of 
the major fMRI QA metrics is given in Table 2. QA metrics 
are often calculated within the ROI of phantom images  
(14-16). The calculated values of these metrics will reflect the 
performance of fMRI systems.

SNR
SNR is one of the most used metrics in science and 
engineering (4,28). Temporal SNR is also used in fMRI QA 
to evaluate the stability of the MR system (7,15,17,28,56). 
Friedman et al. applied the QA phantom of FBIRN (15) to 
calculate SNR. FBIRN QA scanning protocol was used, and 
the phantom image was obtained. ROI was defined at the 
center of the spherical phantom. SNR was defined within 
the ROI as the ratio of signal summary value and variance 
summary value. A similar approach was seen in the study by 
Simmons et al. (28).

Also, SNR-related metrics have been proposed, such 
as SNR0, time-course SNR, and temporal SNR. SNR0 

is defined as the ratio of the average mean signal to the 
average standard deviation within the center ROI of the 
phantom image (56,57). Time-course SNR is defined as 
the ratio of mean intensity within the evaluated ROI in 
the time-series and standard deviation across time (56). 
Temporal SNR is a crucial metric to evaluate the ability of 
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Table 2 Major fMRI QA metrics

Metrics Test goal Implementations Relevant references

SNR Temporal SNR provides information about system stability, and 
image SNR can be applied to evaluate data quality

Simmons et al. proposed a QA protocol 
including daily measure of SNR and 
long-term stability of SNR

(7,11,16,18,44)

CNR A measure to assess fMRI system performance and data quality. 
CNR can be helpful to compare fMRI studies between different 
sessions, subjects, and sites. CNR also reflects the validity of the 
statistical analysis

– (8,9,18,23,45)

SFNR The SFNR reflects system stability such as RF amplifier, gradient 
system. SFNR related-measures can identify noise sources from 
physiological motion and thermal contributions

FBIRN recommended a daily inspection 
before scan schedules (17)

(16,17,45)

PSC/PSF PSC/PSF can reflect fMRI system instability. An increase in PSC/
PSF reflects a decrease in system stability

Same as above (17) (9,15,16,18,45)

fMRI, functional magnetic resonance imaging; QA, quality assurance; SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio; SFNR, 
signal-to-fluctuation-noise ratio; PSC, percentage signal change; PSF, percent signal fluctuation; RF, radiofrequency.

an fMRI acquisition to detect subtle neural signal changes in 
the measured time-series data. Temporal SNR is calculated 
as the temporal mean signal divided by temporal standard 
deviation within the center ROI of the phantom image (57).  
Triantafyllou et al. have pointed out that time-course 
SNR is dominated by physiological noise with secondary 
contributions from thermal noise, whereas SNR0 is directly 
linked to thermal noise (56). Temporal SNR, SNR0, and 
time-course SNR has been used for evaluation of fMRI 
image noise properties at different magnetic field strength, 
and the results demonstrated that higher field strength still 
provides improved SNR with optimization of acquisition 
parameters (56,57).

CNR
CNR is an important metric concerning the results of 
the fMRI study, which depends on signal fluctuation and 
noise (47). CNR can be calculated using the type I fMRI 
QA phantom made by Tovar et al. (4). The computational 
formula of CNR is given as follows:

SCNR
σ
∆

=  
[1]

Where ΔS = SA − SB, SA and SB refer to the signal from 
two different rotational states of the phantom and σ is 
the standard deviation in the time series data. Similar 
calculations can also be found in the study by Olsrud et al. (5). 
Additionally, CNR-related metrics can be calculated with the 
help of the type I fMRI QA phantom made by Tovar et al. (4).

In addition to the phantom-assisted calculation methods, 
Geissler et al. have proposed a calculation method using 

task-related fMRI data (47). The task is opening and closing 
of the right hand, and the definition of CNR is similar to 
Eq. [1], except ΔS refers to the task-related signal variability 
and σ is the non-task-related variability over time. CNR 
is calculated for each brain voxel using two different 
approaches: one is a model-based approach and uses the 
general linear model, the other uses Savitzky-Golay filters. 
The results of the two approaches are highly correlated (47).

SFNR
SFNR is a key metric in the fMRI QA protocol of FBIRN 
(15-17). Using a static QA phantom such as FBIRN’s QA 
phantom, SFNR is defined as the mean signal intensity 
divided by the standard deviation of the total noise within 
the evaluating ROI (15,55). 

From the definition, it can be seen that SFNR is 
sensitive to various noise. To separate different types of 
noise, Greve et al. proposed several SFNR-related metrics, 
background SFNR, signal-weighted SFNR, instability 
SFNR, and physiological SFNR, which reflect different 
noise sources (16). Specifically, background SFNR, 
instability SFNR and physiological SFNR reflect the 
background, instability and physiological components, 
respectively, and signal-weighted SFNR reflects the sum 
of the background and instability noise. Greve et al. stated 
that there were two types of noise during the phantom 
fMRI scan, background and instability noise, and human 
fMRI introduced a third type of noise, physiological noise. 
Signal-weighted SFNR and background SFNR were 
calculated from agar phantom data obtained with two flip 
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angles, and physiological SFNR was extracted from human 
fMRI data collected using the same method (16).

PSC/PSF
PSC is another key metric in the fMRI QA protocol 
of FBIRN (14-16). It is believed that PSC is the most 
effective measurement metric because it provides direct 
interpretation regarding whether a signal change is induced 
by the BOLD effect (14,15,17). Because the average BOLD 
signal variations do not exceed 5%, temporal PSC that 
exceeds 5% can hardly be explained by the BOLD effect 
(4,28). PSC is calculated with the association of the fMRI 
QA phantom, such as the QA phantom of FBIRN (14,15,17) 
or types I QA phantom by Olsrud et al. (5). It is defined as 
the percent ratio of standard deviation to the mean signal 
intensity in the evaluating ROI. Other descriptions such as 
signal fluctuation and PSF have similar definitions.

QA of fMRI and fMRI data

QA of fMRI system is not sufficient to guarantee a high-
reliable fMRI study because operator- and subject-
dependent factors during fMRI (e.g., incorrect operations 
by MR technologists, subjects’ head motion and subjects’ 
poor involvement during task experiments) will affect 
the results of fMRI (18,29). Moreover, these issues are 
inevitable (29). Researchers have developed tools and QA 
metrics to handle these issues (19-22,29,43,48,58). For 
instance, rtfMRI can monitor the subjects’ involvement 
during fMRI and provide a simultaneous quality check of 
fMRI data (29,43,58). Head motion-related metrics can 
reveal the subjects’ head motion (19-22,48). 

rtfMRI and online QA of fMRI data

Immediately after fMRI, MR operators should start QA 
of fMRI data by checking the basic qualities of the data 
(29,59). For instance, if the image consists of too much 
noise or ghosting artifacts, the scan should be redone; 
otherwise, the data should be excluded. Indeed, there 
are studies and reports on the immediate assessment of 
fMRI data that use a technique called rtfMRI (29,60). 
Presently, the research focus of rtfMRI includes neural 
feedback and brain-computer interface (60). However, one 
of the most direct applications of rtfMRI is monitoring 
functional imaging scans and detecting errors (29). With 
the immediate assessment of the fMRI scan process, rtfMRI 
can monitor and estimate head motion parameters (43,58), 

cardiorespiratory parameters (44) and detect signal drift (29).  
Researchers have developed integrated rtfMRI systems 
for physiological recording of cardiac, respiratory, head 
motions (43,44,58,61). Several research sites have developed 
online QA programs based on rtfMRI to detect signal 
drift, motion, RF noise and spikes, scan-to-scan stability, 
artifacts and ghost levels (29,45,46,59). In HCP, the data are 
transferred to an online database, followed by an immediate 
quality check shortly after fMRI scan using rtfMRI (59). 

QA metrics of fMRI data

fMRI measures BOLD signal changes throughout the 
scanning period (28), so the in-plane image quality for 
fMRI is less important compared to the speed of signal 
acquisition (62). fMRI uses fast imaging methods to achieve 
its purpose but would inevitably introduce noise to the 
image (62). Furthermore, the BOLD signal is most sensitive 
to physiological noise near large vessels by nature (28). So 
temporal stability and noise level have an impact on fMRI 
data (14,18). The QA of the fMRI data cannot be apart from 
the fMRI system, and QA phantom, QA metrics designed 
for fMRI system can also be applied to the QA of fMRI data. 
Signal drift and PSC can be applied to evaluate temporal 
variations (14,29). SNR, CNR, and SFNR can provide a 
quantitative evaluation of the image noise level (14-17).

Physiological motions such as head, respiratory 
motion and vasomotion, introduce physiological noise 
to the fMRI data and lead to false intrinsic functional  
connectivity (18). Among these physiological motions, 
head motion is a major concern in the fMRI study (19,20). 
Mock scanner, cushions, rtfMRI head motion monitor and 
data acquisition measures are used by fMRI researchers to 
minimize head motion during fMRI scans (11,43,58), but 
head motion is inevitable. Head motion-related parameters 
are the most frequently used QA metrics (19,49). In 
fMRI, there are several metrics: 6 head motion parameters 
(19,20), root-mean-squared (RMS) motion (21,22), FD 
(22,48), absolute displacement (21,48), DVARS (21,22), and 
standard deviation (21). The major head motion metrics are 
as follows.

Six head motion parameters and RMS motion
The six head motion parameters, also known as the rigid-
body 6-parameter model, include transitional motion and 
rotational motion, which were proposed by Friston et al. (19). 
The six parameters are x, y, and z for translation, pitch, roll, 
and yaw for rotation. Data processing software packages such 
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as SPM and Data Processing & Analysis for Brain Imaging 
(DPABI) can provide a calculation of the mean and maximum 
values of the six parameters and set the head motion 
threshold (50,51). The common threshold for head motion is 
0.5 to 1.5 mm for translational motion and 0.5 to 1.5 degrees 
for rotational motion (48). 

RMS motion includes the mean squared values of head 
position changes (x, y and z translation, pitch, roll, and yaw 
for rotational motion) across all time points (21,22).

FD
FD is a scalar quantity reflecting head motion and 
represents the head motion of each brain volume compared 
with the previous volume (22,49). Power et al. calculated the 
FD using the following formula (22):

i ix iy iz i i iFD d d d α β γ= ∆ + ∆ + ∆ + ∆ + ∆ + ∆  [2]

Where Δdix,  Δdiy , and Δdiz represent differentiated 
translational displacements and Δαi, Δβi and Δγi represent 
differentiated rotational displacements. The displacements 
are calculated by backward difference, and rotational 
displacements are calculated on the surface of a sphere 
with a radius of 50 mm to convert from degrees to 
millimeters (22). In addition to the FD by Power et al., 
there are other approaches to calculate FD; for instance, 
Jenkinson et al. used RMS deviation to calculate FD (49), 
and Van Dijk et al. defined displacement in 3-D space for 
each brain volume as the RMS of translation parameters 
from one volume to the next (63). Power et al. set the 
threshold for FD with no more than 0.2 mm as well as 1 
back and 2 forward neighbors (22,48).

DVARS
Other metrics exist that are not typically head motion 
metrics but can be used to detect motion-related artifacts 
and identify bad scans. DVARS is one of them. 

DVARS (D refers to a derivative of fMRI time course, 
VARS refers to RMS variance) reflects BOLD signal 
fluctuations in the defined ROI of each data volume 
compared with the previous volume (21,22). DVARS is often 
calculated within a given ROI. However, if the ROI is not 
given, DVARS is calculated across the whole brain (21). The 
definition of DVARS is given in the following formula (22):

( ) ( ) ( ) 2

1i ii
DVARS I I x I x−

 ∆ = − 
 

 [3]

Where Ii(x) is the signal intensity at location x on the ith 
frame, and <> denotes the spatial average in the given 

ROI. As shown in Eq. [3], a low DVARS value represents 
high data quality (22). However, the threshold of DVARS 
to distinguish bad scans from good scans is lacking. In 
a recent study, Afyouni et al. described a sum of squares 
decomposition of the fMRI data and proposed null 
distribution and p-values for DVARS thresholding (64).

Quality evaluation of fMRI data processing 
pipelines and statistical methods

Quality of fMRI data processing

fMRI data processing includes slice timing, realignment, 
normalization and smoothing (37). Each preprocessing step 
includes parameters to be set and choices to be made by 
researchers (51). Carp conducted 6,912 preprocessing choice 
combinations to a single dataset and found that certain regions 
experienced more variations than others (32). Although with 
the upgrade of preprocessing software pipelines, variations 
induced by parameter settings have been minimized, but 
flexibility in data preprocessing remains a potential factor that 
has an impact on the fMRI study (32,33). A state-of-the-art 
study has stated that a clear description of data processing steps 
and preregistration of methods and analysis plans are potential 
solutions to this issue (33).

As for each processing step, smoothing is a controversial 
step (65). Smoothing is a crucial step in data preprocessing 
that guarantees the assumptions of Gaussian random 
field theory and reduces certain noise and the effects 
of spatiotemporal heterogeneity of fMRI data (66,67). 
However, there is a controversy regarding whether or not 
to use spatial smoothing in fMRI preprocessing because 
smoothing blurs together different types of tissues that 
may enlarge activation regions and reduce useful spatial 
heterogeneity (65). Some state-of-the-art works include 
spatial smoothing in their procedures (68) while others 
use unsmoothed data (69,70), and the controversy remains 
unresolved.

For motion-related artifact correction, the method 
employed is denoising, which is the main step for data 
processing. Major software packages such as SPM and 
Analysis of Functional NeuroImages (AFNI) have 
integrated denoising methods such as bandpass filter 
and scrubbing into the pipelines (37,50,51). External 
physiological motion measurements and data-based 
methods (e.g., realignment, bandpass filter, scrubbing 
method, Wavelet Despike method, independent component 
analysis, and principal component analysis) (71-74) are 
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two major denoising methods. By physiological recording 
of physiological motions, motion-related effects can be 
modeled and removed with linear regression (61). However, 
external physiological measurements may not be universal 
due to the lack of recording equipment and incompliant 
subjects, thus making data-based methods a reliable choice 
of motion-related artifact correction (61). QA metrics such 
as motion-BOLD contrast, test-retest reliability, high-
motion vs. low-motion contrast, and temporal degrees of 
freedom loss have been proposed to assess the performance 
of different data-based denoising methods (71,75). A recent 
study by Parkes et al. compared 8 most popular denoising 
methods, including regression of head motion parameters, 
anatomical component correction, global signal regression, 
and independent component analysis-based strategy for 
Automatic Removal of Motion Artifacts (ICA-AROMA), 
using the above QA metrics. The results indicated that 
ICA-AROMA performed best in high-motion vs. low-
motion contrast, test-retest reliability, quality control/
functional connectivity correlations (75). Moreover, the 
author recommended ICA-AROMA to be used for motion-

related artifact correction.

Comparison of fMRI software packages

fMRI data-processing software can be divided into two 
categories. One category is that the mentioned above 
rtfMRI and online analysis tools provided by MRI vendors 
or large studies sites and projects (29); the other category is 
offline software including MATLAB-based packages such as  
SPM (50), Resting-State fMRI Data Analysis Toolkit, DPABI 
and independent software such as AFNI and FSL (37). Both 
online processing software and offline software have similar 
processing steps and statistical analysis methods (50,58).

Because the ground truth of human fMRI data is 
almost impossible to obtain, images of QA phantoms and 
computer-generated fMRI phantoms are used to evaluate 
the performance of the software packages (34-36). Several 
groups have generated simulated data to evaluate fMRI 
processing software (12). Table 3 summarizes computer-
generated phantoms and simulated data for quality 
evaluation of fMRI processing software. Studies have shown 

Table 3 Computer-generated phantoms and simulated data for quality evaluation of processing software

References Phantoms and simulated data QA implementations

(70) Baseline dataset was generated based on real fMRI data. Simulated 
activations with rectangular regions were added to the dataset. Four rigid-
body motion models, namely, low, random motion; high, random motion; 
high, correlated motion and low, correlated motion were added to baseline 
dataset. At last, statistical noise was added to the phantom

The computer-generated phantom had known 
locations and levels of BOLD signal activation, 
known rigid body motion and noise level. This 
phantom can be used for quality evaluation of 
processing software

(71) A full brain volume was collected from EPI sequence of real human data. 
Simulated activations were added to the brain volume. Then two motion 
phantoms were created based on the brain volume. One simulated rigid-
body motion, the motion was derived from the center of mass motion of a 
volunteer. The other simulated nonrigid-body motion with motion derived 
from a volunteer performing finger-tapping task

The realignment module of SPM99b, AFNI98, 
SPM96, were compared using two motion 
phantoms. The results demonstrated that motion 
could be corrected by realignment without 
degradation of the activation. The phantom can 
be used for the evaluation of different realignment 
algorithms

(72) A realistic fMRI phantom was generated including the effect of static-field 
inhomogeneity, spatially varying spin density, image distortion, signal loss, 
and rigid motion

SPM2 was used to perform motion correction 
and activation analysis on the phantom, the 
results demonstrated that processing software 
might be affected by the interactions by motion 
and distortion

(32) A spin-history simulator was proposed taking several factors into 
consideration, such as slice excitation profiles, the times at which RF 
pulses occur, set of positions of the scanned object, magnetization and 
relaxation time. Two types of simulation were applied; one is displacement 
in one direction; the other is ‘back-and-forth’ displacement. Simulated 
data were generated from the spin-history simulator

The simulated data were able to evaluate different 
spin-history correction algorithms

fMRI, functional magnetic resonance imaging; QA, quality assurance; EPI, echo planar imaging; BOLD, blood oxygenation level 
dependent.
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similar activation results of both online software and offline 
software using simulated data and real fMRI data (53,71). 
There are also comparison studies of the same software on 
different operating systems in the early days (76). With the 
present upgrade of software packages, each software has 
strong compatibility, and a few papers related to this issue 
have been seen. 

In addition to the above comparison, different software 
packages have their QA features (50,51). For instance, SPM 
generates head motion reports during the realignment 

process, and unqualified subjects can be eliminated with the 
setting of a head motion threshold. SPM can also provide a 
quality check for spatial normalization and relevant quality 
scores (50). Additionally, DPABI provides an integrated 
QA module for functional and structural images in version 
3.0 and follow-up versions (51). The quality check for raw 
functional image, T1 image and normalization are shown 
in Figure 2A,B,C,D. The head motion report is given in  
Figure 2E,F,G for translational motion, rotational motion 
and mean FD.
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fMRI statistical analysis

Statistical power
The sample size has a huge impact on the statistical power of 
fMRI studies (23,77,78). Several studies have indicated that 
small-sized fMRI studies not only have a reduced chance 
of detecting true effects but also have a reduced likelihood 
that a statistically significant result reflects a true effect 
(77,78). However, how many subjects are enough? A study 
by Carp reviewed 241 research articles from 2007 to 2012 
and found that the median sample size per group for two-
group studies was 14.75 and 15 for one-group studies (32).  
From 2011 to 2015, 1,131 fMRI research articles 
demonstrated an increased median sample size of 28.5 
for single-group studies and 19 per-group for multigroup 
studies (33). In a recent study, Yeung et al. reviewed 388 
articles published in 2017 and found that the median sample 
size was 33 (52).

Chen et al. calculated the reliability, sensitivity and 
positive predictive value as the sample size differed and 
suggested that studies with a sample size less than 80 (40 per 
group) should be considered as a preliminary study given its 
low reliability, sensitivity and positive predictive value (23). 

State-of-the-art studies suggested a priori power 
calculation using formal statistical power analysis such as 
PowerMap or noncentral random field theory framework 
(33,77). Making research data available and collaborative 
work will increase the opportunities for data aggregation, 
allow external checking of the results, which increases total 
sample size and therefore statistical power and transforms 
the reliability of findings (33,77).

Quality evaluation of multiple comparison correction 
methods
All the existing fMRI analysis methods can be roughly 
classified into two categories. One is the hypothesis-
driven approach such as that integrated with SPM, FSL, 
and AFNI (37,50). The other is the data-driven approach 
such as principal component analysis (79), ICA (66,74-75),  
and canonical variate analysis (80). Most analysis methods 
involve mass univariate testing with separate hypothesis 
test of each voxel (37,50,66). As a result, the false positive 
rate will be inflated if there is no correction for multiple 
comparison tests (33). Therefore, corrections for multiple 
comparisons are needed in fMRI studies (33). Recently, 
a growing number of studies have questioned the 
reliability of some fMRI results that used weak multiple 
comparisons correction methods with a low statistical 

threshold (3,33,38,52), which bring a concern to the fMRI 
communities.

There is no doubt that reliability is the most important 
factor in fMRI studies (32,33,52). To evaluate the reliability 
of fMRI multiple comparisons correction methods, many 
QA metrics have been proposed, such as receiver operating 
characteristics (34,35,79,81,82), reproducibility (23,24,31), 
FWER (3,23), test-retest reliability (24,83-85), and positive 
predictive value (23,77). 

Test-retest reliability is one of the most effective metrics 
to estimate the reliability of fMRI studies. Consortium for 
Reliability and Reproducibility (CoRR) has promoted test-
retest reliability as QA standards for fMRI communities (24). 
CoRR has also collected and shared the test-retest dataset via 
the 1000 Functional Connectomes Project and International 
Neuroimaging Data-sharing Initiative, allowing individual 
researchers to calculate reliability on their own (24). To 
measure test-retest reliability, the same fMRI test must be 
performed on the same subjects on two separate occasions. 
Next, test-retest reliability can be evaluated using many 
approaches, such as the intraclass coefficient or the dice 
coefficient across two fMRI scans (23,86).

FWER is another effective metric for performance 
evaluation of statistical analysis and multiple comparison 
strategy. It is defined as the probability of making type I 
errors when performing multiple comparisons (3,23). To 
achieve low FWER, several multiple comparison correction 
strategies are valid, such as FWE and false discovery rate 
correction (23). 

A recent study has reported that permutation associated 
with Threshold-Free Cluster Enhancement achieves 
the best balance among FWER, test-retest reliability 
and replicability, and suggested permutation test with 
Threshold-Free Cluster Enhancement should be used to 
guarantee high reliable fMRI studies (23). Furthermore, 
non-parametric methods such as permutation test have also 
outperformed other traditional parametric methods in false 
positive rate and FWER (3,33).

QA of task-related fMRI

The former mentioned QA of fMRI system and fMRI data, 
quality evaluation of fMRI data processing pipelines and 
statistical methods are also suitable for task-related fMRI. 
In terms of QA specially designed for task fMRI scanning 
equipment and apparatus (e.g., haptic, auditory and visual 
devices), study design, and paradigm design tools, few 
related literature sources are available. In this section, the 



1158 Lu et al. Review of fMRI QA

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2019;9(6):1147-1162 | http://dx.doi.org/10.21037/qims.2019.04.18

literature on real-time monitoring, reliability of task fMRI 
is reviewed.

rtfMRI is a useful tool for simultaneous quality check 
of fMRI scan processes such as monitoring subjects' 
physiological movements, involvement and behavioral 
responses to identify problems as early as possible (45). As 
discussed above, there is external measuring equipment to 
record eye movement (30,87) and physiological movements 
such as cardiac, respiratory, head motions (73). Several groups 
have reported rtfMRI to monitor behavioral responses and 
subjects’ involvement (44,88,89). FBIRN has adopted a 
real-time tool as a quality check method for behavioral and 
physiological data that can continuously monitor a subject’s 
task performance, physiological status and eye movement and 
identify errors as early as possible (90). 

Task-related fMRI offers a unique way to identify 
and locate functional areas in the human brain (91). 
However, reliability remains a concern for task-related 
fMRI similar to that for resting-state fMRI (91). For task 
fMRI, reliability is often calculated as test-retest reliability 
and reproducibility over time (91). Test-retest reliability, 
often known as repeatability, is the metric to evaluate the 
stability over time for test-retest data. Extensive works have 
been performed to assess the test-retest reliability of task-
related fMRI using parameters such as intraclass coefficient, 
Pearson correlation, and coefficient of variation (83,91,92). 
Reproducibility is a metric to quantify the ability to obtain 
similar results over time (23,91). For task-related fMRI, 
reproducibility has been evaluated using parameters such as 
the dice coefficient or Jaccard overlap (23,91).

Conclusions

The last two decades have witnessed the development of 
fMRI QA phantoms (4-11,54) and QA metrics (14-16,55-57). 
Major projects such as FBIRN (14-16) and HCP (11) have 
established complete QA protocols and well-designed QA 
processes. Although the QA mentioned above processes 
could play an important role in ensuring high reliable fMRI 
studies, future fMRI studies still face many challenges due 
to flexibility in the experiment, data processing, statistical 
analysis (32,33). Meanwhile, a considerable amount of fMRI 
studies still had inadequate statistical power and lacked 
control over false positive rates (32,52). 

In the future, researchers should establish collaborated 
efforts towards a more transparent and reproducible fMRI 
communities. Multicenter fMRI studies are recommended 
for several reasons: Multicenter fMRI studies can recruit 

subjects with increased demographic diversity. A growing 
number of subjects also enhances the statistical power of the 
fMRI study.

About QA of fMRI systems, FBIRN, HCP, and other 
study projects have made their own fMRI QA protocol. A 
daily inspection of the fMRI system according to the fMRI 
QA protocol is highly recommended by the community. 

In terms of fMRI data quality check, data sharing should 
be encouraged for the reason that it not only allows an 
external check of the original result but also offers a source 
for researchers all over the world to validate and improve 
their processing and analysis methods.

As for data processing and statistical analysis, more 
concerns should be focused on sample size, since sample 
size affects the statistical power of fMRI studies. Multiple 
comparison correction should also be focused on for control 
over false positive rates.

As fMRI research continues to proper with the surging 
of new fMRI techniques and new processing and statistical 
methods, it is likely that new fMRI QA programs will be 
needed.
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