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Introduction

Volumetric CT (VCT) is widely used in image-guided 
radiation therapy. Due to scatter and beam hardening in 
VCT scanning, a low-frequency shading artifact severely 
deteriorates the quality of the reconstructed image. Shading 
artifact causes reconstructed image inaccuracy and spatial 

non-uniformity (SNU). Without shading correction, the 
CT number error of reconstructed image CT will be 
exceeded 350 HU, which brings errors to the positioning 
accuracy of image-guided treatment and the diagnosis of the 
image. Thus, it limits the VCT in the clinical application. 
Therefore, shading correction in VCT is one of the most 
important problems to be solved for improving VCT image 
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quality.
The importance of shading correction on the VCT 

system is reported by many publications on this topic (1-12).  
The existing methods of shading correction are mainly 
divided into two types: pre-processing and post-processing. 
The pre-processing method corrects the shading artifact in 
VCT image mainly using an additional hardware device, 
aiming to prevent the scattering photon from reaching the 
detector. Following are two typical methods for shading 
correction in pre-processing. The first one is increasing 
the air gap between object and detector (13). As the air gap 
widens, the detection efficiency of the scattered photons will 
be reduced because of the small cone angle. However, this 
method is limited by the physical space of the VCT system 
because the spatial distance cannot be increased indefinitely.

Meanwhile, the X-ray dose will be increased to 
compensate for the enlarged distance, which is not practical 
in the clinic. The second one is using the anti-scatter  
grid (14), which can block the scattered signal of incident 
angle, while the attenuation efficiency of scattered light 
using this method is not high enough. At present, the 
commercial grid can only provide about three times 
reduction rate of the scatter-primary ratio (SPR), which 
cannot guarantee the quality of VCT image in a high 
scattering environment. It also needs to increase the 
radiation dose to compensate for the attenuation of the 
X-ray intensity.

Although pre-processing can directly prevent the 
scattering photon from reaching the detector, its limitation 
is obvious, and post-processing is more practical. Post-
processing methods include analytical modeling (15), 
Monte Carlo simulation (16,17), modulation method (3),  
measurement-based method (1-3,6,18), and scatter 
correction based on prior data (19,20). Analytical modeling 
method has a fast computation speed, but the accuracy of 
scattering estimation is not high enough especially in the 
complex object. Monte Carlo simulation is the “golden 
standard” for scattering estimation, but the method is time-
consuming. Modulation method adds a high-frequency 
modulator between kV X-ray tube and the scanned object. 
According to different response characteristics between 
primary and scatter signal, they could be separated in the 
frequency domain. However, the modulator must be static 
in the projection, which requires a high accuracy geometry 
VCT system. Due to the gantry rotation wobble, its clinical 
application is limited. The measurement-based method 
requires inserted blocker (usually using lead) into the 
X-ray source and scanned object (1-3,6,21-25). In this way, 

the detector forms the shadow region that only contains 
the scatter signal, but such a methodology is difficult to 
operate by changing the hardware setting of the existing 
system. Shading correction based on prior data can get the 
corrected image better, but this method needs additional 
prior patient information. Therefore, it cannot be used as a 
general solution for shading correction.

To tackle the issues in shading correction, in this paper, 
a novel approach is proposed incorporating the deep 
convolutional neural network (DCNN) and adaptive filter 
(AF) together to estimate the shading artifact accurately, 
which fully explore the potential of DCNN in segmentation 
of the VCT image with severe artifact and extract the 
shading artifact using AF (26). The proposed method does 
not depend on the prior image data and is completely 
compatible with the linear accelerator in image-guided 
radiotherapy (IGRT). It does not need to change other 
hardware and scan protocols and simultaneously without 
increasing scanning time and dose. 

Methods

Workflow

As is known, CT numbers of the same human tissues are 
approximately the same (26). According to this feature, a 
template image without shading artifact can be constructed 
by image segmentation and be used as the corrected 
reference. To isolate the shading artifacts from the raw data, 
we generate the residual image by subtracting template 
image from raw data. An AF is applied in the residual image 
to estimate the shading artifact so that we can extract the 
shading artifact while maintaining structure and detail.

Figure 1 shows the framework of the shading artifact 
correction using DCNNAF. Due to the image SNU 
effect by shading artifact, the conventional segmentation 
algorithm is difficult to distinguish the different human 
tissues. We propose a DCNN to extract deep feature about 
the VCT image with shading artifact so that an accurate 
segmentation can be achieved to distinguish the different 
tissues. Before we start the framework, the input VCT 
images Itrain and the corresponding labels of segmentation 
Ilabel are applied to train DCNN. To start the framework, 
we input the reconstructed VCT images I0 with shading 
artifacts to the trained DCNN. The template image It is 
generated from the output of the DCNN. The residual 
image Ir which is generated by the subtracting segmented 
image from the uncorrected image has shading artifact, 
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Figure 1 The framework of shading artifact correction using the deep convolutional neural network and an adaptive filter. The legend in 

the figure * *
0 t cI R I S I: raw image; * *

0 t cI R I S I: residual image; * *
0 t cI R I S I: template image; * *

0 t cI R I S I: shading image; * *
0 t cI R I S I : corrected image.
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structure and image detail. The structure and image detail 
is the high-frequency signal while the shading artifact is the 
low-frequency signal. Therefore, an AF is implemented to 
the residual image to remove the high-frequency signal. 
The shading artifact at low frequency can be obtained. 
Finally, the artifact is compensated for the raw image to get 
the final image. The following sections introduce the key 
steps in the workflow, including VCT segmentation using 
DCNN and shading artifact estimation using an AF.

VCT segmentation using DCNN

Dramatic developments in parallel technology enable 
the processing of big data for DCNN. Semantic pixel-
wise segmentation is an ongoing topic of research, 
which is improved by deep learning. Unlike the existing 
conventional segmentation algorithm, segmentation using 
DCNN is not just based on the image intensity, so that it 
is especially suitable for shading contaminated VCT image 
segmentation. This paper proposes a deep convolutional 
encoder-decoder architecture for robust and accurate 
human tissue segmentation (bone, marrow, muscle, fat, 
and air), which can generate an accurate template image 
assisting shading correction.

DCNN architecture
The black dotted box in Figure 1 demonstrates the DCNN. 
The encoding part and the decoding part are shown in 
the left and right side (27), respectively. The encoding 
part follows the convolutional neural network, and the 
repeated convolution layers are included. The Rectified 
Linear Unit (ReLU) layer follows the convolution layer. In 
the down-sampling step, the max pooling operation with 
the size of 2×2 and the stride of 2 is applied. The number 
of feature channels is doubled at each down-sampling 
step. In the decoding part, a concatenation layer from the 
correspondingly down-sampling step (shown in the gray 
arrow in Figure 1) is copied to the step of up-sampling. 
The up-sampling convolutional layer with 2×2 filter kernel 
contains the half number of feature channels. Therefore, the 
output image can be resized into the same size as the input 
image. The 3×3 convolutions with ReLU are followed by 
the max pooling and up-convolution layers. In the final step, 
a 1×1 convolution layer and a soft-max layer are proposed to 
map the target of segmented tissue. The proposed DCNN 
architecture of tissue segmentation has 24 convolutional  
layers. 

Network training
The DCNN architecture aims to obtain the mapping 
function between the input image and the output of the 
segmented image. To train the DCNN is to improve 
the accurate of pixel classification from the VCT image. 
The final segmentation output from the DCNN can be  
written as:

( )( )( )( )( )1 2 2 1 1 1 2( , ) max n n n nY F X soft f W f f W f W X b b b−= Θ = + + +   [1]

Where X is the input of VCT raw data, Y is the image 
label with the segmented tissue, bi is the bias in the ith 
convolution layer, Wi is the ith convolution layer, fi is a ReLU 
function in ith convolution layer, Θ represents all the tuning 
parameters in the training step. softmax is the classification 
layer, which is widely used in image segmentation. The aim 
of the DCNN architecture is to figure out a set of optimal 
parameters Θ with the input of the image to minimize the 
loss function:

arg min ( , ( , ))L Y F X
Θ

Θ 	 [2]

In this equation, L represents the loss of cross-entropy 
in segmentation. Since the loss function and the ReLU 
are differentiable, the back-propagation algorithm can be 
applied to minimize Eq. [2]. In this study, the DCNN was 
trained using the Adam algorithm. The learning rate was 
initially set at 10−3 and the factor for dropping the learning 
rate is 0.1 in the ten epochs passes. The size of the mini-
batch was 16. DCNN is implemented using Matlab R2018a 
on a graphics workstation. It has an Intel Core Xeon E5-
2697 v3 CPU and 128 GB RAM. Two GPU cards (Nvidia 
GTX Titan Xp) are used to accelerate the minimization 
step of the loss function. The tuning parameters Θ are 
initialized with a random number between −1 and 1.

Training datasets
In this study, the proposed DCNN architecture is applied 
to the two datasets for testing the practicability of tissue 
segmentation. The two datasets are introduced as follows:

(I)	 Catphan©504 phantom dataset. We have collected 
ten subjects of the projections with different 
current and voltage of the X-ray tube. The VCT 
projections were acquired with tabletop VCT 
systems. The ten subjects of VCT projections were 
reconstructed using FDK reconstruction algorithm. 
The reconstructed voxel is 512×512×200. The 
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voxel size of the image is 0.5×0.5×0.5 mm3. A total 
of 2,000 two-dimensional (2D) VCT images were 
obtained.

(II)	 Patient pelvis image dataset. The patient’s VCT 
data are collected on the On-Board Imager (OBI) 
which is equipped on Varian Trilogy. The pelvis 
dataset consists of 15 subjects with a different 
patient. The reconstructed voxel is 512×512×56. 
The voxel size of the image is 0.98×0.98×2.5 mm3. 
A total of 840 2D VCT images were obtained.

The VCT images in both datasets are aligned to the 
corresponding label with the different segmentation targets. 
In the phantom dataset, Teflon, Delrin, Acrylic, Low-
Density Polystyrene, water, polymethylpentene, and air 
are contoured as the target of segmentation. In the patient 
pelvis image dataset, we segment the image into the air, fat, 
muscle, marrow and bone. Two networks are trained for 
the phantom and patient pelvis, respectively. To verify the 
DCNN network, we divided the VCT image datasets into 
three categories: training dataset, the validation dataset, and 
the testing dataset. The training dataset is 80% of the VCT 
images, while the validation dataset is 20% of the VCT 
images. The testing dataset is 200 slice of the phantom 
image and 56 slices of patient pelvis image. The images in 
these three datasets are different.

Shading artifact estimation using an AF

The segmentation image is obtained from the output of the 
DCNN. The corresponding tissue area is filled with the 
standard CT number of corresponding X-ray tube voltage, 
to generate a template image It, and this image has no image 
details. By subtracting the raw images from the template 
image It, the residual image R is generated. The residual 
image contains the shading artifact and the image detail. 
The shading artifacts are mainly low-frequency signals 
while the image details are mainly high-frequency signals. 
Therefore, a low pass filter can be used to separate the 
shading artifact and image details. Conventional low pass 
filter can eliminate the image detail, but the boundary of the 
anatomical structure in the residual image R may be filtered 
out simultaneously, resulting in the severe loss of image 
contrast. Consequently, the filter should balance image 
smoothing and edge preserving. In this paper, a L0 norm 
smoothing filter is applied to the residual image which can 
achieve smoothing the image detail while preserving the 
edge of the structure. The objective function of the filter is 
as follow:

{ }2 0
arg mink k x yS R S a S S= − + ⋅ ∂ + ∂ 	 [3]

Here S is the estimated shading artifact, R is the residual 
image. ∂xS and ∂yS are the gradient of shading artifact 
in x and y direction, respectively. ak is a weight directly 
controlling the degree of smoothing. ║R−S║2 is a constraint 
of the image structure similarity. A discrete counting 
metric is applied in the objective function. Since the first 
term is the pixel-wise difference while the second term is 
global discontinuity statistically, discrete and the traditional 
gradient optimization methods are incapable of solving 
this problem. We apply a special alternating optimization 
strategy with half-quadratic splitting to solve the objective 
function (28). 

The smoothing image Sk is significantly depended on 
the smoothing parameter ak. In this paper, we propose an 
adaptive framework to choose a suitable ak automatically, 
which can achieve the shading correction and image 
structure protection. Since the shading artifact deteriorates 
the spatial uniformity of the image, the goal of shading 
correction is to improve the spatial uniformity in the same 
tissue. To find a correct smoothing parameter ak, we figure 
out the solution based on the assumption that CT numbers 
of the same human tissues are approximately the same. 
From the above assumption, we can know that the ideal 
CT image has high spatial uniformity in the specific tissue. 
In this paper, we use a sharp peak in the image histogram 
of the specific tissue to represent the spatial uniformity of 
the image. Therefore, a suitable value of the smoothing 
parameter ak is calculated as an optimization model to 
minimize the objective function. The function is written as 
follows:

( )( ){ }2*
0 2

arg min ( ) max ( )

. . 0
c k c ka I I a hist I a

s t a

λ= − + ⋅

> 	
[4]

Where I0 is the input of the uncorrected image, Ic(ak) 
is the output of the corrected image with the smoothing 
parameter setting at ak. hist is the image histogram in the 

specific tissue. ( )( ){ }2*
0 2

arg min ( ) max ( )

. . 0
c k c ka I I a hist I a

s t a

λ= − + ⋅

>

 is the image fidelity term, 
which can protect the structure of the output image. 

( )( ){ }2*
0 2

arg min ( ) max ( )

. . 0
c k c ka I I a hist I a

s t a

λ= − + ⋅

>

 is the term of image spatial uniformity. λ 
is a penalty factor which is set at −10−3 empirically.

Eq. [4] is solved using the mesh adaptive direct search 
(MADS) algorithm. The convergence analysis for the 
MADS algorithm can be found in Ref. (29). It can 
achieve automatic smoothing parameter setting instead of 
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cockamamie tuning. After getting a suitable parameter of 
the filter, the final corrected image can be obtained using 
the following formula:

* *
0cI I S= + 	 [5]

Where S* is the estimated shading artifact with smoothing 
parameter setting at a*.

Pseudocode

In summary, we present the pseudo-code using the 
DCNNAF algorithm for the shading correction in Table 1.  
Line 1 sets the DCNN architecture and the training 
parameters. Line 2 gives the optimization control parameters, 
including the stopping criteria and initial setting. Line 3 
is the training step to minimize the cross-entropy using 
Adam algorithm. Line 4 is the predicting step that is using 
the trained network to segment the input image. Line 5 
is the generation step of the residual image. Line 6–23 
is the main loop of generating the AF. In the step of the 
AF, Line 7 is the smoothing step on the residual image in 
order to estimate the shading artifact. Line 8 indicates the 
generation of the temporary corrected image. Lines 9–11 
apply a barrier function ψ(ak) to change the constraint 
optimization problem into an unconstraint optimization 
problem. The barrier objective function G(ak) is solved 
using MADS algorithm shown in line 12–23. The searching 
step in Lines 12–15 is implemented to find a new iteration 
that decreases the objective function in Mk. When the step 
of searching fails to find the decreased value, the polling 
step in Lines 16–20 is performed in the current iteration. 
When the step of polling also fails to find the decreased 
value, the parameter of mesh-size is decreased. Otherwise, 
the parameter of mesh-size is increased. To terminate the 
iterative process, the stopping criteria Δtol should be smaller 
than a given threshold after a certain number of iterations 
(kmax) in Lines 21–23. Lines 24–25 are implemented 
to compensate the estimated shading artifact into the 
uncorrected image to get the final image.

Evaluation

The DCNNAD method is evaluated using the Catphan©504 
phantom and patient pelvis cases. The phantom projection 
is acquired using the tabletop VCT system at Shenzhen 
Institutes of Advanced Technology, Chinese Academy 
of Sciences. The geometry of the tabletop VCT system 

matches with the Varian Trilogy OBI. We also obtained the 
phantom image using the narrow collimation in front of the 
kV tube (a width of around 10 mm on the detector). In this 
fan beam equivalent geometry, scatter signals are inherently 
suppressed, and the resultant images were referred to 
as “scatter-free” reference images for comparison. After 
the Catphan©504 phantom study, the pelvis image of 
the patient is included to evaluate the practicability and 
robustness of the proposed DCNNAF algorithm. The 
pelvis data sets are acquired from patients on Varian 
Trilogy OBI at the Department of Radiation Oncology. For 
comparison, the corresponding planning CT of a patient is 
also acquired as the reference image.

Table 2 lists the scanning and reconstruction parameters. 
We apply the image contrast and SNU as quality metrics in 
the regions of interest (ROIs) of the image. Scatter artifacts 
are more prominent around objects with high contrasts. 
On Catphan©504 phantom study, the image contrast was 
calculated as:

r bcontrast µ µ= − 	 [6]

Where μr is the mean CT number of VCT image inside 
ROI and μb is the mean CT number of VCT image in 
the surrounding area. Since the scatter signals cause non-
uniformity in the VCT image, the SNU (30) is measured as:

max min 100%
1000

HU HUSNU −
= ×

	
[7]

Where max min 100%
1000

HU HUSNU −
= ×

 and max min 100%
1000

HU HUSNU −
= ×

 are the maximum and the 
minimum of the mean CT numbers the selected ROIs, 
respectively. Five ROIs with the same diameter of  
10 pixels (5.0 mm) were selected in the VCT image of the 
Catphan©504 and patient pelvis data.

Results

Catphan©504 studies

Figure 2 shows the effects of the scatter correction using the 
proposed scheme on the reconstructed VCT images. Due to 
the scatter signal in the projection, the reconstruction error 
is significant as shown in Figure 2A and D. Since the shading 
correction is implemented using the DCNNAF method, 
the shading artifacts are suppressed as demonstrated in 
Figure 2B and E. Figure 2C and F shows the referenced 
fan-beam CT image. The average CT numbers in the 
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selected ROIs from Figure 2A,B,C are −40, 58 and 69 HU,  
respectively. Consequently, the average absolute error of 
CT numbers is 109 and 11 HU in the uncorrected and 
corrected image, respectively. It demonstrates the significant 
improvement of the proposed method. We evaluated the 

spatial resolution using the modulation transfer function 
(MTF). A circular object (the red box in Figure 2) is selected 
for MTF calculation. The 50% of MTF magnitude is 4.77 
in the corrected image while the 50% of MTF magnitude is 
4.56 in the uncorrected image. After correcting the scatter, 

Table 1 Pseudocode of shading correction method using DCNNAF

No. Algorithm 1 Description

1 16; 0.01; 5; 4000; (0.1); (shown in 1)batchSize learningRate nClass epochesNum rand layerParam Figure= = = = Θ = =

16; 0.01; 5; 4000; (0.1); (shown in 1)batchSize learningRate nClass epochesNum rand layerParam Figure= = = = Θ = =

// Initial training parameters

2 4
0 0 max

11000; 0.1; 1; 10 ; 500; 2;
2tol e ca kλ τ τ−= − = ∆ = ∆ = = = = // Initial adaptive filter parameters

3 * arg min ( , ( , ))label trainL I F IΘ = Θ // Training the network

4 *
0( , )tI F I= Θ // segmentation using the network

5 0r tI I I= − // Generate the residual image

6 for 
max1; ,k k k k= ≤ + + // Main loop

7 { }2 0
arg mink k x yS R S a S S= − + ⋅ ∂ + ∂ // Smoothing the residual image

8 0( ) ,c k kI a I S= + // Generate the correcting image

9 ( )2
0 2

( ) ( ) max ( ( ))k c k c kg a I I a hist I aλ= − + ⋅ // Objective function

10 0 0,
( ) k

k
if a

a
otherwise

ψ
 >

= 
+∞

// Barrier function

11 ( ) ( ) ( )k k kG a g a aψ= + // Barrier objective function

12 { }: D
k k k zM a D z N= + ∆ ∈ // Searching step: Evaluate ( )kG α   in kM . If 

1( ) ( )k kG Gα α− < , expand mesh. Otherwise, do the 
poll step13 if 1k ka M+∃ ∈  such that 1( ) ( )k kG a G a+ <

14 1 1;k k k z k e ka a D τ+ += + ∆ ∆ = + ∆  continue

15 else

16 { }:k k k kP a d d D= + ∆ ∈ // Poll step: Evaluate ( )kG α   at kP . If 1( ) ( )k kG Gα α− < , 
expand mesh. Otherwise, contract mesh.

17 if  1k ka M+∃ ∈  such that 1( ) ( )k kG a G a+ <

18
1 1; ;k k k k e ka a d τ+ += + ∆ ∆ = ∆

19 else 1 ;k c kτ+∆ = ∆

20  endif

21 end

22 if * *; ; ;k tol k ka a S S∆ < ∆ = =  break; endif // Stopping criteria of MADS

23 endfor

24 * *
0cI I S= + // Generation of the final corrected image

25 Return *
cI
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Table 2 Imaging and reconstruction parameters of the phantom and patient

Scan protocol Catphan©504 study Patient pelvis study

Imaging parameters

Scan mode Full-fan Half-fan

X-ray energy 120 kVp 100 kVp

X-ray tube current 80 mA 80 mA

Pulse width 13 ms 23 ms

Source to detector distance 1,500 mm 1,500 mm

Source to rotation axis distance 1,000 mm 1,000 mm

Detector size 400-by-400 mm
2
 1,024-by-1,024 400-by-300 mm

2
 1,024-by-768

Rotation circular 360 deg circular 360 deg circular

Number of views 662 667

Reconstruction parameters

Voxel size 0.5×0.5×0.5 mm
3

0.98×0.98×2.5 mm
3

Volume size 512-by-512-by-200 512-by-512-by-56 

Figure 2 Axial and coronal views of Catphan©504 phantom. (A,D) No correction, (B,E) with shading correction, (C,F) reference (fan-beam 
CT image). The images in the 1st row are in the axial view and the images in the 2nd row are in the coronal view. The selected uniform ROIs 
(marked with dashed red circle) in (A) indicate the locations where the average CT numbers are calculated using the optimized blocker. The 
average CT numbers in the selected ROIs from (A,B,C) are −40, 58 and 69 HU, respectively. In Figure 2B, the dashed white line represents 
the position where 1D profile in Figure 3 is taken. The averaged contrasts and CT number are calculated inside the contrast rods, which are 
indicated by the digits and white dashed circles in Figure 2A. The display window is [−250, 250] HU.

A B C

1

7
6
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2
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the spatial resolution in the corrected image is higher than 
the uncorrected image. The 1D profiles of the CT number 
along with the dashed white line passing through the two 
high-contrast rods in Figure 2B is shown in Figure 3. The 
1D profiles match well with the reference image using the 
proposed method. 

For further evaluation of the scatter correction performance 
using the proposed scheme, the average CT numbers and 
contrasts are calculated for the contrast rods in one of the 
phantom inserts as indicated in Figure 2A. The results 
are summarized in Table 3 using a fan-beam CT as the 
reference. The CT number error is reduced from 206 to 
13 HU in the selected ROI with the implementation of 
the proposed method. The image contrast is increased by a 

factor of 1.46 on average. 
Since the Catphan©504 is of the regular structure with 

an almost uniform distribution of CT number, a more 
challenge evaluation will be presented in the heterogeneous 
pelvis patient study in the next section. 

Patient head studies
For more challenging, a patient pelvis image obtained 
on the clinical VCT is evaluated using the proposed 
framework. Figure 4 shows the result of the processing 
image using DCNNAF; the 1–3th row is the axial, coronal 
and sagittal view image, respectively. The shading artifact 
severely deteriorates the image as shown in Figure 4A,E,I, 
leading to spatial non-uniformity in the pelvis image. 
Figure 4B,F,J shows the segmentation image. Although the 
shading artifact poses a big challenge in the segmentation of 
different tissue, the proposed DCNN method can achieve 
high accurate segmentation in bone, marrow, muscle, 
fat, and air mainly due to the deep feature extraction 
in the training data. Accurate segmentation makes the 
directly shading correction in image-domain a possible.  
Figure 4C,G,K shows the corrected image, which is 
significantly suppressed the shading artifact presented in the 
raw images. The corrected image using DCNNAF method 
is comparable to the registered planning CT is shown in 
Figure 4D,H,L. For quantitative image quality analysis, 
the error of CT number is reduced from 198 to 10 HU 
in the soft tissue region enclosed by the solid red circle in  
Figure 4A. The SNU is calculated in the five selected ROIs 
which are shown in Figure 4A. The SNU in the uncorrected 
and corrected image is reduced from 24% to 9%.

Table 3 Comparison of the average reconstruction value and image contrasts measured on the contrast rods of the Catphan©504 phantom

Properties ROI 1 2 3 4 5 6 7 Average

CT value Fan-beam CT −987 337 958 −985 −182 −90 −39 −

VCT with proposed correction −969 329 948 −961 −168 −82 −28 −

Error of CT number with correction 18 8 10 24 14 8 11 13

VCT without scatter correction −727 175 601 −712 −173 −117 −76 −

Error of CT number without correction 260 −162 −357 273 9 −27 −37 206

CT# improvement 250 158 347 243 10 31 50 −

Contrast VCT with proposed correction 1,002 237 834 981 272 190 120 −

VCT without scatter correction 724 155 554 717 181 128 84 −

Contrast Increase Ratio 1.38 1.53 1.51 1.37 1.50 1.48 1.43 1.46

Figure 3 Comparison of the 1D profiles passing through the two 
contrast rods as shown in Figure 2B. 
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Discussion

In this work, we investigated the DCNN in the segmentation 
of VCT image with severe shading artifact and proposed 
an AF to correct the shading artifact. Contrasted with the 
conventional shading correction method (31), the proposed 
DCNNAF method not only achieves high-quality image 
but also has a high computational efficiency due to the 
image-domain processing. Though we have tackled several 
issues in shading correction, the proposed scheme can be 
further improved. First, although the prediction is high 
computational efficiency, the proposed DCNN architecture 
spends a long time for data training, which generally 
takes one day to get a trained model, while the traditional 
segmentation does not need to train. In the future, we will 
improve the computational efficiency of data training by 
reducing the capacity of the network with high accuracy of 
segmentation. Second, the DCNN architecture needs large 
numbers of training data, and the corresponding labels of 
segmentation are needed to be contoured manually. The 
example of training data and corresponding label are shown 
in Figure 5A and B. In Figure 5B, it is evident that the 
label image which is contoured manually has a sharp edge 
between the different tissues. The error of the contoured 

image is unavoidable. Even so, the prediction of the testing 
image has a highly accurate result of segmentation, and the 
sharp edge error is eliminated shown in Figure 5C and D. It 
demonstrates that the DCNN can tolerate contoured error.

Different parameters will influence the accuracy of 
segmentation. The filter size of the convolutional layer 
needs to be optimized. We determine the optimized 
value by changing the filter size while keeping the other 
parameter fixed. Figure 6 shows the influence of the filter 
size on the patient dataset. As compared with the filter 
size of 1, 5, and 7, the proposed filter size 3 achieve higher 
accuracy at the last epoch. Therefore, we choose 3 as the 
best filter size.

Currently, we apply the DCNNAF method to only focus 
on patient pelvis data. We will extend the study on all parts 
of human VCT image. Regarding the patient pelvis, we 
focus on four tissues, i.e., bone, marrow, muscle, and fat in 
this paper. More tissue classification needs to be done in the 
future to improve the robustness of the proposed method 
around the whole part of the human VCT images, as well 
as its practicability to clinical application. Unsupervised 
learning is developing fast (32), and it also can achieve 
segmentation method. In this study, the proposed 
workflow still requires a large amount of training data and 

Figure 4 Axial, coronal and sagittal views of the reconstructed patient pelvis image. (A,E,I) No correction; (B,F,J) segmentation image using 
DCNN; (C,G,K) with shading correction; (D,H,L) the reference image using registered planning CT of the same patient. The images in 
the 1st row are in the axial view, the images in the 2nd row are in the coronal view and the images in the 3rd row are in the sagittal view. The 
selected uniform ROI enclosed by the solid red circle in (A) indicates the area where the average CT numbers of the VCT images in the A, 
C and D are calculated. The SNUs are calculated on the selected five ROIs enclosed by the dashed yellow circles in (A). The display window 
is [−250, 300] HU.
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segmentation labels. In the future, our team would do more 
searches on unsupervised learning that needs less training 
data on this problem. 

Conclusions

In this study, we propose a robust shading correction 
method using DCNNAF, which improves the VCT image 
quality. It does not need to change other hardware and scan 
protocols. The method also does not increase the scanning 
time, and the deliver X-ray dose. On the Catphan©504 
study, the error of the CT number in the corrected image’s 
ROI is reduced from 109 to 11 HU. On the patient pelvis 
study, the error of the CT number in the selected ROI 
is reduced from 198 to 10 HU. Besides the high shading 
correction efficacy, the proposed method possesses 

Figure 5 Example of pelvis image for training and testing. (A) Axial view image of the pelvis for training; (B) manual contoured image as a 
label; (C) axial view image of the pelvis for testing; (D) segmentation using the trained network; Display window is [−270, 280] HU.

Figure 6 Change of the accuracy on the validation set of the 
patient using different filter sizes.
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several advantages over other existing shading correction 
approaches, including no dose or extra scan time, no 
requirement of prior knowledge, easy implementations and 
high quality of the corrected images. 
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