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Introduction

Paranasal sinusitis is an inflammation of the mucosal 
lining of the paranasal sinuses (PNS) and is a common 
clinical problem in general populations (1). The sinusitis is 
diagnosed by the opacification of the sinuses and air/fluid 

level best seen in the Waters’ view of X-ray imaging or 
computed tomography (CT). Because CT is not routinely 
indicated in all patients with possible sinusitis, X-ray is still 
initially used for its diagnosis. However, there are several 
limitations to using PNS X-ray scans as a diagnostic tool. 
On plain radiographs, other facial bony structures overlap 
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the sinuses, and the rate of false-negative results is high (2,3). 
Furthermore, the posterior ethmoids are poorly visualized, 
and the ostiomeatal complex cannot be adequately assessed. 
Therefore, it is difficult to visualize these characteristics to 
discriminate sinusitis from normal cases. 

Many studies using machine learning have reported 
ways of classifying these ambiguous characteristics using 
techniques such as traditional machine learning support 
vector machines (SVMs), K-means clustering, naïve Bayers 
classifiers, etc. (4-6). Traditional machine learning methods 
require expert knowledge and time-consuming hand-tuning 
to extract specific features. Therefore, with traditional 
machine learning, features that represent the characteristics 
to be extracted must be implemented using various 
segmentation methods: thresholding, adaptive thresholding, 
clustering, region-growing, etc. (7). To overcome these 
limitations, deep learning (a branch of machine learning) can 
be used to acquire useful representations of features directly 
from data. Especially, the convolutional neural network 
(CNN) model uses a deep learning architecture to create a 
powerful imaging classifier (8). For that reason, recently, it 
is widely used to analyze medical images, such as X-ray, CT, 
and magnetic resonance imaging (MRI) images (9). 

Deep learning algorithms through millions of data points 
to find patterns and correlations that often go unnoticed 
by human experts. These unnoticed features can produce 
unexpected results. Particularly in the case of deep learning-
based disease diagnosis with medical images, it is important 
to evaluate not only the accuracy of the image classification 
but also the features used by the model, such as the location 
and shape of the lesion. However, one of the limitations 
is that there is a lack of transparency in deep learning 
systems, known as the “black box” problem. Without an 
understanding of the reasoning process to evaluate the 
results produced by deep learning systems, clinicians may 
find it difficult to confirm the diagnosis with confidence. 

The objective of this study to investigate the ability of 
multiple deep learning models to recognize the features 
of maxillary sinusitis in PNS X-ray images and to propose 
the most effective method of determining a reasonable 
consensus. 

Methods

Data preparation

Data collection
Our institutional review board approved this retrospective 

study and waived the requirements for informed consent due 
to the retrospective study design and the use of anonymized 
patient imaging data. We included records from January 
2014 to December 2017 for the internal dataset and from 
January 2018 to May 2018 for the external test dataset. 
A total of 4,860 subjects for the internal dataset, which 
included 2,430 normal and sinusitis subjects each, and 160 
subjects for the external test dataset (temporal test dataset), 
which included 80 normal and sinusitis subjects each, 
underwent PNS X-ray imaging using Waters’ view. The 
temporal test dataset included newly collected data from 
subjects with a 1-year examination interval. The temporal 
test dataset was used to evaluate objective performance to 
ensure that the accuracy of the data for a specific period 
is not represented. If an image of the same subject that 
repeatedly scanned is included in the same dataset, it can 
affect the results with underestimate or, conversely too 
low. All X-ray images were compared with PNS CT as 
the reference standard for sinusitis of deep learning. After 
reviewing the imaging database, including the PNS X-ray 
images, 60 subjects were excluded because of artifact caused 
by sinus surgery (n=23), fracture (n=7), cyst or mass (n=15), 
severe movement (n=10), and incorrect scanning (n=5). 
To prevent overfitting, we conserved as many images as 
possible, including those with appropriate artifacts. 

Pre-processing steps
The pre-processing steps were conducted with resizing, 
patch, and augmentation steps. The first pre-processing 
step normalizes the size of the input images. Almost all the 
radiographs were rectangles of different heights and too 
large (median value of matrix size ≥1,800). Accordingly, we 
resized all images to a standardized 224×224 pixel square, 
through a combination of preserving their aspect ratios 
and using zero-padding. The investigation of deep learning 
efficiency depends on the input data; therefore, in the 
second processing step, input images were pre-processed 
by using a patch (a cropped part of each image). A patch 
was extracted using a bounding box so that it contained 
sufficient maxillary sinus segmentation for analysis. Finally, 
data augmentation was conducted for just the training 
dataset, using mirror images that were reversed left to right 
and rotated −30, −10, 10, and 30 degrees. Figure 1 shows a 
representation of PNS X-ray images in the pre-processing 
step described above. 

Image labeling and dataset distributions
All subjects were independently labeled twice as “normal” 
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or “sinusitis” by two radiologists. Labeling was first 
evaluated with the original images on a picture archiving 
communication system (PACS) and secondly with the 
resized images that were used for the actual learning data. 
Datasets were defined as the internal dataset and temporal 
dataset, with the temporal dataset used to evaluate the test.

The internal dataset was randomly split into training 
(70%), validation (15%), and test (15%) subsets. The 
distribution of internal the test dataset consisted of 32% 
right maxillary sinusitis, 32% left maxillary sinusitis, and 
34% bilateral maxillary sinusitis. The distribution of the 
temporal test dataset consists of 32.5% right maxillary 
sinusitis, 32.5% left maxillary sinusitis, and 35% bilateral 
maxillary sinusitis. 

Majority decision algorithm

We implemented the majority decision algorithm to 
determine a reasonable consensus using three multiple 
CNN models in this study. Multiple CNN models consist 
of pre-trained VGG-16, VGG-19, and ResNet-101 
architectures from ImageNet (http://www.image-net.org/) 
(10,11). An overview of the majority decision algorithm is 
shown in Figure 2. Briefly, each CNN model classified the 
input data and represented the major features for sinusitis 
using the activation map. Second, the majority decision 
was conducted based on the accuracy of a classification and 
the activation maps from the three models. The majority 
decision algorithm was performed using the criterion of 

accuracy over 90% and a combination of intersection and 
union techniques of the activation map. The intersection 
method was applied to overlapping areas of the activation 
maps, and the union method was applied to non-
overlapping areas. A model with an accuracy of under 90% 
was excluded for the evaluation of the majority decision. 

VGG-16 and VGG-19 were tuned with the following 
parameters: factor for L2 regularization =0.004, max epochs 
=35, and size of mini-batch =10. The total training time 
for each model was 192 min 23 sec. ResNet-101 was tuned 
with the following parameters: factor for L2 regularization 
=0.001, max epochs =60, and size of mini-batch =64. Total 
training time was 372 min 23 sec. 

All processing was performed on a personal computer 
equipped with an Intel Xeon E5-2643 3.40 GHz CPU, 
256 GB memory, and Quadro M4000 D5 8GB GPU using 
MATLAB (MathWorks, R2018a, Natick, MA, USA).

Performance evaluation

The performance of sinusitis classification was evaluated 
with quantitative accuracy (ACC) and activation maps. First, 
the performance of the classification was evaluated using 
ACC and area under the curve (AUC) of receiver operating 
characteristic (ROC) curves. Second, the performance of 
recognizing features of maxillary sinusitis was evaluated 
using the activation map (or heat map) for each CNN 
model. Finally, the majority decision method was conducted 
to derive a reasonable consensus using the activation map 

Figure 1 Representation of the pre-processed PNS X-ray images. (A) Original PNS X-ray image; (B) patch that was extracted to contain 
sufficient maxillary sinus region from the original image (dotted bounding square box); (C,D,F,G) rotated images with −10 (C), −30 (D), 10 (F), 
and 30 degree (G) rotations; (E) mirrored image that was reversed left and right for data augmentation. PNS, paranasal sinus.
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and classification accuracy from the multiple CNN models. 
Two radiologists reviewed all classified images of the test 
dataset. 

Statistical analysis of reproducibility for labeling and 
the AUC of the ROC curve was performed using MedCalc 
software (www.medcalc.org, Ostend, Belgium).

Results

Performance evaluation for classification

The reproducibility of the sinusitis labeling showed 
excellent agreement based on the two radiologists’ 
evaluations (kappa value >0.85). 

Table 1 shows the performance evaluation of the 
training and validation datasets for the VGG-16, VGG-
19, ResNet-101 CNN models, and the majority decision 
with multiple CNN models. The ACCs of the training 
and validation datasets were evaluated as 99.8% and 87.8% 
for the VGG-16 model, 99.8% and 90.7% for the VGG-

19 model, and 99.9% and 90.1% for the ResNet-101 
model, respectively. Performance of the majority decision 
was evaluated as 99.9% and 91.3% for the training and 
validation datasets.

Table 2 shows the performance evaluation of the internal 
and temporal test datasets for the VGG-16, VGG-19, 
ResNet-101 CNN models, and the majority decision 
algorithm with multiple CNN models. The ACC (and 
AUC) of the internal test dataset were evaluated as 87.4% 
(0.891), 90.8% (0.891), 93.7% (0.937), and 94.1% (0.948) 
for the VGG-16, VGG-19, ResNet-101 models, and the 
majority decision model, respectively. The ACC (and AUC) 
of the temporal test dataset were evaluated as 87.58% 
(0.877), 87.58% (0.877), 92.12% (0.929), and 94.12% 
(0.942) for the VGG-16, VGG-19, ResNet-101 models, 
and the majority decision model, respectively. The majority 
decision model showed the highest performance compared 
to the single CNN models for both the internal and 
temporal test datasets. Figure 3 shows the results of ROC 
curve analysis with the internal (Figure 3A) and temporal 

Figure 2 Representation of the process steps for the majority decision algorithm.
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Table 1 Performance evaluation of training and validation datasets for each CNN model and the majority decision algorithm

Dataset/Model VGG-16 (%) VGG-19 (%) ResNet-101 (%) Majority decision (%)

Training set 99.8 99.8 99.9 99.9

Validation set 87.8 90.7 90.1 91.3

CNN, convolutional neural network.
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test datasets (Figure 3B) for the multiple CNN models 
and the proposed majority decision algorithm. There are 
significant results between the proposed majority decision 
model and VGG-16 or VGG-19 (P=0.0011). However, 
there is no significant result between the proposed model 
and ResNet-101 (P=0.1573).

Performance evaluation to recognize the features of 
sinusitis

Figure 4 shows the performance evaluation to recognize 
the sinusitis features for each CNN model and the majority 

decision model using the activation map from the test dataset. 
Test images were from patients with left maxillary sinusitis 
(Figure 4A,B), right maxillary sinusitis (Figure 4C,D), and 
bilateral maxillary sinusitis (Figure 4E,F). Figure 4A, C, and E 
were shown the results for internal test dataset and Figure 4B, 
D, and F were shown the results temporal test dataset. The 
three CNN models were evaluated with over 90% ACC. 

The VGG-16, VGG-19, and ResNet-101 models 
detected sinusitis features using activation maps. Multiple 
CNN models were analyzed using the intersection and 
union methods from each activated map. Left sinusitis 
and right sinusitis features were analyzed using only the 

Figure 3 Comparison of ROC curve analysis of the multiple CNN models and the proposed majority decision for the classification of 
maxillary sinusitis. ROC, receiver operating characteristic; CNN, convolutional neural network.

Table 2 Performance evaluation of internal and temporal test datasets for each CNN model and the majority decision algorithm

Model ACC AUC SE 95% CI Sensitivity Specificity P value

Internal test dataset

VGG-16 87.4 0.891 0.0233 0.835 to 0.933 82.76 95.4 <0.0001

VGG-19 90.8 0.891 0.0237 0.835 to 0.933 87.36 90.8 <0.0001

ResNet-101 93.7 0.937 0.0183 0.890 to 0.968 89.66 97.7 <0.0001

Majority decision 94.1 0.948 0.0166 0.904 to 0.976 90.8 98.85 <0.0001

External test dataset (temporal test dataset)

VGG-16 87.58 0.877 0.026 0.814 to 0.924 80.52 94.81 <0.0001

VGG-19 87.58 0.877 0.0266 0.814 to 0.924 85.71 89.61 <0.0001

ResNet-101 92.12 0.929 0.0206 0.876 to 0.964 88.31 97.4 <0.0001

Majority decision 94.12 0.942 0.0187 0.892 to 0.973 89.61 98.7 <0.0001

CNN, convolutional neural network; ACC, accuracy; AUC, the area under the curve.
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intersection method (Figure 4A,B,C,D). Both sinusitis 
features were analyzed using intersection and union 
methods (Figure 4E,F).

The majority decision algorithm was shown to be 
significantly more accurate at lesion detection compared 
with the individual CNN models, and the activated features 
of sinusitis were visually confirmed to be closely correlated 
with the features evaluated by the radiologists using PNS 
X-ray images.

Performance evaluation to recognize the features of 
normal

Figure 5 shows the performance evaluation to recognize the 
features of normal subjects for each CNN model and the 
majority decision model using the activation map from the 
test dataset. Figure 5A, B, and C were shown the results for 
internal test dataset and Figure 5D, E, and F were shown the 
results of the temporal test dataset. The three CNN models 

Figure 4 Performance evaluation to recognize the sinusitis features for each CNN model and the majority decision algorithm. Input 
patched images from patients with left maxillary sinusitis subjects (A,B), patients with right maxillary sinusitis (C,D), and patients with 
bilateral maxillary sinusitis (E,F). Internal test dataset (A, C, and E) and temporal test dataset subjects (B, D, and F). CNN, convolutional 
neural network.
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Figure 5 Performance evaluation to recognize the features of normal subjects for each CNN model and the majority decision algorithm. 
Internal test dataset (A, B, and C) and temporal test dataset subjects (D, E, and F). CNN, convolutional neural network.

were evaluated with over 90% ACC.
The VGG-16, VGG-19, and ResNet-101 models 

detected features of normal subjects using activation maps. 
Multiple CNN models were analyzed using the union 
methods from each activated map. In the case of normal 
subjects, nasal septal area, midline portion of the maxillary 
sinus, was activated. All models, including the majority 
decision algorithm, were evaluated as ‘normal’ with high 
accuracy.

Discussion

To apply deep learning systems for disease assessment 
in medical imaging, it is important to ensure that the 
classification achieves high accuracy in test datasets as well 
as reasonable feature extraction of the target lesions. Most 
of the recently published papers on medical imaging using 
deep learning have focused on achieving high accuracy with 
a single deep learning model (12-15). However, a single 
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deep learning model is not sufficient to provide a clear 
feature-based evaluation result because each model has its 
advantages and disadvantages. In this study, to solve that 
limitation, a majority decision algorithm was developed 
and applied with multiple deep learning models to evaluate 
maxillary sinusitis in PNS X-ray images. 

In this study, image resizing, patch extraction, and 
rotation for data argumentation were performed as 
preprocessing steps (Figure 1). Using patched images is an 
efficient method to detect lesions accurately as well as to 
achieve high classification accuracy in medical images (16).  
Image rotation was performed only within −30 to 30 
degrees of the original images from the training dataset. 
Data argumentation has the advantage of improving the 
learning power, but learning that includes unnecessary 
data is meaningless. For example, the angle of rotation for 
data augmentation is also significant in the evaluation of 
an actual image and is determined by the range of head 
movements in the actual PNS X-ray scan. In this study, 
the angle of rotation was limited to ±30 degrees for that 
reason. If images with 90- or 180-degree rotations are used 
for learning, the wrong features might be activated. This is 
because a feature from a region that is not in the position of 
the actual maxillary sinus can be learned incorrectly, due to 
rotation angle being too large.

Major objectives in deep learning are high accuracy 
and preventing overfitting problems. There are several 
techniques to prevent overfitting problems: more training 
data, adding stronger regularization, data augmentation, 
and reducing the complexity of the model. The proposed 
majority decision algorithm in this study can be used as a 
method to reduce overfitting. Comparing the results of the 
performance evaluation in Table 2, the majority decision 
algorithm was shown to have the least difference in accuracy 
between the training and test datasets (VGG-16: 12.4%, 
VGG-19: 9%, ResNet-101: 6.2%, majority decision: 5.8% 
for the internal test dataset and VGG-16: 12.22%, VGG-
19: 12.22%, ResNet-101: 7.09%, majority decision: 5.78% 
for the temporal test dataset). This difference is one way to 
evaluate overfitting performance. 

For the evaluation of accuracy, the majority decision 
algorithm was shown to be the most efficient model to 
classify maxillary sinusitis in PNS X-ray images (Tables 1,2).  
Compared to the VGG-16 and VGG-19 models, the ACC 
of the majority decision algorithm was 6.7% and 3.3% 
higher, respectively, for the internal test dataset. The ACC of 
the ResNet-101 model and the majority decision algorithm 
did not differ significantly for test dataset. The majority 

decision algorithm also provides a function to compensate 
for incorrect classifications by an individual model. This 
compensation function was shown clearly in the combination 
of activation maps by the multiple CNN model. 

The patient with bilateral sinusitis in Figure 4E was 
shown clearly to have left maxillary sinusitis and a mild 
degree of right maxillary sinusitis. The VGG-16 and VGG-
19 models detected the left maxillary sinusitis but did not 
detect the mild maxillary sinusitis. The ResNet-101 model 
did detect the right mild maxillary sinusitis. In that case, 
the missing lesion from the first two models was detected 
using the compensation function of the majority decision 
algorithm. In the case with left sinusitis shown in Figure 4A, 
the ResNet-101 model activated a larger region. As a result, 
the activation map also detected the left eye region beyond 
the maxillary sinus. The VGG-16 and VGG-19 models 
only activated within the left maxillary sinus. In that case, 
the correct lesion was detected using the compensation 
function of the majority decision algorithm. The results 
from the temporal test dataset showed similar accuracy.

A review of the activation map in the test datasets for 
each model showed that the VGG-16 and VGG-19 models 
detected a relatively larger area than the actual lesion. 
Conversely, the ResNet-101 model detected a relatively 
smaller region than actual lesion, but it could also detect a 
lesion that was missed by the VGG-16 or VGG-19 models. 
The majority decision algorithm was shown to be effective 
in making a reasonable decision by compensating for the 
advantages and disadvantages of each deep learning model. 

As a result of reviewing the classification accuracy with 
an activation map for normal subjects, a normal feature 
recognized the surrounding regions, not the maxillary sinus 
region (Figure 5). The reason is shown that CNN models 
recognize the differences in the characteristics between 
normal and sinusitis as a major feature of relatively bright 
signal intensity in the maxillary sinus. Previous papers 
showed only abnormal cases with a heat map; however, our 
study wants to secure reliability by showing the normal 
cases with multiple algorithms.

The selection criteria for the multiple CNN models 
included a high accuracy of classification and activation 
maps of the lesions. In addition to the VGG and ResNet 
models used in this study, to select multiple CNN models, 
Alexnet (17) and GoogleNet (18) were also evaluated for 
performance. However, the Alexnet and GoogleNet models 
were found to have less than a 90% ACC for classification, 
and they did not detect the sinusitis features. By contrast, 
the VGG and ResNet models showed reasonable feature 
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extraction for sinusitis. One of the reasons for this 
difference is the kernel size that is used to extract features in 
an image. 

The VGG-16 and VGG-19 architecture consist of large 
kernel-size filters with multiple 3×3 kernel-size filters, one 
after another. Within a given receptive field (the effective 
area size of an input image on which output depends), 
multiple stacked smaller sized kernels are better than a 
single larger sized kernel because multiple non-linear 
layers increase the depth of the network, enabling it to 
learn more complex features at a lower cost. As a result, the 
3×3 kernels in the VGG architecture help to retain more 
fine details of an image (10). The ResNet architecture is 
similar to the VGG model, consisting mostly of 3×3 filters. 
Additionally, the ResNet model has a network depth of as 
large as 152. Therefore, it achieves better accuracy than 
VGG and GoogleNet, while being computationally more 
efficient than VGG (11). While the VGG and ResNet 
models achieve phenomenal accuracy, their deployment on 
even the most modest sized GPUs is a problem because of 
the massive computational requirements, both in terms of 
memory and time.

There are several limitations to this study. First, the 
external test dataset in multiple medical centers did not be 
included for reproducibility. In the case of X-ray equipment, 
there is a relatively small difference in performance 
compared to other medical imaging equipment, depending 
on the manufacturer or model. In this study, therefore, 
the external test dataset in other medical centers did 
not be included. In the case of a local medical center 
using relatively old equipment; however, an additional 
performance evaluation is also required to utilize artificial 
intelligence (AI) assistive software. Second, the proposed 
majority decision algorithm was optimized to evaluate 
only maxillary sinusitis. Therefore, there is a limitation 
to evaluate sinusitis in frontal, ethmoid, and sphenoid. In 
order to utilize AI based assistive software in the future, 
further study is underway because it is necessary to evaluate 
sinusitis at other locations as well as maxillary. Third, it 
lacks pattern recognition and representation methods that 
can solve black-box in deep learning. It needs to determine 
a reasonable consensus for solving the black-box problem. 
The feature recognition based activation map was used to 
solve the black-box problem in deep learning. As it can 
be shown from the results, not only classification but also 
lesion localization can be expressed as a result. It helps 
medical doctors make a reasonable inference about the deep 
learning analysis. However, it is not enough to understand 

all deep leaning procedures. For example, it is difficult to 
understand the pattern of each learned CNN model. By 
understanding the pattern recognition capabilities of each 
model, we can understand the advantages and disadvantages 
of each model and achieve the optimization of the overall AI 
system. To overcome this limitation, a feature connectivity 
representation should be available for each layer to 
determine which feature weights are strong (19). In addition 
to feature representation, text-based description algorithm 
can be applied to overcome the black-box limitation in 
a medical application using the convolutional recurrent 
neural network (CRNN) that is the combination CNN and 
recurrent neural network (RNN) (20,21). 

A majority decision algorithm with multiple CNN 
models was shown to have high accuracy and significantly 
more accurate lesion detection ability compared to 
individual CNN models. The proposed deep learning 
method using PNS X-ray images can be used as an adjunct 
tool to help improve the diagnostic accuracy of maxillary 
sinusitis.
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