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Introduction

Currently, congenital heart disease (CHD) is the most 
prevalent congenital disability across the world. It affects 
up to 10 in every 1,000 newborns (1). With the rapid 
development of modern imaging modalities, surgical and 
interventional therapies, the mortality and morbidity 
of CHD have dramatically decreased (2). Despite these 
developments, complex CHD remains a challenging issue. 

Patients with repaired complex CHD and unrepaired 
cyanotic lesions remain at risk for long-term complications 
and death (3). Anomalous pulmonary venous connection 
(APVC) accounts for about 1.5% of CHD. It means 
that the pulmonary veins (PVs) are directly or indirectly 
connected to the right atrium (RA), rather than to the 
left atrium (LA). If not corrected in time, 80% of patients 
die within 1 year of being born. It is one of the few 
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cardiovascular malformations that require surgical repair in 
infancy and young childhood (4). The imaging modalities 
applied for APVC include echocardiography, cardiac 
computed tomography (CCT), and cardiac magnetic 
resonance (CMR). An exact demonstration of the anatomy 
of the pulmonary venous connections and assessment of 
cardiac and extracardiac structures are imperative for proper 
presurgical planning.

Nevertheless, these images are still limited to two-
dimensional (2D) display, and cardiologists need to 
reconstruct the real anatomy in their mind. Indeed, PVs are 
located behind the heart, making their detection difficult 
for optimal viewing during surgery. Three-dimensional 
(3D) printing can provide physicians the ability to vividly 
understand the anatomical malformations of complex CHD 
and optimize the preoperative planning (5,6). However, 
to our knowledge, the clinical value of 3D printing in 
preoperative planning for APVC is still lacking. In this study, 
we sought to investigate the roles of 3D-printed patient-

specific heart models in preoperative planning for APVC.

Methods

Study population

This study was approved by the institutional review board 
and informed consent was acquired. From November 
2017 to January 2019, 17 children diagnosed with APVC 
who underwent surgical treatment were enrolled in 
this study. Their ages ranged from 2 days to 20 months 
(median age of 1 month and 5 days). The weight range 
was 2.8–11.2 kg (median weight of 3.8 kg). The diagnoses 
included total APVC (TAPVC) supracardiac type in  
10 children, intracardiac type in 2 children, infracardiac type 
in 1 child, mixed type in 1 child, and partial APVC (PAPVC) 
in 3 children. The details of associated malformations and 
pulmonary venous obstructions of these included children 
are displayed in Table 1. 

Table 1  Characteristics of 17 enrolled children with anomalous pulmonary vein connection

Patient No. Gender Age Main diagnosis Associated diagnosis Obstruction

1 Male 4 d TAPVC (supracardiac) ASD, PDA, PAH, CoA Yes

2 Male 2 m 17 d TAPVC (supracardiac) ASD, RVD, PAH No

3 Male 1 m 16 d TAPVC (supracardiac) ASD, PAH No

4 Male 29 d TAPVC (supracardiac) ASD, PAH, PDA No

5 Male 2 m 25 d TAPVC (supracardiac) ASD, PDA, PAH Yes

6 Male 5 m 5 d TAPVC (supracardiac) ASD, PDA, PAH, RVD No

7 Male 9 d TAPVC (supracardiac) PDA, PAH, ASD, CoA Yes

8 Female 2 d TAPVC (supracardiac) ASD, PDA, PAH, RVD No

9 Male 23 d TAPVC (supracardiac) ASD, PAH, RVD No

10 Male 7 d TAPVC (supracardiac) ASD, PAH, PDA Yes

11 Male 1 m 7 d TAPVC (intracardiac) ASD, PAH No

12 Male 8 d TAPVC (intracardiac) ASD, PAH No

13 Male 13 d TAPVC (infracardiac) ASD, RVD, PAH Yes

14 Female 5 m 26 d TAPVC (mixed) ASD, PAH No

15 Female 1 m 5 d PAPVC CoA, ASD, PAH No

16 Male 1 y 8 m PAPVC ASD, RVD, PAH No

17 Male 10 m 28 d PAPVC (RSPV, supracardiac) PLSVC, CSD ASD, VSD No

ASD, atrial septal defect; CoA, coarctation of aorta; CSD, coronary sinus dilation; PAH, pulmonary artery hypertension; PAPVC, partial 
anomalous pulmonary venous connection; PDA, patent ductus arteriosus; PLSVC, persistent left superior vena cava; RVD, right ventricle 
dilation; RSPV, right superior pulmonary vein; TAPVC, total anomalous pulmonary venous connection; VSD, ventricular septal defect.
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Cardiac CT protocol

All CT examinations were performed with retrospective 
electrocardiography (ECG)-gated, helical acquisition, 

with a collimation of 64 detectors ×0.625 mm, using a CT 
scanner (GE Healthcare, USA). The rotation time was 
0.35 s, and the pitch was approximately 0.2. Tube voltage 
was 100 kV. The scanning areas spanned from the superior 
border of the chest to the diaphragm or middle abdomen 
in infracardiac TAPVC. The field of view (FOV) was  
250 mm × 250 mm, the matrix size was 512×512, and 
slice thickness was 0.625 mm. All children were injected 
with 2 mL/kg of nonionic contrast agent (iopamidol,  
370 mg/mL, Bracco, Italy) through a peripheral vein. The 
injection rate was controlled by an infusion pump within 
0.8–2.5 mL/s, according to the size and stability of the 
intravenous (IV) catheter and the patient’s weight. The 
CT data were exported to the postprocessing workstation 
(Advantage Windows 4.2, General Electric, Milwaukee, 
WI, USA) for advanced assessment.

Image segmentation and postprocessing

The CT image data saved on the disc were opened by 
RadiAnt DICOM (Digital Imaging and Communications in 
Medicine) Viewer (64-bit) software and saved on a PC (i5-
7500, 8GB DDR4 2400, GTX 1050 Ti 4GB). The DICOM 
data saved on the PC were imported into Mimics 19.0 
(Materialise HQ, Leuven, Belgium) for 3D modeling. After 
the DICOM data were imported into Mimics 19.0, the CT 
Heart reconstruction module and the appropriate threshold 
were selected to distinguish the blood flow and myocardial 
tissue in the heart, and thus, a mask was generated. The 
mask could be identified with a specific color annotation 
and edited with crop mask command. After the mask was 
generated, structures such as papillary muscles, muscle 
bundles, and outflow tracts in the heart chamber were 
observed, which meant that the contrast agent was unevenly 
distributed and needed to be manually edited according 
to the specific situation (Edit instruction), using erasing 
(Erade), adding (Draw) and other instructions to process 
the mask. We manually labelled each area according to 
the left ventricle (LV), right ventricle (RV), LA, RA, aorta 
(AO), and pulmonary artery (PA) area modules of the CT 
heart module, and distinguished them with different colors. 
Special attention was paid to labeling the boundaries of each 
part. After labeling, a calculated 3D command was selected 
to generate the solid 3D reconstruction model of the heart, 
as shown in Figure 1. 

Hollowed models were generated based on related solid 
models and could be hollowed inside or outside direction in 
3-Matic 11.0 software (Materialise HQ, Leuven, Belgium).

Figure 1 Image segmentation and postprocessing in Mimics 19.0 
software. The colored masks were segmented for 3D modeling. 
(A) Coronal plane; (B) transverse plane; (C) Sagittal plane; (D) 3D 
modeling. Green, superior vena cava and right atrium; purplish 
red, pulmonary veins and left atrium; purple, right ventricle; 
orange, left ventricle; red, aorta; dark blue, pulmonary artery. 

A

B
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3D printing process

The 3D reconstruction models were smoothed and 
converted into an stereolithography (STL) format file; a 
solid model was generated and imported into a 3D printer 
(ISLA 650, Manufacturer: Shining 3D, Hangzhou, China) 
for 3D printing with the following specifications: printing 
technology, stereolithography (SLA); printing material, 
photosensitive resin; printing resolution, 0.1 mm. Finally, a 
personalized 3D heart model was successfully created.

Preoperative planning and evaluation of models

Preoperative planning was assessed based on the 3D 
personalized heart models, medical history, and imaging 
data by cardiac surgeons and cardiologists. Surgeries were 
performed in children with surgical treatment indications. 
The models were sterilized and brought into the operation 
room for intraoperative navigation. After surgeries, these 
heart models were evaluated on whether they were of high 
quality, and whether they could help presurgical planning, 
reduce unforeseen circumstances, and benefit medical 
education. An evaluation pertaining to the issues above was 
conducted via questionnaire by our cardiac surgeons and 
cardiologists.

Results

Preoperative planning

Patient-specific heart models of these children with APVC 
were successfully created. Modeling and postprocessing 
took 0.5–2 h, with an average of 0.9±0.4 h. The printing 
process took 2–5 h, with an average of 3.4±1.2 h. All 
17 children underwent surgeries successfully without 
perioperative events and were discharged without adverse 
events. The malformations demonstrated by the 3D models 
were consistent with intraoperative observations, and 
presurgical planning was in line with real surgery programs. 
These heart models could be sterilized and brought into the 
operating room for surgery navigation. These 3D models 
greatly assisted the presurgical planning for APVC surgery 
and were of great clinical value from our experience.

Four cases (No. 1, 5, 9, 10) with TAPVC supracardiac 
type are displayed in Figure 2. The PV merged into a trunk, 
which was connected to the vertical vein (VV) and flowed 
into the right-sided superior vena cava (SVC). Finally, the 
PVs blood completely flowed into the right atrium. For 
supracardiac-type TAPVC, with the 3D-printed heart 

model applied for preoperative planning, we determined 
the incision at the transverse sinus or left and right atrium 
through the heart, disconnecting the PV from the VV. The 
main trunk of the PV was anastomosed to the posterior wall 
of the left atrium. The anastomosis should be large enough 
to avoid postoperative obstruction.

Two cases (No. 11, 12) were intracardiac TAPVC 
(Figure 3); the atrial parts of the heart of interest were 
segmented for further observation. After postprocessing, it 
could be observed from the 3D models that the PVs were 
connected to the coronary sinus (CS) opening in the right 
atrium. For intracardiac TAPVC, the tissue between the 
CS and the interatrial septum was cut through the right 
atrial incision, so that the PV and the left atrium would be 
completely unblocked, and a large atrial septal defect (ASD) 
would be made. The defect was repaired with the patch, and 
the CS opening was placed into the left atrium. 

Only 1 case (No. 13) with infracardiac TAPVC was 
included in our study (Figure 4). With 3D models, the 
relationship between PVs and inferior vena cava (IVC) 
was delineated by hand. The preoperative planning 
included disconnecting the VV, and extending the incision 
to the PV opening through the VV and the pulmonary 
venous confluence. The appropriate incision in the atria 
was selected, and left and right atrial anastomosis or 
bilateral atrial anastomosis was performed according to 
the anatomical positional relationship of the pulmonary 
venous confluence, VV and left and right atrium to avoid 
postoperative pulmonary venous return obstruction. The 
interatrial septum was then reconstructed with continuous 
pericardial suture. The anastomosis was isolated into the 
left atrium. The surgical steps of complete repair were all 
consistent with preoperative planning based on 3D heart 
models.

Three cases (No. 15, 16, 17) were diagnosed with 
PAPVC, and to observe the abnormal connection further, 
3D printing was applied. The right PV was connected to 
the right atrium in 2 cases, and in another case, the right 
superior PV (RSPV) was linked together with the SVC, 
as demonstrated in Figure 5. Due to associated ventricular 
septal defect (VSD) in patient 17, pulmonary hypertension 
was diagnosed, and it indicated surgery. The PVs were 
drained into the right atrium or the right PV flowed into 
the SVC with ASD and patent foramen ovale; the ASD 
was expanded and repaired with patches, and the PVs were 
isolated into the left atrium. Surgery results were in line 
with presurgical planning.

During follow-up, two cases (No. 3, 4) were suspected 
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of  PV stenosis  with abnormal echocardiographic 
parameters and underwent cardiac CT examinations in 
order to determine whether there was a PV stenosis. We 
segmented the area of concern and printed heart models, 
which are displayed in Figure 6. Both blood volume 
and hollow models were applied to demonstrate the 
extracardiac and intracardiac structures. The thickness 
of hollowed models could influence the impression of 
obstruction, and as a result, during postprocessing, an 
outside hollowed model was created to avoid the impact 
on obstruction. The 3D models showed that there was no 
visible PV stenosis in the first case. PV opening can be 

observed in the left atrium in Figure 6C. The 3D models 
in Figure 6D verified the stenosis of the left superior PV 
(LSPV) of the second case.

Model evaluation

Evaluation of these models was conducted by cardiac 
surgeons and cardiologists in regards to the quality of 
models, the benefit for presurgical planning, the reduction of 
unforeseen events, and the facilitation of medical education. 
Thirty-seven physicians in our heart center finished the 
questionnaires. Results are summarized in Figure 7.

Figure 2 Four cases diagnosed with supracardiac type TAPVC. (A) Refers to patient 1, view from posterior; (B) refers to patient 5, view 
from posterior; (C) refers to patient 9, view from posterior; (D) refers to patient 10, view from posterior. *, obstruction exists at the junction 
of the common pulmonary venous confluence to the left-sided vertical vein (VV). Ao, aorta; PA, pulmonary artery; PV, pulmonary vein; 
SVC, superior vena cava. Orientation labels: I, inferior; L, left; R, right; S, superior.
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Discussion

This study demonstrates that 3D printing is beneficial 
for the preoperative planning and follow-up of children 
with APVC. 3D printing transforms the diagnosis and 
preoperative planning of CHD from the digital platform 
into a more tangible and vivid physical platform. It 
can be more easily understood by parents and facilitate 
communication. The sterilized 3D model can assist in 
intraoperative navigation and can be preserved for medical 
education. With these patient-specific heart models, the 
personalized therapeutic strategy can be made, and the 
surgery option can be confirmed, which is a reflection of 
precision medicine. The malformations and preoperative 
decision making were all consistent with final surgery 
findings, indicating that 3D printing will be a promising 
technology used in cardiac surgery. An international 
multicenter study found that 3D models accurately replicate 
cardiovascular anatomy and enhance the understanding of 
complex CHD. Although it did not change the decision 
making in most cases, the surgical approach of 19 (47.5%) 
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Figure 3 Two cases diagnosed with intracardiac type TAPVC. Part of the hollowed heart model was segmented to emphasize the PV and 
RA we focused on. Pulmonary vein through the coronary sinus opening in the right atrium. (A) Refers to patient 11, view from inferior; (B) 
refers to patient 12, view from the right. CS, coronary sinus; IVC, inferior vena cava; PV, pulmonary veins; RA, right atrium. Orientation 
labels: A, anterior; I, inferior; L, left; P, posterior; R, right; S, superior.

Ao

PV

IVC

L R

I

1 cm

S

VV

Figure 4 One case (patient 13) diagnosed with infracardiac type 
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inferior vena cava; PV, pulmonary vein; VV, vertical vein; TAPVC, 
total anomalous pulmonary venous connection. Orientation labels: 
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selected complex cases were redefined (7). A personalized 
3D-printed heart model can assist CHD diagnosis and 
treatment, and help doctors to more vividly understand the 
heart anatomy of children with CHD (8-10). 

To our knowledge, this is the first study reporting the 
application of 3D printing in preoperative planning for a 
APVC case series with a large sample size. The results of 
our study indicate that 3D printed models can illustrate 
the anatomical malformations and the relationship with 
other structures, which were confirmed by our surgery 

observation. Hence, these personalized models are 
promising tools in preoperative planning for complex 
CHD. Through image segmentation and postprocessing, 
intracardiac structures malformations such as VSD and 
ASD can be evaluated, and the diameter, location, and 
relationship with great vessels can also be assessed. 

However, 3D printing in APVC is rarely reported. APVC 
is a rare but more severe CHD. TAPVC accounts for 1–2% 
of all cases of major CHD (11). It is essential to observe 
the positional relationship between the PVs opening and 
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(C) Patient 16 diagnosed with PAPVC; the blue arrow represents RPV flowing into the right atrium. View from posterior. (D) Patient 
17. The blue arrow represents RSPV flowing into the SVC. View from posterior. Ao, aorta; CoA, coarctation of aorta; IVC, inferior vena 
cava; LIPV, left inferior pulmonary vein; LSPV, left superior pulmonary vein; RA, right atrium; RIPV, right inferior pulmonary vein; RPV, 
right pulmonary vein; RSPV, right superior pulmonary vein; SVC, superior vena cava. Orientation labels: A, anterior; I, inferior; L, left; P, 
posterior; R, right; S, superior. 
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the atria before the operation. With the assistance of 
3D-printed models, the relationship between PV and atria 
could be fully understood. A reasonable surgical plan could 
be implemented according to the information provided by 
3D models. Accurate differentiation and characterization 
of these pulmonary venous anomalies are imperative for 
treatment planning (12). Due to the limited intraoperative 
FOV, it is often necessary to detect them during surgery. 
The 3D-printed heart model can accurately visualize the 
malformations and thereby reduce unforeseen events 

(10,13). The outlet of PV in the left atrium could be 
observed with the 3D heart models in our study, suggesting 
an advantage over a 2D imaging modality. McGovern 
reported 3D printing in complex univentricular hearts with 
abnormal systemic or pulmonary venous drainage (14). 
Only three were included; these models were invaluable 
in the preoperative planning for univentricular hearts and 
venous drainage abnormalities. Also, they found that surgical 
intervention might have caused significant complications in 
two of the patients. In addition, 3D printing was found to 
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be able to guide a complex stent angioplasty of pulmonary 
venous baffle obstruction in a Mustard repair of D-TGA (15). 
The insight provided by 3D-printed models may help to 
improve procedural efficiency, decrease radiation exposure, 
and reduce procedural complications.

Similarly, in our study, during preoperative planning 
and after surgeries, these models acquired the acceptance 
of a multidisciplinary team, including cardiac surgeons 
and cardiologists. Due to the deep position of the PV, they 
could not be generally observed during surgery. Using 
3D models for navigation, it is more efficient to perform 
surgery: operation time and intraoperative detecting time 
may be reduced. All children were discharged without 
complications and adverse events, suggesting 3D models 
may lead to superior short-term outcomes. The long-
term outcomes of our study still need to be determined. 
For young inexperienced surgeons, 3D models are useful 
for medical teaching and education (16) and facilitate 
communication during clinical consultations (17). All 
malformations demonstrated by 3D models were consistent 
with surgery observations. As the questionnaire results 
demonstrate, 3D-printed models were of high quality and 
helped preoperative planning, reduced unforeseen events, 
and promoted medical education. Undoubtedly, it is a 
promising tool for future clinical practice.

Limitations

This study has several limitations. First, our 3D printing 
was based on CT data: the valve structure could not 
be accurately imaged, so valvular lesions could not be 
replicated. In the future, a combination of imaging data 
should be applied for 3D printing. Second, this study is a 
series of case reports with relatively low levels of evidence 
and lack of objective quantitative data to confirm the role 
of 3D printing technology and whether it can reduce the 
operation time, bleeding volume, or lead to superior long-
term outcomes. It is currently difficult to verify the impact 
of 3D printing in a randomized controlled clinical trial. 
Third, 3D modeling and image segmentation need to be 
completed manually or semi-automatically and will take a 
certain amount of time. The 3D printing process also takes 
a relatively long time. As a result, 3D printing technology 
is not practicable in high emergency circumstances. Fourth, 
3D printing of the heart model entails additional costs, and 
so cost-effectiveness is an issue.

Conclusions

3D printing is beneficial for presurgical planning in 
children with APVC. These models can be sterilized and 

Quality of models

Reduce unforeseen events Benefits medical education

Presurgical planning

62.16% Excellent
21.62% Good
2.70% Normal
2.70% Bad
10.81% Not known

Total=37 Total=37

Total=37Total=37

59.46% Excellent
27.03% Good
8.11% Normal
2.70% No effect
2.70% Not known

48.65% Excellent
35.14% Good
8.11% Normal
5.41% No effect
2.70% Not known

81.08% Excellent
16.22% Good
2.70% Not known

Figure 7 Questionnaire evaluation results.
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brought into operation room for surgical navigation. 
Unforeseen events can be prevented, while operation time 
and intraoperative detection time can be reduced. The 3D 
model not only helps with surgical planning but also can 
work as a guide for post-surgery follow-up and clarification 
of outcomes. It will be a promising tool in CHD surgery.
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