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Background: Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the 
liver, preoperative grading of HCC is of great clinical significance. Amide proton transfer-weighted (APTw) 
imaging, as a novel contrast mechanism in the field of molecular imaging, provided new diagnostic ideas for 
the grading of HCC. 
Methods: Between May 2017 and April 2018, 32 consecutive patients with pathologically confirmed 
HCC were enrolled, including 19 high-grade HCCs and 13 low-grade HCCs. DWI and APTw scanning 
was performed on a 3T MRI scanner. Two observers drew regions of interest independently by referring to 
the axial T2-weighted imaging, and APTw and apparent diffusion coefficient (ADC) values were obtained. 
Inter- and intra-observer agreements were assessed with the intraclass correlation coefficients (ICCs). The 
independent sample t test was used to compare the APTw and ADC values between the high- and low-grade 
HCC tumor parenchyma. The receiver operating characteristic curve was used to analyze the diagnostic 
efficacy of high- from low-grade HCC tumors. Spearman correlation analysis was used to assess the 
relationship between APTw and ADC values and HCC histological grades.
Results: There were significant differences between the APTw or ADC values for the high- and low-grade 
HCCs (P=0.034 and 0.010). Both APTw and DWI had good diagnostic performance in differentiating the 
high- from the low-grade HCCs, with areas under the curves of 0.814 and 0.745, respectively. Moderate 
correlations existed between APTw values and histological grades (r=0.534; P=0.002), as well as ADC values 
and histological grades (r=−0.417; P=0.018).
Conclusions: The APTw imaging is a useful imaging biomarker that complements DWI for the more 
accurate and comprehensive HCC characterization.
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Introduction

Hepatocellular carcinoma (HCC) is the most common 
primary malignant tumor of the liver and has high mortality 
and morbidity rates (1,2). It has been shown that the 
histological grade of HCC can predict long-term survival 
before local treatment or liver transplantation, and is an 
independent predictor of postoperative recurrence (3). 
Therefore, accurate prediction of histological grade is 
critical to clinical decision-making and prognosis. Magnetic 
resonance imaging (MRI) has been used for the grading 
of HCC in the last 20 years. The application of MRI in 
HCC grading has developed rapidly, in which the most 
important and widely used is diffusion-weighted imaging 
(DWI). Several studies showed that the apparent diffusion 
coefficient (ADC) values from DWI can improve the 
value of MRI in grading of HCC (4-6). In general, lower 
ADC values are predictive of worse histological grades of 
HCCs. However, the ADC value indirectly reflects the 
histological grade of the tumor by reflecting the movement 
and diffusion of water molecules between the tumor tissues, 
and it does not reflect the material changes in the tumor 
parenchyma. In addition, universally accepted consensus 
about the DWI sequence appropriate choice of b values 
could not be reached (7), so that the accuracy of the ADC 
values from DWI in grading HCC is restricted. Therefore, 
it is essential to find a novel and reliable imaging method 
that can improve the accuracy of the grading of HCC.

In recent years, amide proton transfer-weighted 
(APTw) imaging has been introduced as a novel contrast 
mechanism in the field of molecular imaging (8,9). Based 
on the chemical exchange saturation transfer (CEST) 
principle, APTw MRI can indirectly detect cellular mobile 
proteins, without any exogenous contrast agent injection, 
through the exchange between amide protons and bulk 
water protons, thereby diagnosing the disease (10). APTw 
MRI has been applied to brain tumors, stroke (11-14), and 
several other diseases (15-18). A number of previous studies 
have successfully applied APTw MRI to detecting glioma 
(19,20), grading glioma (21-25), assessing tumor response 
to treatments (26-29), as well as predicting genetic markers 
in glioma (30-32). These findings caused us to seek the 
value of APTw MRI in predicting the histological grade of 
HCC. Some previous studies have shown that APTw MRI 
can detect liver composition changes between after-meal 
and overnight-fast conditions and assess the scan-rescan 
reproducibility in liver scanning (33,34), which confirmed 
the feasibility of APTw MRI in the liver. To our knowledge, 

no studies have been reported to evaluate the clinical 
potential of APTw MRI in predicting the histological grade 
of HCC.

In this study, we hypothesized that APTw MRI may 
be useful for grading HCC. This is based on the fact 
that high-grade HCC typically shows a higher tumor 
cell proliferation and cellular density, leading to overall 
elevated mobile protein levels, and thus, an increased 
APTw value (10). The aim of this study was to prospectively 
evaluate the potential feasibility and capability of APTw 
MRI to predict the histological grade of HCC, compared 
with widely used DWI.

Methods

Patients

This prospective study was approved by the institutional 
review board. All patients were required to sign the 
informed consents prior to being recruited. Between May 
2017 and April 2018, a total of 70 consecutive patients 
suspected of having malignant hepatic lesions based on 
previous CT or ultrasonography examinations were 
enrolled. Thirty-eight patients were excluded for various 
reasons: (I) with MR contraindications (n=5); (II) with low 
image quality, small lesions (<1 cm), and previous HCC 
surgery (n=15); and (III) no pathological results, non-HCC, 
or the time interval between MR imaging and pathology  
>14 days (35) (n=18). Finally, 32 patients with pathologically 
confirmed HCCs were included for analysis, including  
25 men and 7 women (mean age, 63.3±11.9 years; range, 
30–76 years). All tumors were histologically classified from 
grade 1 to 4 according to the major Edmondson-Steiner 
grade on the final pathologic reports. We defined high-
grade (Edmondson-Steiner grades 3 and 4) and low-grade 
(grades 1 and 2) HCCs, based on the fact that there are 
significant differences in survival between these two HCCs 
(36,37). The characteristics of the included patients are 
shown in Table 1.

MR imaging

All patients were instructed to fast for 6–8 h prior to the MR 
examination. The studies were carried out using a 3.0 T MR 
system (Achieva Intera 3.0 T, Philips Medical Systems, Best, 
the Netherlands) with an eight-channel, phased-array torso 
coil. Routine liver MRI was performed with the following 
sequences: breath-hold, transverse T1-weighted in-phase 
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and opposed-phase, dual gradient-echo sequence [repetition 
time (TR) =241.25 ms, echo time (TE) =1.15/2.3 ms,  
matrix =320×320, field of view (FOV) =360 mm × 360 mm, 
slice thickness =6 mm, slice interval =1.5 mm]; a turbo-spin-
echo sequence with coronal and transverse T2-weighted 
imaging (T2WI; TR =1,614 ms/1,457 ms, TE =70 ms/80 ms, 
matrix =512×512, FOV =360 mm × 360 mm, slice thickness 
=6 mm, slice interval =1.5 mm); and DWI (TR =3,000 ms, 
TE =54 ms, matrix =192×192, FOV =360 mm × 360 mm, 
slice thickness =6 mm, slice interval =1.5 mm) with two 
b values (0, 1,000 s/mm2). The total scanning time of the 
routine sequences was approximately seven minutes.

An APTw pulse sequence was applied on one T2WI 
slice that showed a single section through the largest cross-
section of a solid tumor. APTw imaging was based on a 
single-shot, turbo-spin-echo sequence: TR, 4 sec; turbo-
spin-echo factor, 63; field of view, 256 mm × 384 mm; 
reconstructed matrix 256×256; and slice thickness, 6 mm. 
Localized high-order shimming was performed to reduce B0 
field inhomogeneity. We used a pulse-train radiofrequency 
(RF) irradiation (saturation duration, 200 ms ×4; inter-pulse 
delay, 10 ms; power level, 2 μT). The APTw imaging was 
performed with a multi-offset, multi-acquisition protocol. 
The 31 offsets were 0, ±0.25,±0.5, ±0.75, ±1, ±1.5, ±2, 
±2.5, ±3.0 [2], ±3.25 [4], ±3.5 [8], ±3.75 [4], ±4 [2], ±4.5, 
±5.0, and ±6.0 ppm, and the values in parentheses were 
the number of acquisitions, which was 1 if not specifically 
noted (38). The saturated image at the offset of 15.6 ppm 

was also acquired to assess the conventional MT imaging. 
The total acquisition time for the APTw imaging procedure 
was 4 minutes and 21 seconds. The duration of a total MR 
examination was about 12 minutes.

Baseline clinical characteristics of patients

For the morphological evaluation of HCCs, one observer 
who did not participate in drawing regions of interest (ROIs) 
recorded the following characteristics of the HCCs: the 
tumor size and the clinical data, such as age, sex, etiology 
of liver disease, and biochemical factors [including serum 
alpha-fetoprotein (AFP), alanine transaminase (ALT), and 
aspartate aminotransferase (AST) levels] were collected 
from medical records.

Image analysis

The APTw image data were post-processed using Interactive 
Data Language (IDL, ITT Visual Information Solutions, 
Boulder, CO, USA). The normalized saturated signal 
intensity curve (Ssat/S0) was calculated with 31 different 
frequency offsets (−6 to 6 ppm), and the Z-spectrum was 
then plotted (8,9). The voxel-wise Z-spectrum was fitted 
by a 12th-order polynomial model, and the fitted curve 
was interpolated to a finer resolution of 1 Hz. Further, 
as previously reported (39), the original Z-spectrum 
was corrected for the residual B0 inhomogeneity effects 

Table 1 Baseline clinical characteristics of patients

Patient demographics Total (n=32) H-HCC (n=19) L-HCC (n=13) P value

Age (years) 63.3±11.9 64.6±12.0 61.5±12.0 0.469

Male/female (n) 25/7 15/4 10/3 0.611

Biochemical factors

AFP level (ng/mL) 684.4±3,528.3 1,149.4±4,569.3 5.1±3.5 0.376

AST (U/L) 64.0±80.4 83.0±100.1 36.2±16.7 0.060

ALT (U/L) 55.1±50.0 70.0±58.2 33.4±22.8 0.051

Etiology of liver disease

Hepatitis B virus (n) 50% (16/32) 28% (9/32) 22% (7/32) –

Hepatitis C virus (n) 28% (9/32) 16% (5/32) 13% (4/32) –

None or other (n) 22% (7/32) 13% (4/32) 10% (3/32) –

Tumor size (cm) 2.8±0.9 3.8±1.0 1.8±0.8 0.117

Continuous data expressed as mean and standard deviation. H-HCC, high-grade hepatocellular carcinoma; L-HCC, low-grade 
hepatocellular carcinoma. 
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through the centering of the Z-spectrum. As usual, 
the magnetization transfer ratio (MTR) and the MTR 
asymmetry (MTRasym) were defined as follows:

0

Ssat (offset)MTR (offset) = 1
S

−  [1]

asym
0

Ssat ( offset) MTR (+offset)MTR (offset) = MTR (+offset) MTR ( offset) = 
S

− −
− −

asym
0

Ssat ( offset) MTR (+offset)MTR (offset) = MTR (+offset) MTR ( offset) = 
S

− −
− −

 

[2]

in which Ssat and S0 are the signal intensities with and 
without selective RF irradiation, respectively. The S0 image 
was acquired for the signal normalization. Specifically, 
the APTw image was constructed with the MTRasym at the 
offsets of ±3.5 ppm with respect to the water signal (8,9):

asym
0

Ssat ( 3.5 ppm) Ssat(+3.5 ppm)MTR (3.5 ppm) = MTR (+3.5 ppm) MTR ( 3.5 ppm) =
S

− −
− −

[3]
asym

0

Ssat ( 3.5 ppm) Ssat(+3.5 ppm)MTR (3.5 ppm) = MTR (+3.5 ppm) MTR ( 3.5 ppm) =
S

− −
− −

In this study, the APTw images were displayed by 
rainbow colors, and a display window (-5%, +5%) was used. 
In addition, the conventional MT imaging was quantified as 
follows:

0

Ssat (15.6 ppm)MTR (15.6 ppm) = 1
S

−  [4]

The ROI image analysis was performed by two observers 
(Observer 1, YL and Observer 2, WJ, with three and 
five years of experience in abdominal imaging diagnosis, 
respectively) who were blinded to the clinical and histological 
information. Observer 1 performed a second measurement 
after one week. By using the T2WI image as an anatomical 
reference, ROIs of approximately 200–700 mm2 were 
placed manually in the solid component of the tumor for 
each patient. Large cystic cavities, large areas of necrosis, 
calcification, or hemorrhage, or large vessels were excluded 
from the ROI selection. The Z-spectrum and MTRasym 
spectrum data, APTw values, and ADC values were recorded 
for each ROI.

Statistical analysis

The inter- and intra-observer agreement for measures 
from the two observers were analyzed by calculation of 
the intraclass correlation coefficients (ICCs). ICC ≥0.75 
indicated excellent concordance; 0.60–0.74, good; 0.40–
0.59, fair; and ≤0.40, poor (35). An independent t-test was 

used to compare continuous variables. Categorical variables 
were compared by χ2 test. Receiver operating characteristic 
(ROC) curves and areas under the ROC curves (AUCs), 
with 95% confidence intervals (CIs), were generated for 
the significant parameters. The optimal cutoff value and 
the corresponding sensitivity and specificity values were 
calculated. In addition, the correlations between APTw 
or ADC values and the histological grades of HCC were 
evaluated by the Spearman correlation analyses. SPSS 
(version 20.0 for Windows, IBM Corporation, USA) and 
MedCalc 15.8 were used for statistical analysis. P<0.05 was 
considered to indicate statistical significance.

Results

Z-spectrum and APTw image characteristics

Figure 1 shows the ROI-averaged Z-spectra, and the 
corresponding MTRasym spectra for two typical high- 
and low-grade HCC cases. The Z-spectra for both cases 
were very smooth in the offset range from −6 to 6 ppm. 
The Z-spectrum (−6 to 6 ppm) of the high-grade HCC 
was higher than that of the low-grade HCC (Figure 1A). 
Notably, the MTRasym (3.5 ppm) was significantly higher 
for the high-grade HCC than for the low-grade HCC  
(Figure 1B).

Representative images of T2WI, DWI, ADC, APTw and 
hematoxylin and eosin (H&E)-stained pathological sections 
that were obtained from low- and high-grade HCCs are 
depicted in Figures 2 and 3.

Quantitative imaging analysis

The ICCs between the two observers were 0.856 (95% 
CI: 0.726–0.927) for APTw values and 0.936 (95% CI: 
0.874–0.968) for ADC values. The ICCs of intra-observer 
were 0.750 (95% CI: 0.726–0.927) for APTw values, and 
0.800 (95% CI: 0.782–0.935) for ADC values. Figure 4 
shows the APTw values of the high- and low-grade HCCs 
as determined by the two observers.

Because several measurements are highly reproducible, 
the APTw and ADC values for the high- and low-grade 
HCCs from the first measurement of Observer 1 were 
statistically compared. As listed in Table 2, the APTw values 
were higher in the high-grade HCC [grades 3 and 4, 
(2.76±1.38)%] than in the low-grade HCC [grades 1 and 2, 
(1.59±0.79)%; P=0.034]. Meanwhile, the ADC values were 
lower in the high-grade HCC [(0.53±0.21)×10−3mm²/s] than 
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in the low-grade HCC [(0.79±0.18)×10−3mm²/s; P=0.010].

Diagnostic performance analysis

The ROC analyses demonstrated the good diagnostic 
performance of the APTw, ADC values, and their 
combination in differentiating high- from low-grade 
HCCs from the first measurement of Observer 1, with 
AUCs of 0.814 for APTw, 0.745 for ADC, and 0.822 for 
their combination, as showed in Figure 5. Corresponding 
sensitivity, and specificity values were detailed in Table 3.  
The optimal APTw cutoff value was 2.30%, and the 
corresponding sensitivity and specificity in the prediction 
of high-grade HCC were 92.3% and 68.4%, respectively. 
The optimal ADC value was 0.60×10−3mm²/s, and the 
corresponding sensitivity and specificity of ADC in 
the prediction of high-grade HCC were 84.6% and 
73.7%, respectively. The sensitivity and specificity of the 
combination of both in the prediction of high-grade HCC 
were 100.0% and 68.4%, respectively.

Correlation with the histological grades

Significant correlations were found between APTw values 
and histological grades (r=0.534; P=0.002), as well as 
between ADC values and histological grades (r=−0.417; 
P=0.018).

Discussion

This study assessed the differences between the APTw and 
ADC values for the high- and low-grade HCCs. The results 
demonstrated significantly higher APTw values (P=0.034), 
but significantly lower ADC values (P=0.010), in the 

high- than in the low-grade HCC. Moderate correlations 
were found between APTw values and histological grades 
(r=0.534; P=0.002), as well as between ADC values and 
histological grades (r=−0.417; P=0.018). The significance of 
APTw imaging is that endogenous protein information in 
tissue is obtained indirectly through the bulk water signal 
used in MRI. Notably, an egg white phantom experiment 
showed that the APTw signal mostly reflects mobile 
proteins (40). Theoretically, the effect of APTw in tumor 
is primarily correlated with the tissue content of labile 
amide protons of mobile proteins (10,41). The application 
of APTw imaging to brain tumors has clearly (9,19-26) 
demonstrated that high APTw values are associated high 
cellularity and proliferation.

We found a significant increase in APTw values in the 
high-grade HCC, agreeing with those previous results in 
other malignancies (21,22). After the effects of conventional 
MT and direct water saturation were minimized in the 
Z-spectra, the upward shift in the MTRasym spectrum 
[including MTRasym (3.5 ppm), namely APTw] for high-
grade HCC may be attributable to many factors, such as 
a higher tumor cell proliferation rate and cellular density. 
Despite differences in APTw values between high- and low-
grade HCC, the liver was heterogeneous on the APTw 
image, as shown in Figures 2D and 3D. Similar to other 
MRI sequences, APTw MRI is prone to some confounding 
signal contributions that may mislead and confuse its 
interpretation (10). In the two cases presented above, the 
intrahepatic blood vessels showed hyperintensity on APTw 
images, perhaps because the mobile proteins in the blood 
generate strong endogenous APTw signals (10). Fortunately, 
on standard structural MRI sequences (such as T2w, FLAIR, 
and T1w), the areas of large necrosis, hemorrhages, or large 
vessels were often evident. By referring to routine structural 
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of the high-grade HCC was higher than that of the low-grade HCC. HCC, hepatocellular carcinoma.
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Figure 2 Images obtained from a 65-year-old-male patient with low-grade HCC (Edmondson-Steiner grade 2). (A) T2WI, (B) DWI, (C) 
ADC, (D) APTw, and (E) H&E-stained pathological section (original magnification ×400; black arrow: tumor cells). The average APTw 
value of the tumor was 1.12%. The average ADC value of the tumor was 0.83×10−3 mm2/s. HCC, hepatocellular carcinoma; DWI, diffusion-
weighted imaging; ADC, apparent diffusion coefficient; APTw, amide proton transfer-weighted.
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Figure 3 Images obtained from an 81-year-old-male patient with high-grade HCC (Edmondson-Steiner grade 4). (A) T2WI, (B) DWI, (C) 
ADC, (D) APTw, and (E) H&E-stained pathological section (original magnification ×400; the whole section filled with numerous tumor 
cells). The average APTw value of the tumor was 3.54%. The average ADC value of the tumor was 0.49×10−3 mm2/s. HCC, hepatocellular 
carcinoma; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; APTw, amide proton transfer-weighted.
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MR images, APTw images could identify “hyperintensity 
artifacts”, such as necrosis, hemorrhages, and vessels, which 
was necessary for accurate interpretation. This might be 
the reason that APTw imaging had lower specificity in 
identifying the high- from low-grade HCC. On APTw 
images (Figures 2D and 3D), compared with the normal 
liver parenchyma that removed intrahepatic blood vessels, 
the low-grade HCC signal was generally lower, with only 
a few patchy high signals, which might be related to blood 
vessels or necrosis, but the high-grade HCC signal was 
overall higher, which might be associated with increased 
blood vessels in high-grade tumors (35).

Our results were consistent with the previous studies 
demonstrating lower ADC values for high-grade HCC 
than for low-grade HCC (4-6). Moderate correlations 
were found between APTw values and histological grades, 
which was superior to ADC values. Theoretically, ADC 
was correlated to tumor grade and reflected tumor cellular-
level water diffusion. However, APTw, based on detection 
cellular mobile proteins, was correlated to tumor grade and 
provided a different aspect of the tumor microenvironment, 
namely the protein and peptide concentrations. Compared 
to the sensitivity of ADC, the sensitivity of the combination 
of both MRI parameters increased from 84.6% to 100.0% in 
the prediction of high-grade HCC. Furthermore, according 
to AUC analysis, APTw might yield better diagnostic 
performance in predicting the histological grade of HCC 
compared to ADC (0.814 and 0.745). The combination of 
both MRI parameters increased AUC of ADC from 0.888 
to 0.910, although the two were not statistically significant. 
Therefore, we have reason to conclude that APTw MRI 
combined with DWI is more conducive to accurately and 
comprehensively reflect the characteristics of HCC (42).

There were several limitations to our study. First, the 
2D APTw imaging sequence used allowed only one single-
slice acquisition. This might influence the obtained APTw 
values, especially in more heterogeneous tumors. A 3D 
imaging acquisition sequence used in the brain (43,44) 
should be optimized and applied to the liver in the future. 
Second, the semi-quantitative APTw metrics, namely 
MTRasym (3.5 ppm), was used in this study. APTw is not 
pure due to other contributions, such as the upfield nuclear 
Overhauser effect of aliphatic protons and even some other 
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Table 2 Comparisons of the APTw and ADC values for the high- 
and low-grade HCCs from the first measurement of Observer  
1 (mean ± SD)

Parameter H-HCC (n=19) L-HCC (n=13) P value

APTw (%) 2.76±1.38 1.59±0.79 0.034

ADC (×10−3 mm²/s) 0.53±0.21 0.79±0.18 0.010

Significant differences displayed in italic. APTw, amide proton 
transfer-weighted; ADC, apparent diffusion coefficient; SD, 
standard deviation.
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Figure 5 ROC curves showed the ability of the APTw value, ADC 
value and their combination to discriminate high- from low-grade 
HCCs. ROC, receiver operating characteristic; APTw, amide 
proton transfer-weighted; ADC, apparent diffusion coefficient; 
HCC, hepatocellular carcinoma.
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CEST effects around 3.5 ppm. To more accurately quantify 
the APT effect, more complicated APT imaging acquisition 
or analysis approaches may be used in the future (45-49). 
Third, APTw may be affected some tissue parameters, 
particularly conventional MT and water T1 (50,51). 
Fortunately, no difference in MTR (15.6 ppm) between 
high- from low-grade HCCs [(13.2±7.0)% vs. (13.1±13.4)%, 
P=0.998] was found; moreover, APTw was reportedly 
insensitive to water T1 under the saturation power 2 μT 
used in this study (52-54). Fourth, this study did not include 
CT or MR enhancement details in HCC patients, which 
resulted in an inability to perform an accurate liver imaging 
reporting and data system (LI-RADS) classification of 
HCC. We should further add the HCC patient information 
and analyze the link between APTw imaging and LI-RADS 
in next step. Fifth, the pathologic features, including the 
proliferation index and microvascular density, were not 
analyzed, which limited the further correlation between 
APTw value and pathologic features. Finally, our sample 
size was relatively small. A large prospective cohort study 
that includes detailed pathologic information, CT or MR 
enhancement sequence and a fully developed 3D APTw 
imaging acquisition is needed in the future.

In conclusion, our preliminary study has demonstrated 
that APTw imaging can be used to differentiate high- from 
low-grade HCCs at the protein level. The APTw imaging 
signal may be a useful imaging biomarker that complements 
DWI for more accurate and comprehensive HCC 
characterization.
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