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Introduction

Molecular imaging in oncology is defined as the noninvasive 
imaging of the key molecules essential to the malignant 
state. Increased glucose demand, even in the presence 
of ample oxygen (due to mitochondrial dysfunction), 
called the Warburg effect (1), has been considered one of 
the fundamental features of malignant cells. Two of the 
factors contributing to the Warburg effect are the absolute 
increase in the amount of glucose transported into the cell 
and its rate of phosphorylation. The first is mediated by 
transcriptional activation of the glucose transporter gene 

(GLUT) (2) and the second by the elevation of hexokinase. 
Both high GLUTs and hexokinase expressions tend to 
correlate with tumors having high metabolic activity and 
malignancy. As research in molecular oncology continues 
to search for a new approach to the detection of the disease, 
the use of glucose and its analogs as molecular imaging 
agents seems straightforward. The most common molecular 
imaging agent in oncology is 2-fluoro-2-deoxy-D-glucose 
(FDG); FDG as well as 2-deoxy-D-glucose (2DG) are 
two glucose analogs that are taken up by cells through 
the glucose transporter and undergo phosphorylation 
catalyzed by hexokinase to their 6-phosphate form. While 
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their 6-phosphate derivatives cannot be converted by 
phosphoglucose isomerase, they can be broken down 
by glucose 6-phosphatase, but this enzyme is markedly 
downregulated in cancer cells (3). Thus, unlike the natural 
glucose (D-Glc), they do not proceed through the glycolysis 
pathway and accumulate in the malignant cells. The 
enhanced transport and accumulation of FDG in tumors 
is the basis of radioactive 18F-FDG for positron emission 
tomography (PET) (4,5), and accounts for its wide clinical 
use for the diagnosis and monitoring of treatment responses 
of various kinds of tumors. In the United States alone, more 
than 1 million patients a year are imaged with 18F-FDG 
PET. The technique has its limits, however: the radiation 
exposure limits the scan frequency of the 18F-FDG-PET 
method and excludes certain patient groups; 18F-FDG 
PET suffers from low spatial and temporal resolutions; and 
the procedure is expensive. Clearly, the limits of 18F-FDG 
PET imaging call for a different clinical application for the 
detection of new and recurrent tumors and monitoring of 
treatment response.

Molecular imaging has the potential to enable a 
quantitative and precise index for these requirements via 
imaging of biomarkers. Metabolic-based molecular imaging 
is already used for detecting tumors and metastases (6,7), 
and the continuing development of molecular targeted 
contrast agents for non-nuclear imaging is expanding 
the spectrum of clinical molecular imaging applications. 
Developing MRI techniques with increased sensitivity to 
levels of nonradioactive glucose analogs hold promise of 
more rapid detection of tumors, increased safety, lower 
costs, and, possibly, repeated use without fear of toxicity. 

Chemical exchange saturation transfer (CEST) MRI of 
glucose (“glucoCEST”), which combines high-resolution 
MRI obtained by conventional imaging with simultaneous 
molecular information, has generated increased interest 
lately (8). The technique enables the exploitation of agents 
with exchangeable protons from amine (9-12), amide (13-15)  
or hydroxyl (16-20) residues (in the case of glucoCEST, 
these agents are based on glucose or its analogs). The 
technology of CEST MRI has been recognized as a means 
of generating new contrast in magnetic resonance imaging 
with potential practicality in the clinic (21). CEST MRI 
technique has been demonstrated to increase the sensitivity 
of MRI to the level of metabolic activity (22,23), enabling 
identification of tumor stage, therapeutic response, local 
recurrence, more precise treatment planning, and utility 
for guiding biopsy in cancers. For more technical details on 
the CEST MRI technique, readers are referred to several 

reviews (24-26). In this work, we reviewed recent studies 
that assess glucose analogs as novel MRI contrast with the 
CEST technique. We also evaluated new data on several 
novel glucose analogs in order to increase the horizon of 
possibilities and give the opportunity to choose the best 
agent that will be used on the clinic. 

Methods

In vitro studies

Solutions 
Glucose analogs were prepared in 10 mM phosphate-
buffered saline (PBS) containing 10% D2O (99.98%, 
Biolab, Israel). Each sample was inserted into a 5 mm tube 
for 1H NMR spectroscopy.

NMR spectroscopy 
NMR spectra were acquired on a Bruker DRX 11.7T 
spectrometer, de-tuned to avoid radiation damping effects. 
Acquisition parameters were as follows: Acquisition time 
and relaxation delay were 2 and 14 s, respectively. Spectral 
width was 5 KHz, data size 16 K, number of scans 8. A 
CW saturation pulse of 3 s with attenuation of 2.5 μT was 
employed at a series of frequencies (Ω) in the range of  
±4.5 ppm relative to the water signal (0 ppm). Data was 
recorded and processed using TOPSPIN 3.0 software (Bruker).

The CEST was measured by magnetization transfer 
asymmetry (MTRasym) (27) accordingly:

CEST (Ω)= [MSAT(−Ω)-MSAT(Ω)]/M0               [1]

where MSAT(Ω) and MSAT(−Ω) are the signal intensity with 
RF saturation at Ω and −Ω, respectively, and M0 is the signal 
intensity without RF saturation.

Preparation of extracts from tumors
Extracts of brains and tumors were prepared by the 
methanol/CHCl3/H2O extraction method (28).

NMR spectroscopy of extracts
13C NMR spectra of the extracts were recorded at 125.76 MHz  
using a Bruker DRX 11.7T spectrometer. Acquisition 
parameters were as follows: spectral width 16.5 KHz, data 
size 32 K, pulse width 5 μs, relaxation delay 5 s, acquisition 
time 1.6 s. 31P NMR spectra of the extracts were recorded 
at 202 MHz using a Bruker AVANCE3 11.7T spectrometer. 
Acquisition parameters were as follows: spectral width  
2.0 KHz, data size 32 K, pulse width 6 μs, relaxation delay  
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4 s, acquisition time 1.6 s.

In vivo studies

CEST MRI protocol
A Bruker 7T BioSpec scanner with 30 cm bore size was 
used to scan implanted xenograft mammary tumors of mice 
[protocols for cell cultures and orthotopic mammary fat 
pad implantation are described in detail in reference (29)]. 
Mice bearing breast tumors were scanned before and after 
administration (IV, IP or PO) of glucose analogs (dissolved 
in saline) following overnight fasting with water access. 
Animals were anesthetized with isoflurane (1–2%) during 
the scan and body temperature was maintained at 37 ℃.

T2 RARE anatomical images (a series of 1 mm coronal 
slices of the abdominal area with acquisition matrix of 
128×128, FOV 28.8–40 mm2, RARE factor 8, TR 3,000 ms, 
TE 11.7 ms) were acquired to identify the slice presenting 
the maximum tumor size.

Before CEST, A B0 field map was obtained. The CEST 
images were generated as follows: a series of T2 RARE 
images (RARE factor 8, TR 3,000 ms, TE 11.7 ms) were 
collected from a single 1 mm coronal slice of the abdominal 
area after a continuous wave saturation pulse (B1=2.4 μT,  
tsat=2 s). Two protocols of CEST scans were used: (I) 
Dynamic glucoCEST MRI experiment: CW pulse at a 
specific proton frequency offset (Ω) of ±1.2 ppm (relative 
to the water signal) over time. (II) Z spectra experiment: 
CW pulse at a series of frequency offsets in the range of 
±5 ppm (relative to the water signal). CEST images were 

acquired before and up to 1.5 h after the glucose analog 
administration. 

All experiments with animal models were carried out 
according to the guidelines of the Israel National Research 
Council (NRC) and were approved by the Tel Aviv 
University Institutional Animal Care and Use Committee 
(0-15-057).

MRI data analysis
Data was processed using custom-written scripts in 
MATLAB. The mean intensities in the selected region of 
interest (ROI) of the tumor were used for the % CEST 
plot, based on the conventional T2 images. 

Review

CEST of glucose analogs that are amenable to 
phosphorylate by the hexokinase

The imaging of D-Glc with the CEST MRI method was 
recently demonstrated and suggested to be useful for cancer 
diagnosis (18,30-33). However, its rapid conversion to 
lactic acid by glycolysis and consequent low CEST signal 
(18,20,30) and short duration of glucoCEST enhancements 
pose a serious obstacle to its clinical application. For that 
reason, a variety of glucose analogs have been tested as 
alternatives to the original glucoCEST.

CEST MRI of 2DG and FDG give enhanced and stable 
CEST contrast for more than an hour after administration 
of the agent (19,20) (Figure 1). Clinical trials on the 
diagnostic and therapeutic efficacy of 2DG examined it alone 
or in combination with other therapeutic modalities (34).  
For example, in phase I/II trials with 2DG in patients with 
castrate-resistant prostate cancer (35), or a phase I trial of 
2DG alone or combined with docetaxel in patients with 
advanced solid tumors (36). In clinical trials that used 2DG 
to improve the efficacy of radiotherapy, 200–300 mg of 
the analog per kg body weight were administered orally 
after overnight fasting, with minor or no side effects (37). 
FDG is mostly known for its isotopic form 18FDG for PET 
examination, with no reports of safety-related concerns. 
The LD50 for FDG was 600 mg/kg in mice and rats injected 
IP (38). Mice injected IP with 14.3 mg/kg exhibited no 
abnormality in the brain, heart, spleen, liver, kidneys or 
lungs (39). Due to the toxicity of 2DG and FDG at high 
concentration, they cannot be used for human cancer 
diagnosis and should be limited to laboratory animals. 
However, there is a suggestion that 2DG may be considered 

Figure 1 CEST MRI kinetic measurements in D1-DMBA-3 breast 
tumors at different times following IV injections of 1.0 g/kg of 
2DG/FDG and 1.5 g/kg of D-Glc (20). CEST, chemical exchange 
saturation transfer; 2DG, 2-deoxy-D-glucose; FDG, 2-fluoro-2-
deoxy-D-glucose; D-Glc, D-glucose.
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for human diagnosis if delivered after encapsulation in 
liposomes (40). 

Dextran (41,42), sucralose (43) and sucrose (44) were 
demonstrated in vivo for cancer detection in laboratory 
animals, based on the contrast obtained by the hydroxyl 
peaks of these sugars (with a broad CEST signal at around 
1 ppm). The possibility to image cancer cells with several 
branched and unbranched polysaccharides (whose size is 
determined by the number of repeating glucose units, such 
as glycogen or glycosaminoglycans) was also examined 
(16,45-47), but since most of them deal with the use of 
endogenous substances for CEST MRI, they are beyond 
the scope of this review.

The ability to image tumors by glucosamine (GlcN) 
or N-acetyl-glucosamine (GlcNAc) CEST MRI was 
demonstrated in several tumor-bearing mice models (44,48). 
The method differentiated among tumor aggressiveness as 
well as detected metastasis (48), similar to the FDG-PET 
technique (49). In addition to the known non-toxicity and 
excellent safety profile (as a common food supplement) of 
GlcN compared to other glucose analogs, it does not affect 
blood glucose levels or insulin sensitivity, making it useful 
for a broader population that includes diabetic patients and 
those sensitive to glucose levels (50-55). Another advantage 
of GlcN is the fact that, unlike other glucose analogs whose 
hydroxyl protons have a small chemical shift relative to 
the water signal (~1.2 ppm), GlcN can be detected for its 
amino peak, which yields a significant CEST contrast that 
is relatively far from the water signal (~2–3 ppm). This 
increases its possibility to be detected by low-field clinical 
scanners. 

GlucoCEST vs. environmental factors 

Other glucose analogs were explored for their ability to 
detect cancer cells using CEST NMR/MRI techniques. 
However, as the CEST signal is critically dependent on 
proton exchange rates, as well as other parameters such as 
the relaxation times of the water and the metabolite and 
the pH of the local environment, the translation of the  
in vitro CEST effect to the in vivo one is not straightforward. 
A major factor that determines the proton exchange rate, 
in addition to the pH, is the type and concentration of the 
buffer solution. The dependence of the CEST effect of 
D-Glc on the phosphate buffer concentration is illustrated 
by an experiment we conducted (Figure 2A,B,C). The 
dramatical change in the MTRasym at the typical frequency 
offsets of the hydroxyl peaks (their full assignment is given 

in Figure 2D,E) due to buffer modification highlights 
the challenge of locating the original agent effect. The 
assignment of the hydroxyl protons of D-Glc was given 
previously (56). 

Accordingly, the ideal glucose analog for CEST 
MR imaging must meet the criteria of a high CEST or 
exchange-related effect, high uptake by tumors, and low 
or no toxic effects. Several glucose analogs examined  
in vitro in our lab that produced barely any CEST signal (at 
physiological conditions: pH~7, T=37 ℃) were not tested  
in vivo (Figure 3), including kanamycin A, streptozotocin 
and 3-amino-3-deoxy-D-glucose (Figure 3). The most 
promising glucose analogs were evaluated for their 
sensitivity in vivo in a murine tumor model. 

CEST of glucose analogs that are not phosphorylated by the 
hexokinase

Glucose analogs that are transported by the GLUTs but 
not phosphorylated by the hexokinase are expected to be 
non-toxic since they are not metabolized and are excreted 
unchanged by the kidney. Examples are 3-O-Methyl-D-
glucose (3OMG), 2-O-Methyl-D-glucose (2OMG), and 
6-deoxy-D-glucose (6DG). The absence of 6-phospho-
O-Methyl-D-glucose in implanted murine R1F-1 tumors 
following IV administration of 3OMG was demonstrated 
by both 13C and 31P NMR spectroscopy (57). Figure 4 shows 
the same results for 3OMG on murine brains. 

Significant CEST MRI signals of 3OMG were recently 
demonstrated for several breast cancer models of murine 
and human origin, as well as for malignant brain tumors 
(29,58,59). 3OMG is generally considered nontoxic (57,60-62),  
but detailed studies of its toxicity are lacking. Its use 
produced no behavioral effects in rats when given injections 
of up to 4 g/kg of 3OMG (63); in pediatric patients given 
orally as 1 mL/kg of a solution containing 30 mg/mL of 
3OMG (64,65); and in adult fasting patients given oral doses 
of 2.5 g together with a combination of several sugars (66-68).  
The glucose transporter affinity of 3OMG is mainly 
facilitated through GLUT1 and GLUT3 transporters; it 
competes with D-Glc for access to these transporters in the 
brain (69). 

A comparison of the in vivo 3OMG CEST method 
with glucoCEST on implanted 4T1 breast tumors in mice 
(Figure 5) points to a CEST contrast enhancement that is 
considerably higher and longer lasting than that of D‐Glc 
for the same detected tumor (29). 

For glioma xenograph of U87-MG cell line (Figure 6), 
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Figure 2 Bar graph showing % of MTRasym of 20 mM D-Glc solution (10% D2O) at several PBS concentrations at the typical frequency offsets 
of the hydroxyl peaks (A) 1.3 ppm, (B) 2.1 ppm and (C) 2.88 ppm from the water peak (T=37 ℃, 11.7T). (The peak at 0.66 ppm that belongs to 
the hydroxyl peak at the 6-position of D-Glc was not included in the MTR calculations because of its proximity to the water signal.) 1H NMR 
spectra of the hydroxyl protons of 0.1 M D-Glc solution (T=4 ℃, pH=5.4, 11.7T). Spectra were recorded on a fresh sample (D) and several 
hours after the sample preparation (E). MTRasym, magnetization transfer asymmetry.

Figure 3 Comparison of in vitro chemical exchange saturation transfer (CEST) MRI of glucose (“glucoCEST”) NMR signals of several glucose 
analogs. Solutions of 20 mM were measured at T=37 ℃, saturation pulse duration of 3 s, and attenuation of 2.4 μT, at the 11.7T (Rivlin M, 
2018, unpublished results). MTRasym, magnetization transfer asymmetry.
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Figure 4 1H-decoupled 31P NMR spectra of metabolites extracted from brains of mice bearing 4T1 tumors. (A) and (B) are extracts from 
control brains (without treatment). (C) and (D) are extracts from brains of mice administrated [6-13C] 3-O-Methyl-D-glucose (3OMG)  
[1.0 g/kg, per-os (PO)]. The peaks were referenced to GPC (0.49 ppm). Each spectrum represents a single specific brain of a mouse. The peaks 
were assigned according to previously published data: GPC, glycerphosphocholine; GPE, glycerphosphoethanolamine; Pi, inorganic phosphate. 
As no metabolic phosphorylated products were obtained, no peaks were observed around 5.1 ppm. 1H-decoupled 13C NMR spectra of 
metabolites extracted from brains of mice bearing 4T1 tumors. (E) is an extract from the control brain (without treatment) and (F) is an extract 
from the brain of mice administrated [6-13C] 3OMG (1.0 g/kg, PO). Each spectrum corresponds to overnight data accumulation and represents 
a single specific brain of a mouse. The resonance of [6-13C] 3OMG is shown at 63.3 ppm in spectra (F). The peaks were referenced to DSS  
(0 ppm). As no metabolic phosphorylated products were obtained, no peaks were observed around 66 ppm (Rivlin M, 2018, unpublished 
results). More details regarding the extracts procedure can be found at Rivlin et al. (29).

Figure 5 3-O-Methyl-D-glucose (3OMG) chemical exchange saturation transfer (CEST) vs. CEST MRI of glucose (glucoCEST) kinetics 
measurements in 4T1 breast tumor model in the same animal. (A) An anatomical T2-weighted image before D-glucose administration. 
(B,C) CEST map before (B) and ~60 min after (C) Per os (PO) treatment with D-Glc, 1.5 g/kg (at frequency offset of 1.2 ppm,  
B1=2.4 μT). No remarkable CEST contrast was obtained in the tumor vis-a-vis the baseline. (D) An anatomical T2-weighted image before 
3OMG administration. (E,F) CEST map before (E) and ~60 min after (F) PO treatment with 3OMG, 0.7 g/kg (at frequency offset of 1.2 ppm, 
B1=2.4 μT). Approximately 4% CEST was obtained in the tumor with reference to the baseline. Green arrows point to the tumor, the red 
arrow to the urinary bladder. (G) The time series of the % CEST achieved in 4T1 tumor following treatment with D-Glc (1.5 g/kg) vs. 3OMG  
(0.7 g/kg). Figure taken with permission from (29).
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the CEST effect of 3OMG was approximately twice that of 
D-Glc for a similar tumor line (59). 

Accumulation of 3OMG in brain (70) and brain bearing 
9L glioblastma tumors (71) has been detected by Spin-
lock imaging (CESL). To fully explore the potential of 
this new technology, we compared the tumor metabolism 
achieved by the 3OMG CEST method and the gold 
standard 18FDG‐PET. The PET effect is measured by 
the percent of radioactivity from the injected dose per ml 
(% ID/mL) that accumulated in the target. The CEST 
and PET parameters were evaluated in the same tumor 
model of murine breast cancer, 4T1 tumor cells, following 
acquisition by the two methods [For more details on the 
methodology see (29)]. The two methods showed similar 
trends, as evidenced by the good agreement between their 
tumor uptake results: the % CEST contrast and % ID/mL 
of 18FDG uptake by the tumor, as illustrated in Figure 7.  
A correlation analysis was performed on both maximum 
MRI-based and PET-based estimates. Furthermore, 4T1 
tumors are known to metastasize from the primary tumor 
in the mammary gland to multiple distant sites including 
blood, lungs and liver. Accordingly, in some of the animals, 
in correlation with the results of the 3OMG CEST MRI 
method, significant 18FDG accumulation could also be seen 
in the liver, presumably due to metastasis (Figure 7, middle 
example). These results provide a clear validation of the 
3OMG CEST method. 

Other non-phosphorylated glucose analogs were 
examined as potential CEST contrast agents to image 
cancer cells (Rivlin M, 2018, unpublished results), with 
promising results. One is 6-deoxy-D-glucose (6DG), 
which, similar to 3OMG, cannot be phosphorylated by 
hexokinase due to the absence of oxygen at its 6-carbon (72). 

Unlike 3OMG that shows specificity mostly to two main 
GLUT transporters, GLUT1 and GLUT3, 6DG has a 
good affinity and high specificity for the D-Glc transporter 
system (73). In vivo 6DG CEST MRI measurements were 
performed with a Bruker 7T Biospec scanner on implanted 
orthotopic mammary tumors of mice, using a methodology 
described previously (29). A representative result is shown 
in Figure 8. 6DG CEST MRI yielded a significant contrast 
with a maximum net signal (of ~10% above the baseline) 
at about 1.2 ppm from the water signal (Figure 8C). As no 
metabolic products were observed over time, the same 
CEST effect was achieved for two-time series of Z spectra 
that were sampled simultaneously and alternately. 

In a recent international workshop on CEST imaging 
[2019], Jin et al. (74) demonstrated that glucoCEST MRI 
could also be performed with D-xylose, an analog of D-Glc 
that also lacks the free hydroxyl group at carbon 6 where 
phosphorylation by hexokinase takes place. They described 
the uptake of D-xylose in rat brains with a model of 9L 
tumors at the 9.4T. However, unlike 6DG, which also lacks 
the free hydroxyl group at carbon 6, D-xylose cannot be 
considered a nonmetabolized glucose analog. Huntley and 
Patience (75) reported about several possible routes for 
D-xylose metabolism:

(I) Oxidation by D-xylose dehydrogenase to D-xylonic 
acid. D-xylose dehydrogenase has been identified 
and purified in pig liver as well as in monkey 
kidney, dog liver, and rabbit lens. The authors point 
to data supporting the view that xylose oxidation 
to CO2 can involve conversion to xylonic acid and 
subsequent decarboxylation.

(II) Reduction of D-xylose by aldose reductase to 
D-xylitol, which is then converted to D-xylulose 

Figure 6 3-O-Methyl-D-glucose (3OMG) chemical exchange saturation transfer (CEST) MRI of malignant brain tumor. (A) Anatomical 
image of the mouse brain. (B) The area under the curve image calculated for the last three minutes of the CEST scan (using a single CW 
magnetization transfer prepulse of strength 1.5 μT and duration 2 s), a period of 8–11 min post injection of 3OMG (3 g/kg, 1.9M, 200 mL). 
Figure taken with permission from (59). 
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Figure 7 3-O-Methyl-D-glucose (3OMG) chemical exchange saturation transfer (CEST) MRI and 18FDG PET/CT images 
from five tumors of a murine model (4T1 cells). (A) A coronal view of an anatomical T2-weighted MR images (7T field) before 
3OMG administration showing the tumor (green arrow) and the urinary bladder (red arrow). (B) % CEST images 60 min after 
PO administration with 3OMG, 1.0 g/kg (at a frequency offset of 1.2 ppm, B1=2.4 μT). A significant CEST contrast was obtained 
in the tumor and the urinary bladder as well as areas suspected to be metastases. (C) 18FDG PET/CT coronal view obtained  
60 min after IV injection of 18FDG showing accumulation mainly in the tumor (green arrow) and urinary bladder (red arrow). (D) Correlation 
between 3OMG % CEST contrast and % ID/mL value in the five tumors from a murine model ± SD. The CEST and PET/CT measurements 
were performed 8 and 10 days after implantation of the tumors, respectively (29).
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and can be metabolized through the pentose 
phosphate pathway.

(III) Metabolism of xylose to threitol, a urinary 
metabolite. The authors (75) described healthy 
patients dosed with D-xylose in whom 15% of 
the xylose excreted in the urine was recovered as 

D-threitol within 5 h post-dosing; this proportion 
rose when the collection time was extended to 
24 h. Moreover, no xylose was found in the urine 
when excretion was delayed. In addition, xylose has 
been reported to inhibit sucrose activity leading to 
decreased post-prandial blood glucose and insulin 

The urinary bladder
The tumor
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levels. 
Romano and Connell (73) reported that the uptake 

curves of 6DG and D-xylose by 3T3 cells (that mimic 
connective tissues) were similar, and both reached a steady 
state level within 10 min following treatment. Nevertheless, 
while 6DG was well transported in a system of intestinal 
cells, D-xylose was not, showing a 100-fold decrease in 
apparent affinity for that cell system (76). Based on these 
data, only 6DG and not D-xylose by 3T3 cells can serve 
as a CEST MRI agent for the detection of cancer cells. It 
should be considered an alternative to 3OMG in those cell 
systems where 3OMG shows limitations in usefulness.

Another non-phosphorylated glucose analog that was 
investigated in our lab is 2-O-Methyl-D-glucose (2OMG). 
Unlike D-Glc, it has less β anomer at equilibrium in natural 

conditions of pH (77) [essential information for designing 
in vivo CEST experiments (78)], and there are no detailed 
studies of its pharmacokinetics. Thus, we performed high-
resolution 31P NMR spectroscopy studies to explore its 
metabolism. Mice bearing 4T1 tumors were sacrificed at 
about 45 min after 2OMG administration (IV and PO, 
n=4), and organs were taken for 31P NMR analysis following 
the procedure of methanol-chloroform-water extraction 
(28,29). 31P NMR spectroscopy studies displayed its inability 
to undergo phosphorylation as no phosphorylated products 
were observed (Figure 9). Phosphorylated products were 
expected to appear at about 5.1 ppm. 

In vivo 2OMG CEST MRI measurements (using the 
same methodology described above for 6DG) yielded a 
significant contrast of up to 9% at around 1 ppm from 

Figure 8 In vivo 6DG CEST MRI measurements in a 4T1 tumor (7T field). (A) A T2-RARE anatomical image before administration of 
the agent; (B) MTRasym image at 1.2 ppm following treatment with 6DG (2.0 g/kg, IP), overlaid onto the T2 anatomical image; (C) The 
MTRasym plots for 4T1 tumor before (red curve) and after treatment (green curve) with 6DG. In the inset: full Z spectra for 4T1 tumor at  
2 time periods following administration of 6DG. Total estimated time of scan was 80 min for CW pulses of 2 s duration and attenuation of  
2.5 μT (106 Hz) at 106 frequencies offsets that were divided into two series and sampled alternately and simultaneously. The mean intensities in 
the selected ROI in the tumor were used for the MTRasym plot. B0 inhomogeneity corrections were made (Rivlin M, 2018, unpublished results). 
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the water signal. A representative result is shown in 
Figure 10. As no metabolic products were observed over 
time, like in the case of 6DG, the same CEST effect was 
achieved for two-time series of Z spectra that were sampled 
simultaneously and alternately. One of the most prominent 
advantages of using 2OMG or 6DG CEST MRI stems 
from their greater sensitivity to regional differences in 
tumor uptake (only the metabolically active part of the 
tumor exhibits enhanced CEST effect; examples are shown 
in Figure 8B and Figure 10B).

The available data on the in vivo CEST-MRI of glucose 
analogs is summarized in Table 1. 

Discussion

There are several reasons to search for glucose analogs 
for cancer diagnosis in addition to, or as a replacement for 
glucoCEST with natural glucose. A major one is to enhance 
the CEST effect by eliminating the rapid conversion to 
lactic acid by glycolysis. Another is to reduce the effect 
on insulin levels, removing a barrier to glucoCEST with 
glucose in many patients.  

A main question to be addressed is the safety and lack 

of adverse effects of the analog. GlcN is a good candidate 
in this regard: its wide use as a food additive eliminates the 
need for further toxicity testing, and it showed no effect on 
insulin levels (50-55), even following IV injection of large 
doses (50,51). As for the nonmetabolized agents, 3OMG has 
already been given IV to pediatric patients (64,65) and by 
oral administration to adult fasting patients (66-68). Because 
the lack of toxicity of 3OMG is likely to result from the fact 
that it does not undergo phosphorylation by hexokinase, it 
is possible to assume that other nonmetabolizable agents 
such as 2OMG and 6DG will also exhibit no toxicity. 
Hence, glucose analogs that are not phosphorylated by 
hexokinase appear to be highly promising for imaging of 
cancer by the CEST MRI technique.

One advantage of using glucose analogs is their low 
molecular weight (~200 g/mole) and their solubility in 
water. Another consideration is the optimal time to perform 
the glucoCEST examination. The analog needs time to 
accumulate in sufficient amount in the ROI to generate 
contrast, after which it should be completely eliminated by 
being nonmetabolized and excreted through the kidneys, 
or by metabolism to other metabolites that produce CEST 
effect such as in the case of GlcN. This is in contrast to 

Figure 9 1H-decoupled 31P NMR spectra of extracts from 4T1 tumors (A) untreated and (B) and (C) treated with 2.6 g/kg (PO) and  
2.0 g/kg (IV) of 2OMG, respectively. The peaks were assigned according to previously published data (79): GPC, glycerophosphocholine; GPE, 
glycerophosphoethanolamine; Pi, inorganic phosphate. The spectra were calibrated according to GPC (0.49 ppm). Rivlin M, 2018, unpublished 
results. 
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Figure 10 In vivo 2OMG CEST MRI measurements in a 4T1 tumor (7T field). (A) A T2-RARE anatomical image before administration of the 
agent; (B) MTRasym image at 1.0 ppm following treatment with 2OMG (3 g/kg, IP), overlaid onto the T2 anatomical image; (C) The MTRasym 
plots for 4T1 tumor before (red curve) and after treatment (green curve) with 2OMG. In the inset: full Z spectra for 4T1 tumor at two-time 
periods following administration of 2OMG; total estimated time of scan was 80 min (same CEST protocol as described in Figure 8 caption). 
Rivlin M, 2018, unpublished results. 
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the gadolinium-based contrast agents, which showed 
signs of accumulation following a number of repeated  
examinations (80). The CEST MRI examination protocol 
for each glucose analog should be checked independently 
for its pharmacokinetics and bio-distribution profile, which 
will depend on the method of administration (IV, or PO) 
and its particular metabolism.

Conclusions 

The findings of the preliminary studies described here 
point to the potential of CEST MRI with glucose analogs 
as a highly sensitive and adaptable molecular imaging 
technology. The noninvasive glucoCEST MRI method 
offers advantages over currently available clinical imaging 

modalities, not only for detecting and monitoring the 
progression of tumors, but also for assessing their response 
to therapy. Unlike the conventional MRI morphological 
images, glucoCEST MRI technique enables distinguishing 
between the active parts of the tumor and visualizing its 
heterogeneity. The advantage of this method can be clearly 
seen by monitoring the patient after treatment with, for 
instance, chemotherapy, and comparing the obtained 
glucoCEST contrast to pre-treatment glucoCEST scans 
as well as to nonmalignant/normal tissues, all while 
avoiding exposing the patient to radiation. The potential 
translational applications of CEST MRI with glucose 
analogs hold great promise for cancer disease, and perhaps 
for other diseases as well.
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Table 1 The available data on the in vivo CEST-MRI of glucose analogs

Glucose analog Model1
Chemical 
shift (ppm)

Mode of  
administration

Administrated 
dose2 

%  
CEST

Undergo 
metabolism

References

2-deoxy-D-
glucose (2DG)

Breast tumors D1-DMBA-3 1.2 IV 2.0 g/kg 20 + (20)

Rat brains 1.2 IV 1.0 g/kg 2 + (19)

2-fluoro-2-deoxy-
D-glucose (FDG)

Breast tumors D1-DMBA 1.2 IV 1.0 g/kg 18 + (20)

Dextran Colon tumors CT26 0.9 IV 0.375 g/kg  
(10 kD)

7 + (41)

Sucralose 9L glioma 1.0 IV 200 mM,  
0.2 mL/min

4.8 + (43)

Sucrose Breast tumors TS/A and B16 0.7–1.2 IV 1.2 g/kg 5 + (44) 

Glucosamine 
(GlcN)

Breast tumors 4T1 1.2 PO 0.38 g/kg 4 + (29)

Breast tumors MCF7 IV 1.0 g/kg 4.5

Breast tumors MCF7 PO 1.0 g/kg 5.5

N-Acetyl 
glucosamine 
(GlcNAc)

Breast tumors TS/A and B16 0.7–1.2 IV 1.2 g/kg 3.5 + (44)

Breast tumors 4T1 1.2 IV 1.1 g/kg 6.5 + (48)

Breast tumors 4T1 PO 1.0 g/kg 6 (48)

Kanamycin A Insufficient in vitro CEST signal 1.2 – + (Rivlin M, 2018,  
unpublished results)

Streptozotocin Insufficient in vitro CEST signal 1.2 – + (Rivlin M, 2018,  
unpublished results)

3-amino-3- 
deoxy-D-glucose

Insufficient in vitro CEST signal 1.2 – + (Rivlin M, 2018,  
unpublished results)

D-xylose 9L glioma – IV 1.0 g/kg + (74)

3-O-Methyl-D-
glucose (3OMG)

Breast tumors D1-DMBA-3 1.2 IP 1.5 g/kg 20.7 − (20)

Breast tumors 4T1 IV, IP, PO 0.7 g/kg 4.0–4.4 (29)

Breast tumors 4T1 PO 1.0 g/kg 6 (29)

Breast tumors MCF7 PO 1.0 g/kg 5 (29)

Breast tumors MDA-MB-231 PO 1.0 g/kg 4 (29)

Glioma tumors U87-MG 1.2 IV 3.0 g/kg 5 − (59)

2-O-methyl-D-
glucose (2OMG)

Breast tumors 4T1 1.2 IP 2.0 g/kg 10 − (Rivlin M, 2018,  
unpublished results)

6-deoxy-D-
glucose (6DG)

Breast tumors 4T1 1.0 IP 3.0 g/kg 9 − (Rivlin M, 2018,  
unpublished results)

1, tumor cells implanted in mice unless specified otherwise; 2, minimal dose tested.
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