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Introduction

Placental glucose transfer is essential to sustain fetal 
development (1). Insufficient glucose transfer may result 
in intrauterine growth restriction (IUGR) while too 

much glucose is associated with fetal macrosomia. Such 

conditions can further lead to complications at birth and an 

increased burden of chronic diseases in adulthood (1). The 

fetal glucose level varies with the gestational age and the 
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maternal glucose level. In addition, diabetes and gestational 
diabetes have been associated with elevated maternal 
glucose levels and risk of birth complications. Whereas the 
glucose tolerance test screens for gestational diabetes (2), 
it does not provide information about placental glucose 
transfer. Routine ultrasound exams are not are not able to 
characterize maternal-fetal glucose relationships. Although 
PET can map tracer distribution across the placenta and 
in fetal organs in experimental animals, it is not feasible in 
humans due to the ionizing radiation (3). Hence, it is urgent 
to develop a safe non-invasive means to assess placental 
glucose transport. 

Advanced MRI techniques are being investigated for 
placental imaging. For example, placental perfusion can 
be measured by dynamic contrast-enhanced (DCE) MRI 
(4,5), arterial spin labeling (ASL) (6) and intravoxel-
incoherent motion (IVIM) MRI (7-9). In addition, 
placental oxygenation can be assessed using T2 and T2* 
mapping (10,11) and BOLD MRI (12-14). In addition, 
MR spectroscopy (MRS) has be used to study the placenta  
(15-17) but its spatial resolution is limited. Recently, 
chemical exchange saturation transfer (CEST) MRI 
has been shown to be glucose sensitive via the exchange 
between bulk water and the glucose hydroxyl protons, 
dubbed GlucoCEST MRI (18,19). Dynamic glucose 
enhanced (DGE) MRI provides time-resolved glucose 
measurement in brain tumors at high field (20,21), which 
has been extended for head and neck cancer imaging at  
3.0 Tesla (22). Recently, Wu et al. demonstrated DGE MRI 
at 11.7 Tesla in a mouse model of intrauterine inflammation 
(IUI), which is known to result in acute placental  
injury (23). It is necessary to note that most of these DGE 
experiments were performed with intravenous (IV) glucose 
administration.

Although it is advantageous to perform CEST MRI 
at high field (24), it is important to develop GlucoCEST 
MRI at 3.0 Tesla, particularly for the pregnant population. 
For patient acceptance, getting MRI scan after an oral 
glucose drink is far preferable to an IV load. Oral glucose 
tolerance test is commonly used during pregnancy to screen 
for gestational diabetes. To address these two issues, our 
study here optimized continuous wave (CW) GlucoCEST 
echo planar imaging (EPI) at 3.0 Tesla (25). We tested 
GlucoCEST in ex vivo placentas and characterized the 
relationship between GlucoCEST and placental vascular 
density. We also demonstrated GlucoCEST MRI following 
the glucose tolerance test and established the feasibility of 
placental DGE as an ancillary exam.

Methods

The study has been approved by the Institutional Review 
Board (IRB) at the Boston Children’s Hospital and 
Massachusetts General Hospital. 

Glucose phantom study 

D-glucose was dissolved in PBS at concentrations of 4, 
8, 12 and 20 mM with pH titrated to 7.4. The solution 
was transferred into separate 50 mL Falcon tubes, and 
positioned in a cylindrical phantom holder. 

Ex vivo placental tissue study

Fresh placentas were obtained from uncomplicated 
term deliveries within 6 h. Cannulation was performed 
on the surface fetal chorionic arteries of the placenta 
specimen. The lobules were flushed with normal saline and  
5,000 IU/L heparin (NSH) until the venous return was 
clear. Subsequently, NSH supplemented with D-glucose 
(5, 10, 20 mM) and 1 mL/L yellow India ink (Cancer 
Diagnostics, Inc.) were perfused in separate placenta 
lobules of a single placenta. After the perfusion, the area 
around the perfused lobule was clamped, sutured, and 
fit into a cylindrical plastic container of 10 cm diameter. 
Four placenta sections were prepared and stacked in 
the container, which was then filled with agar gel (1%)  
(Figure 1). The sample was maintained at room temperature 
before imaging. Hematoxylin and Eosin histology was 
obtained after MR imaging and examined by an experienced 
placenta pathologist. 

In vivo study

The GlucoCEST scans were performed in pregnant 
mothers (Table 1). After a glucose drink (TrutolTM) in a 
sitting position with a dose of 50 gm, equivalent to glucose 
tolerance test, subjects re-entered the scanner while keeping 
the same maternal position for the dynamic GlucoCEST 
scan. T2*-weighted scans were performed simultaneously. 

Data acquisition

All studies were performed on a 3.0 Tesla Skyra (Siemens 
Healthcare, Erlangen, Germany). While phantom and  
ex vivo tissue was scanned using a 32-channel array head 
coil, in vivo subjects were scanned using a combined 



1621Quantitative Imaging in Medicine and Surgery, Vol 9, No 10 October 2019

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2019;9(10):1619-1627 | http://dx.doi.org/10.21037/qims.2019.09.16

18-channel body and 12-channel spine receive arrays. 
CEST imaging was performed with single-shot gradient 
echo EPI (26) with a CW RF irradiation of 1 second. For 
the phantom study, we repeated CEST MRI measurements 
under B1 fields of 1, 1.5, 2 and 3 µT, and flip angle (FA) of 
20, 45, 70 and 90 degrees. Z-spectra were obtained with 
RF saturation frequency from –5 to 5 ppm with intervals 
of 0.25 ppm. Imaging matrix 48 × 48; in-plane resolution  
3 × 3 mm2, slice thickness 10 mm; TR/TE =4 s/17 ms,  
FA =90°, BW =2.3 kHz/px, averages =2. WASSR scan was 
performed with the same FOV and resolution as CEST 
scan at B1 =0.5 µT. For the ex vivo experiment, double 
spin echo MRI was performed for T2 imaging (TR =1 s, 
FA=90 degree, TE1/TE2 =8.5/50 ms). In addition, T1 
was calculated based on images acquired with a double FA 
gradient echo sequence (TR/TE =15/1.7 ms, FA1/FA2 
=5/26 degrees). Phantom and ex vivo experiments were 
performed at room temperature (25 ℃). 

For in vivo study, all scans were performed free-
breathing. The baseline (before glucose drink) CEST 

image was collected with a CW CEST MRI (RF saturation  
time =1 s, B1 =1.5 µT). Upon mother re-entering the 
scanner, the dynamic CEST scan was performed with 
saturation frequency sweep densely between 0.75 and  
4 ppm with intervals of 0.25 ppm, and sparsely between –4 
to 0 with intervals of 2.0 ppm. Each dynamic scan has a total 
of 17 frequency offsets plus two reference scans without 
on resonance saturation, which adds up to 1 min 16 s  
for each dynamic scan. At the end of the scan, a full CEST 
z-spectrum was acquired. A field map was collected with a 
double gradient echo MRI. 

Data processing

B0 map was obtained by Lorentzian fitting of z-spectrum, 
followed by Water saturation shift referencing (WASSR) 
correction of z-spectrum (27). ROIs of placental perfusion 
regions (and phantom tubes) were manually outlined and 
magnetization transfer asymmetry (MTRasym) [defined as 
Msat(–) – Msat(+)/Mctrl, where Mctrl is the control scan 
without saturation, Msat(–) and Msat(+) are saturated scans 
with RF irradiation applied on negative and positive ppms, 
respectively] was plotted for each ROI. The GlucoCEST 
enhancement (GCE) is defined as the change in the integral 
of MTRasym between 0.75 and 4 ppm. The DGE is defined as 
the change in integral of Z spectra between 0.75 and 4 ppm 
with reference to the Z spectrum of the first time point. The 
reference scans of each dynamic CEST acquisition, which are 
T2*-weighted EPI images, were used to obtain the dynamic 
change of R2*, as ∆R2* = log(S0/S0 baseline)/TE. Therefore 
R2* changes were recorded concurrently as GCE changes. 

Figure 1 Sample configuration of the placental tissue study. (A) The fetal surface of the placenta, yellow lines indicate where the placenta 
was sectioned after perfusion. Each segment and its glucose concentration were labeled; (B) illustration of perfused placental tissue 
positioned in a cylindrical container.

Placenta tissue:

Agar layers

> Perfused with 20 mM glucose

> Perfused with 10 mM glucose

> Perfused with 5 mM glucose

> Not perfused

Agar gel

Agar gel

A B

Table 1 Subject demographics

Subject Gestational age Position Fast (h)

1 33 weeks Left lateral 2  

2 35 weeks Left lateral 2 

3 30 weeks + 5 d Left lateral 2 

4 34 weeks + 6 d Right lateral 2 

5 35 weeks Left lateral 2 
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Results

Figure 2 shows the phantom GlucoCEST MRI. As shown 
in Figure 2B, the GCE effect increases linearly with glucose 
concentration. Moreover, the GCE peaked when B1 =2 uT,  
consistent with previous simulation results (25). The FA 
affects the magnitude of GlucoCEST MRI effect and its 
signal-to-noise ratio (SNR) in opposite ways, and this 
finding was used as a reference in optimization placental 
tissue GlucoCEST MRI. 

In the ex vivo placenta, the sub-regions of perfused 
tissue were identified based on the T2* weighted image  
(Figure 3A). CEST effect in the non-perfused tissue 
may be due to blood sugar in the fetal vasculature  
(10% v/v) (28). The normal serum glucose level in the 
placenta is reported to be around 4 mM in vivo (29). Glucose-
perfused placental tissue showed higher GlucoCEST 
effect than the non-perfused control placental tissue  
(Figure 3B). This observation is also consistent with 
previous work that compared GCE effect in “glucose 
perfused”, “non-perfused”, and “saline perfused” placenta 
tissue (30). However, the GlucoCEST MRI effect did not 
scale linearly with the glucose perfusion concentration 
(Figure 3C). Notably, the section of placenta tissue 
perfused with 10 mM glucose was found to have chronic 
villitis (Figure 3D), which may explain its lower GCE. 
Nevertheless, the tissue perfused by 20 mM glucose showed 

only slightly higher GCE than that of 5 mM glucose may 
be due to normal variations in packing density of villi and 
the number of vessels/capillaries per villi, which could be a 
major confounding factor when inferring glucose content 
from the GCE intensity. 

The  in vivo experiments were performed in five 
volunteers whose gestational age ranged from 30 to  
35 weeks. The duration of the dynamic scans varied for 
each subject, from 10 to 18 min, due to the different 
time needed to re-position the imaging field of view 
to match the baseline scan, while the maximum stay 
in the scanner for each subject was fixed. Nonetheless, 
the dynamic scans were kept within 30 min of the 
glucose drink. Example of the z-spectra of one subject 
is shown in Figure 4A. The baseline scans that were 
taken before glucose drink resulted in sizable variations 
of the GCE (–0.8 to 1.8) among individuals. Given 
the subject position changes between the baseline and 
the dynamic scans, the DGE of glucose was reported 
in reference to the first dynamic scan (Figure 4B).  
And the tendency of DGE increase during the first 30 min  
within glucose drink is consistent for all five subjects. 
Further, the ∆R2* was also assessed by dynamic T2* 
weighted images in reference to the first time point after 
the glucose drink (Figure 4C). The time series of ∆R2* and 
the time series DGE exhibit similarities in most subjects, 
however, they do not have significant correlations. 

Figure 2 A phantom study of the association between GlucoCEST effect and sequence parameters in glucose solutions. (A) z-spectra at 
various glucose concentrations; (B,C,D) the dependence of GlucoCEST effect on glucose concentration, FA and B1 respectively; (E) SNR 
of the imaging data is also dependent on the flip angle. FA, flip angle; GlucoCEST, glucose chemical exchange saturation transfer; SNR, 
signal-to-noise ratio.
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Discussion

Our study investigated GlucoCEST MRI at 3.0 Tesla and 
preliminarily tested DGE MRI in human placenta following 
oral glucose tolerance test. The DGE signal increase was 
observed for each individual within 30 min after the glucose 
drink. We have demonstrated the feasibility of GlucoCEST 
as a novel imaging test for characterizing placental glucose 
transport.

The ex vivo study demonstrated that GCE is promising 
for detection of placental pathologies. Glucose perfused 

tissue exhibited higher GCE than the non-perfused tissue. 
Although we did not show a simple linear relationship 
between GCE and glucose content, the results could be 
partially explained by the histological findings of variable 
tissue perfusion possibly affected by localized placental 
pathology. The vessel perfusion and vascular density in 
the placenta tissue directly affect the volume fraction of 
fetal blood in a single imaging voxel and thus affect the 
magnitude of GCE effect. Because the maternal/fetal 
glucose gradient is only 1.22 mM (fetal 3.48–3.87 and 

Figure 3 The GlucoCEST MRI from perfused ex vivo placenta. (A) Sagittal view of the specimen [T1map, T2map, T2*w EPI (as the 
reference scan of CEST-EPI sequence), and B0 map]. The ROIs outlined in the perfused region; (B) z-spectra of the placenta tissue 
corresponding to each ROI in Figure 3C; (C) the GCE effect plotted vs. glucose concentration of the perfusate; (D) histological slides of 
each perfused placenta tissue, labeled with different glucose concentration, and one piece of non-perfused tissue on the left. The yellow 
dye was used to validate the effectiveness of perfusion, and is evident in the fetal chorionic vessels admixed with blood. The formalin fixed 
paraffin embedded placental samples were stained with hematoxylin and eosin, and photographed using a Olympus BX41 microscope with 
100x magnification.EPI, echo planar imaging; MTR, magnetization transfer ratio; GCE, the glucose contrast enhancement; GlucoCEST, 
glucose chemical exchange saturation transfer. 
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maternal 4.4–4.7 mM) (29), the glucose concentration is 
largely homogenous across the placenta, and therefore GCE 
might be sensitive to regional pathologies such as infarction 
and chronic villitis. 

The assessment of placental glucose is somewhat 
confounded by several known factors that may affect the 
GlucoCEST MRI effect, such as field inhomogeneity and 
motion (31,32) and factors that are specific to placenta 
structure, such as volume fractions of fetal and maternal 
blood. For example, the absolute GCE effect is sensitive 
to the B1 field. In the human placenta in vivo (~20 cm in 
diameter), the B1 filed may vary up to 40%, which could 
translate to 20% difference in GCE according to previous 
analysis of CEST effect (25). In addition, the blood sugar 
level varies throughout the day, whereas the normal range 
of fasting blood sugar level (3.9–5.5 mM) is close to that of 
prediabetes (5.5–7 mM) and diabetes (more than 7 mM) (33). 

In light of the technical challenges, further development of 
GCE is needed before it can reliably characterize placental 
glucose transport. Although the time to peak generally 
occurs within 2–4 min after IV glucose infusion (21), 
the time to peak is highly variable following oral glucose  
drink (34). Despite these challenges, the in vivo DGE 
showed a consistent trend in all subjects during glucose 
challenge, which is very encouraging. 

It has been shown that apart from the CEST effect, 
glucose also reduces the water T2 relaxation due to chemical 
exchange, which would broaden the water saturation curve 
(35,36). T2 change of the glucose perfused ex vivo tissue is 
consistent with the GCE effect, though may be confounded 
by blood wash out. The in vivo experiments show the ∆R2* 
increases that are largely similar to the DGE signal, which 
is confirmative of the glucose enhancement effect. 

There are several limitations of the current study, for 

Figure 4 In vivo DGE MRI following oral glucose tolerance drink. (A) Example of Z-spectra in dynamic scan. (B) the DGE MRI of all 
subjects with reference to the first time point of the dynamic scan; (C) the dynamic R2* changes of all subjects with reference to the first 
time point of the dynamic scan. Data (lines) were smoothed with a moving average filter of five points, whereas each data point (circles) were 
shown as original without any smoothing.
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example, the protocol of glucose drink required the subject 
to sit up and drink the glucose in order to prevent reflux, 
thus causing inconsistency between baseline measurements 
and the dynamic measurements. It was also challenging to 
get a blood sugar level validation, since even a simple serum 
glucose measure with a finger prick requires the patient 
to be out of the scan room and sitting down comfortably, 
which takes about 5–10 min. Thus, the values would not 
be matched in time. Finally, fetal organs such as fetal livers 
would be of interest to observe, but accurate assessment of 
glucose change was challenging due to the fetal motion. 
In addition, motion caused by maternal free breathing, 
fetal motion, Braxton-hicks contractions, as well as blood 
perfusion change induced by increased blood sugar level, 
needs to be considered in future studies. Quantitative 
validation of the dynamic GCE signal may also require 
iv administration for a more rapid bolus, so as to enable 
correlation between serum glucose and each dynamic scan. 
Here, we chose to do a simple noninvasive feasibly study as 
the more invasive study design would need to be justified by 
a successful feasibility study.

Conclusions

Our study demonstrated the feasibility of DGE MRI in the 
human placenta following an oral glucose load at 3.0 Tesla. 
We found that in vivo DGE showed a consistent trend in all 
subjects during glucose challenge. 
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