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The deve lopment  of  d iagnost ic  and therapeut ic 
nanomaterials (1-8) for drug/gene co-delivery and 
ultrasonic/magnetic resonance imaging (MRI) contrast 
enhancement has been progressing rapidly towards 
various cancer cell types, especially in brain (9), liver 
(10-13), and other sites (14-22). In particular, ultrasmall 
superparamagnetic iron oxide (SPIO) nanoparticles (NPs) 
offer cell tracking, targeting, and substrate delivery to 
specific target site(s) (23-25). Linear polyethylenimine 
(PEI) polymers of low or high molecular weights have 
been employed to deliver genes with enhanced transfection 
efficiencies and possibly reducing cytotoxicities (26,27). 
In particular, ultrasmall deferoxamine-coated SPIO-NPs 
were first reported in our group (9,12) and studied for 
their biomedical properties. Deferoxamine, also known 

as desferal, is a clinically approved drug to treat iron 
poisoning. Slow degradation of iron oxide NPs in vivo 
will result in soluble iron ions which will, in turn, capture 
by deferoxamine layer at the nanoparticle’s periphery. 
Eventually, the deferoxamine-iron complexes will be 
excreted in the urine, thus reducing the in vivo toxicity 
especially in the heart and liver.

In view of delivering genes and facilitating MRI towards 
hepatocellular carcinoma (HCC) HepG2 cells with 
enhanced cellular uptake or transfection efficiencies, we 
report herein the use of deferoxamine-coated ultrasmall  
(8-10 nm) Fe3O4 SPIO-NPs (23-25), hybridizing with 
circular plasmid DNAs (pEGFP-C1), and branched 
PEI (25 kDa, PDI =2.5) to furnish ternary composites 
(9,12,13,26-32) for MRI and fluorescence imaging. The 
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biocompatibility of the ternary complex was evaluated 
by agarose gel retardation assay. The cellular uptake of 
the ternary complex is proposed by the receptor-mediate 
endocytosis (13,33,34) of HCC cells. Circular plasmid 
DNA pEGFP-C1 (~4.7 kb, Clontech) encodes a red-shifted 
variant of wild-type green fluorescence protein (GFP) in 
mammalian cells. The plasmid was prepared by using the 
QIAprep Spin Miniprep Kit (QIAGEN) with A260/A280 
ratio larger than 1.8. The fluorescence intensity is directly 
proportional to the amount of GFP expressed in the cells. 
By the strong, enhanced and constitutive expression of 
the reporters, the signals can be easily detected. They 
are optimized so that the reporters can be expressed in a 
variety of cell types/lines. It is envisaged that after receptor-
mediated endocytosis of the composites, the NPs in the 
composites would be cleaved and localized in the cytoplasm, 
which is responsible for generating MRI dark contrast 
signal. On the other hand, the pDNA of the composites 
would be further imported into the nucleus, which is 
responsible for expressing the fluorescence. 

NPs with a deferoxamine coating could be self-

assembled with negatively charged pDNA and positively 
charged branched PEI to furnish the ternary composites 
(200-300 nm) (9,12,13), thereby stabilizing by multiple 
electrostatic interaction and hydrogen bonds (35,36). 
The morphology and surface functional groups of the 
composites were characterized by transmission electron 
microscopy (TEM) and Infrared (IR)  absorption 
spectroscopy, respectively, which were reported previously 
in the literature. To evaluate the pDNA condensation 
ability of the PEI, agarose gel retardation assay was 
performed. The samples were then loaded onto 1% 
agarose gel containing 1× RedSafe Nucleic Acid staining 
solution (iNtRon Biotechnology). Free DNA (naked 
DNA) and commercially available transfecting agent 
Lipofectamine (Life Technologies) were used as controls. 
After electrophoresis (Figure 1) carried out at 110 V in tris-
acetate-EDTA buffer (pH 7.4), uncomplexed (free) pDNA 
will migrate into the gel. RedSafe staining dye will stain 
the pDNA and DNA bands can then be visualized under a 
UV transilluminator. On the other hand, PEI and PEI/NP  
can retard the pDNA migration toward the cathode 
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Figure 1 Gel electrophoresis on 1% agarose gel whereas the DNA (pEGFP-C1) concentration is fixed at 0.5 μg/well.
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and exclude the dye from staining the nucleic acid. By 
observing the presence or absence of band and band 
intensity with the use of NPs, the pDNA packaging can be 
monitored, which is a critical step before transfection by 
the assay.

HCC HepG2 cells (ATCC, Manassas, VA) were cultured 
with DMEM (Life Technologies) containing 10% fetal 
bovine serum (FBS), 100 U/mL penicillin, and 100 µg/mL  
streptomycin at 37 ℃ and in a humidified 5% CO2 
atmosphere. Subsequently, about 50,000 cells were seeded 
onto each well of the 24- or 96-well plates. After 24 h, the 
culture medium was replaced with the serum-free DMEM 
containing different composites. After incubation for 5 h, 
the medium was aspirated and refreshed with complete 
DMEM. The cells were further incubated for 24 h at 
37 ℃. Colorimetric method was used to study the iron 
concentration for the cells that were transfected with the 
composites. The cells were washed, collected, and counted 
for the intracellular iron content quantification. After 
centrifugation (4,500 g) for 5 min, the collected cell pellets 
were dispensed in 100 µL 12% HCl solution and incubated 
at 60 ℃ for 4 h. After incubation, the suspension was 
centrifuged (12,000 g) for 10 min, whereas the supernatants 
were collected for iron concentration quantification. A 
sample solution (50 µL) was added into the wells of a 96-
well plate, and then ammonium persulfate (50 µL, 1%) was 
added to oxidize the ferrous ions into ferric ions. Finally, 
potassium thiocyanate (100 µL, 0.1 M) was added to the 
solution and incubated for 5 min to form the red color of 
iron-thiocyanate. The absorption at 490 nm of the sample 
was observed on a microplate reader (Bio-Rad, Model 
3550).

In vitro MRI was performed with HepG2 cells 24 h 
after transfection. After washing with PBS, the cells were 
trypsinized and counted. Different numbers (12.5, 25, 
50, and 100 k) of cells were placed in an Eppendorf tube  

(1.5 mL) separately. After a centrifugation at 3,000 g for 
5 min, the Eppendorf tubes were placed perpendicular 
to  the  ma in  magne t i c  induc t ion  f i e ld  ( B 0)  i n  a  
20 cm × 12 cm × 8 cm water bath. MRI was performed 
with a 3.0-T clinical whole-body magnetic resonance 
unit (Achieva, Philips Medical Systems), using a transmit-
receive head coil. T2 relaxation times were measured 
by using a standard Carr–Purcel l–Meiboom–Gill  
pulse sequence [repetit ion t ime (TR) =2,000 ms,  
echo time (TE) range =30-960 ms, 32 echoes, field-of-view 
(FOV) =134×67 mm2, matrix =128×64, slice thickness =5 mm,  
number of excitations =3]. The magnetic resonance sequence 
was a two-dimensional gradient-echo sequence with  
TR/TE =400/48 ms, flip angle =18°, matrix =512×256, 
resolution =0.45×0.45 mm, slice thickness =2 mm, and 
number of excitations =2. Sagittal images were obtained 
through the central section of the bottom tips of the 
Eppendorf tubes. HepG2 cells were transfected separately 
with ternary complexes of varying NP concentrations and 
analyzed by in vitro MRI. Substantial negative (dark) contrast 
MRI signals with “ballooning” effect are observed in Figure 2  
with the cells that were centrifugated at the bottom of 
Eppendorf tube. Under fixed amounts of PEI (0.2 ng) and 
DNA (0.5 μg) per well, HepG2 cells that were transfected 
with higher NP concentrations possessed stronger MRI 
dark contrast signals. For ternary complexes containing 0.1 
and 1.0 μg NP, MRI signals were detectable and visually 
observable at cell number of 100, 50, 25, and 12.5 k, 
respectively. T2 relaxation times were calculated by fitting 
the logarithmic region of interest signal amplitudes (1,600 
pixel) versus TE. The T2 relaxivities (r2) were determined 
by a linear fit of the inverse relaxation times as a function 
of the iron concentrations used. The in vitro r2 of the two 
composites 0.2 ng PEI/0.5 μg DNA/0.1 μg NP and 0.2 ng 
PEI/0.5 μg DNA/1.0 μg NP were determined to be 1.46 
and 2.20 s–1 mM–1 Fe, respectively. Prussian blue staining 

Figure 2 Gradient echo in vitro MRI images of composite-transfected HepG2 cells in Eppendorf tubes with culture medium. The amount 
of DNA (pEGFP-C1) of both complexes is fixed at 0.5 μg/well.
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(9,12,17-19,23-25) is an alternative method to quantify the 
in vitro iron content. These results suggest that the ternary 
hybrid nanocomposites hold promise as effective MRI 
contrast agents and are potentially suitable for magnetic 
targeting to cancer sites.

About 50,000 cells were seeded onto each well of the 
24-well plates for GFP observation. The typical GFP 
green fluorescent images of HepG2 cells which have 
been separately transfected with (A-C) different ternary 
composites 0.1 ng PEI/0.5 μg DNA/NP with varying 
amounts of NP (A: 0.1 μg, B: 1.0 μg, and C: 2.5 μg), (D) 
0.1 ng PEI/0.5 μg DNA, and (E) Lipofectamine/0.5 μg 
DNA, are shown in Figure 3. The green fluorescence of the 
transfected HepG2 cells was visualized by a Nikon TE2000 
fluorescence microscope 24 h after transfection. According 
to the visual assessment of these images, the cellular 
uptake efficiencies of the pDNA in the ternary complexes  
(Figure 3A-C) to the HepG2 cell nucleus generally lower 
than that using Lipofectamine or PEI (Figure 3C,D). 
However, the cellular uptake efficiencies of the pDNA in 
the ternary complexes (Figure 3A-C) to the HepG2 cell 
nucleus will be greatly enhanced 24 h after transfection (12).  
It is reasonably to consider that the cellular uptake 
efficiency depends on the surface charge density and 
stability of the composites during the receptor-mediated 
endocytosis and further cleavage of the composite with 

NP localized in cytoplasm and pDNA in nucleus. The 
transfected composites would eventually be dissociated 
into separate components and subject to an efflux 
mechanism. Moreover, cytotoxicities of cells incubated 
with the composites in working concentrations that were 
examined by methylthiazolyldiphenyl-tetrazolium (MTT) 
bromide assay in HepG2 cells, have been reported. The cell 
viabilities range from 70% to 85%, which are higher than 
using Lipofectamine or PEI (12).

In conclusion, ternary composites based on PEI/DNA/
deferoxamine-NP have been prepared by tuning the  
PEI/NP ratios and with a fixed DNA amount, for 
transfection towards HCC HepG2 cells.  The cell 
transfection efficiencies involving NP uptake and gene 
expression with the ternary composites could be altered 
by tuning the PEI/NP ratios in the composite, which have 
been characterized by in vitro MRI and GFP fluorescence. 
From the MRI assessments, the in vitro r2 values of 
ternary complexes 0.2 ng PEI/0.5 μg DNA/0.1 μg NP and  
0.2 ng PEI/0.5 μg DNA/1.0 μg NP were determined 
to be 1.46 and 2.20 s–1 mM–1 Fe, respectively. The as-
prepared composites or other nanostructured magnetic 
composites (37) offer potential biomedical applications in 
simultaneous gene delivery, imaging contrast enhancement, 
and metabolism study for the next generation in vivo 
carcinoma nano-theranostic purpose.
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Figure 3 GFP fluorescence images of HepG2 cells separately transfected after 5 h with (A-C) different ternary composites 0.1 ng PEI/0.5 μg  
DNA/NP with varying amounts of NP (A, 0.1 μg, B, 1.0 μg, and C, 2.5 μg), (D) 0.1 ng PEI/0.5 μg DNA, and (E) Lipofectamine/0.5 μg 
DNA.
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