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Association of thigh and paraspinal muscle composition in young 
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Background: Paraspinal and thigh muscles comprise the major muscle groups of the body. We investigated 
the composition of the psoas, erector spinae, quadriceps femoris and hamstring muscle groups and their 
association to each other using chemical shift encoding-based water–fat magnetic resonance imaging (MRI) 
in adult volunteers. Our aim was to elucidate fat distribution patterns within these muscle groups.
Methods: Thirty volunteers [15 males, age: 30.5±4.9 years, body mass index (BMI): 27.6±2.8 kg/m2 and 
15 females, age: 29.9±7.0 years, BMI: 25.8±1.4 kg/m2] were recruited for this study. A six-echo 3D spoiled 
gradient echo sequence was used for chemical shift encoding-based water–fat separation at the lumbar spine 
and bilateral thigh. Proton density fat fraction (PDFF), cross-sectional area (CSA) and contractile mass 
index (CMI) of the psoas, erector spinae, quadriceps femoris and hamstring muscle groups were determined 
bilaterally and averaged over both sides. 
Results: CSA and CMI values calculated for the erector spinae, psoas, quadriceps and hamstring 
muscle groups showed significant differences between men and women (P<0.05). With regard to PDFF 
measurement only the erector spinae showed significant differences between men and women (9.5%±2.4% 
vs. 11.7%±2.8%, P=0.015). The CMI of the psoas muscle as well as the erector spinae muscle showed 
significant correlations with the quadriceps muscle (r=0.691, P<0.0001 and r=0.761, P<0.0001) and the 
hamstring group (r=0.588, P=0.001 and r=0.603, P<0.0001).  
Conclusions: CMI values of the erector spinae and psoas muscles were associated with those of the 
quadriceps femoris and hamstring musculature. These findings suggest a concordant spatial fat accumulation 
within the analyzed muscles in young adults and warrants further investigations in ageing and diseased 
muscle.
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Introduction

Sarcopenia is considered as a progressive and generalized 
musculoskeletal disorder associated with impaired muscle 
quality and muscular performance increasing the risk of 
fracture, disability and mortality according to a recent 
consensus paper on modified taxonomic recommendations 
(1-3). Analogously to the described entity, cachexia is a 
severe, adverse side effect of advanced oncological diseases 
accompanied by elevated general catabolic activity, muscle 
wasting and overall therapeutic outcome (4-6). To detect 
the onset of cachexia in a clinical setting and reduce or 
delay the aggravating and life quality limiting side effects, 
the merit of several diagnostic modalities was evaluated in 
previous studies (7,8). The described catabolic alterations in 
these disease entities require precise diagnostic assessment 
of pathophysiological changes in muscle composition and 
morphology for subsequent implementation in clinical 
diagnostics (9).

There are established imaging methods to assess 
muscle mass and composition including dual energy 
X-ray absorptiometry (DXA) and computed tomography  
(CT) (10). Single-voxel proton magnetic resonance 
spectroscopy (MRS) and chemical shift encoding-based 
water-fat magnetic resonance imaging (MRI) are gaining 
importance in preclinical and clinical settings. They enable 
the investigator to extract surrogate parameters of the muscle 
composition like the proton density fat fraction (PDFF) 
and even for the identification of the chemical structure of 
fatty acids and their magnitude with high congruence to  
histology (11). In previous studies, Azzabou et al. and 
Barnouin et al. already described water-fat separation 
imaging based on a 3-point Dixon technique to reliably 
quantify intramuscular fat compositions in the quadriceps 
femoris using manual segmentation methods (12,13).

In the past a vast amount of literature has been published 
on water-fat MRI studying the muscle composition of major 
muscle groups like the paraspinal or thigh musculature in 
healthy adults (12-18). These studies showed that the thigh 
and the paraspinal musculature morphology, i.e., their 
muscular fatty infiltration and their cross-sectional area 
(CSA) is individually susceptible to age and additionally but 
also varying with different anatomic locations (12,14,16).

In a clinical setting the normative studies conducted 
investigating fat distribution patterns in healthy collectives 
can provide physiological benchmark values with regard to 
improve early diagnostics catabolic diseases like sarcopenia or 
cachexia. However, as one major confounding factor limiting 
the benefit of quantitative MRI in displaying muscular fatty 

infiltration in a clinical setting age has to be kept in mind. 
Against this background Dahlqvist et al. and Crawford  
et al. amongst others already showed the strong association of 
senescent, healthy adults and muscle loss (15,16).

It would be of interest to elucidate the association 
of large muscle groups’ composition, e.g., the thigh 
and paraspinal musculature, as they comprise the major 
muscle compartments of the body and are of relevance 
in musculoskeletal disorders. A homo- or heterogenous 
muscle composition across different muscle groups affects 
the choice where to measure the muscle composition 
and disease status best. Furthermore, it will give us more 
insights into the muscle (patho-)physiology. 

Therefore, this study investigated the fat distribution 
patterns of the psoas, erector spinae, quadriceps femoris and 
hamstring muscle groups and their association to each other 
using chemical shift encoding-based water-fat MRI in adult 
volunteers.

Methods

Subjects 

Thirty Caucasian volunteers with self-reported clean 
medical history (male =15, female =15) were recruited 
for this study. A body mass index (BMI) between 20 and  
33 kg/m2 and an age between 20 and 40 years were defined 
as inclusion criteria to obtain rather broad BMI and age 
ranges. All subjects were right-footed. Exclusion criteria 
were history of metabolic disorders, spine or thigh trauma, 
and MRI contraindications.

MRI 

Subjects underwent MRI at 3 Tesla (Ingenia, Philips 
Healthcare, Best, Netherlands) in supine position using 
anterior and posterior coil arrays.

The conducted imaging protocol comprised an axially-
prescribed, six-echo three-dimensional spoiled gradient 
echo sequence in three stacks for chemical shift encoding-
based water-fat separation at the lumbar spine and thigh. 
The sequence is a standard product and available on Philips 
scanners (Philips Healthcare, Best, Netherlands). The 
dedicated sequence parameters were set as follows: repetition 
time (TR)/echo time (TE) min/ΔTE =6.4/1.1/0.8 ms,  
field of view (FOV) =220×401×252 mm3, acquisition matrix 
=68×150, voxel size =3.2×2.0×4.0 mm³, frequency encoding 
direction =L/R, no SENSE, scan time =1 min and 25 s per 
stack. One stack was acquired at the lumbar spine. Two 
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stacks were needed to cover the entire thigh region. The 
six echoes were acquired in a single TR using non-flyback 
(bipolar) read-out gradients. A flip angle of 3° was used to 
minimize T1 bias effects (19,20).

Muscle fat quantification, PDFF/CSA extraction and CMI 
calculation

The gradient echo imaging data were processed online 
using the fat quantification routine of the MRI vendor 
(Philips Healthcare, Best, Netherlands). PDFF maps were 
generated using a complex-based water-fat separation 
algorithm that accounts for known confounding factors 
including a single T2* correction, phase error correction 
and the consideration of the spectral complexity of fat 
using the multi-peak fat spectrum model of Ren et al. (21). 
Segmentations were performed by a radiologist using the 
free open-source software Medical Imaging Interaction 
Toolkit (MITK, developed by the Division of Medical and 
Biological Informatics, German Cancer Research Center, 
Heidelberg, Germany; www.mitk.org).

The psoas muscles and the erector spinae muscles were 
manually segmented bilaterally in the PDFF maps from the 
upper endplate of L2 to the lower endplate of L5 (Figure 1).  
On average 23 slices of the psoas muscle and the erector 
spinae were segmented in the axial plane. This approach 
was previously reported by Schlaeger et al. (20). 

At the thigh, we firstly identified the cranial surface of 
the greater trochanter and caudal surface of femur condyles 
in each thigh. These were used as anatomical landmarks 
to define the most central slice of each thigh in the axial 
images. Then, both sides of the quadriceps femoris and the 
hamstring muscle groups were segmented manually in the 
10 most central slices depicting the outer muscle contour 
of each muscle group (Figure 2). Segmentation time per 
subject amounted 15 min. CSA (mm3) and PDFF (in %) 

were extracted and averaged over the right and left side. On 
basis of the extracted PDFF and CSA values the contractile 
mass index (CMI) was calculated as follows: CMI = CSA ×  
(1 − PDFF) (9). 

Statistical analysis

For the statistical analyses SPSS (version 20.0; IBM SPSS 
Statistics for Windows, Armonk, NY, USA) was used. 
Statistical significance was considered at P<0.05 (two-sided) 
in all conducted tests.

The Kolmogorov–Smirnov test indicated not normally 
distributed data. Differences in age, BMI, CSA, CMI, and 
PDFF of all muscles between male and female subjects 
were assessed with the Wilcoxon-Mann-Whitney-test. 
Correlations between PDFF and CMI of the different 
muscle groups were determined by using the Spearman 
correlation coefficient r.

Results

Study population

In the present study age was not significantly different 
between men and women (men: age: 30.5±4.9 years; 
women: 29.9±7.0 years; P=0.546), neither was BMI (men: 
27.6±2.8 kg/m2; women: 25.8±1.4 kg/m2; P=0.085) (Table 1). 

PDFF measurements 

No significant differences between men and women were 
detected in PDFF values of the psoas muscle (P=0.494), 
quadriceps femoris (P=0.520) and hamstring muscles 
(P=0.254). The erector spinae showed significantly different 
gender specific values (P=0.015) (Table 1). Representative 
color-coded PDFF maps of the corresponding muscle 
compartments in men and women are shown in Figures 3,4.

CSA and CMI

All CSA and CMI values calculated for the erector spinae, 
psoas, quadriceps and hamstring muscle groups showed 
significant differences between men and women (P<0.05; 
Table 1).

Correlations between muscle compartments

The PDFF values for the erector spinae showed significant 
correlations with quadriceps muscle (r=0.400, P=0.029) and 

Figure 1 Representative segmentation of the right [1] and left [2] 
psoas muscle and the right [3] and left [4] erector spinae muscle.
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Table 1 Age, BMI, PDFF, CSA and CMI values of muscular 
compartments are shown. Parameters were compared between the 
two groups with Wilcoxon-Mann-Whitney-tests (P values)

Characteristics Mean SD P

Age (years) 0.546

Men 30.5 4.9

Women 29.9 7.1

BMI (kg/m2) 0.085

Men 27.6 2.8

Women 25.8 1.4

PDFFerector spinae (%) 0.015

Men 9.5 2.4

Women 11.7 2.8

PDFFpsoas muscle (%) 0.494

Men 6.2 7.1

Women 5.0 1.8

PDFFquadriceps femoris (%) 0.520

Men 2.9 1.3

Women 2.6 1.3

PDFFhamstring group (%) 0.254

Men 3.7 1.5

Women 4.4 2.2

CSAerrector spinae (mm2) <0.0001

Men 3,396.9 733.3

Women 2,276.3 560.1

Table 1 (continued)

Figure 2 Representative segmentation of the thigh muscles: right [1] and left [2] quadriceps femoris muscle and the right [3] and left [4] 
hamstring musculature.

Table 1 (continued)

Characteristics Mean SD P

CSApsoas muscle (mm2) <0.0001

Men 1,798.3 431.0

Women 771.3 247.9

CSAquadriceps femoris (mm2) <0.0001

Men 7,935.9 1,651.5

Women 5,424.1 840.4

CSAhamstring group (mm2) 0.002

Men 2,285.9 550.5

Women 1,589.7 357.3

CMIerector spinae (mm2) <0.0001

Men 3,069.8 650.1

Women 1,999.0 475.6

CMIpsoas muscle (mm2) <0.0001

Men 1,676.5 385.3

Women 731.8 231.7

CMIquadricpes femoris (mm2) <0.0001

Men 7,688.6 1.534

Women 5,283.1 832.0

CMIhamstring group (mm2) 0.001

Men 2,199.2 522.8

Women 1,520.3 348.0

PDFF, proton density fat fraction; CSA, cross-sectional area; CMI, 
contractile mass index.
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the hamstring group (r=0.499, P=0.005) (Figure 5). For the 
psoas muscle significant correlations could only be revealed 
for the hamstring group (r=0.390, P=0.033) (Table 2).  
The CMI of the psoas muscle as well as the erector 
spinae showed significantly positive correlations with 
the quadriceps muscle (r=0.691, P<0.0001 and r=0.761, 
P<0.0001) and the hamstring group (r=0.588, P=0.001 and 
r=0.603, P<0.0001) (Table 3 and Figure 6). 

Discussion

In this study, the PDFF values of the erector spinae 
correlated weakly to moderately with those of the 

quadriceps and hamstring muscle groups, respectively. The 
PDFF of the psoas muscle only showed weak significant 
correlations with the quadriceps muscle. In contrast, the 
corresponding CMI values for the erector spinae and the 
psoas muscle showed strong significant correlations with the 
quadriceps and hamstring muscle groups. A potential reason 
for the much stronger correlations of the CMI compared to 
PDFF could be the inclusion of muscle CSA in parameter 
calculation. Furthermore, a rather concordant spatial fat 
distribution within the erector spinae, the thigh flexors and 
extensors could be shown.

Previous studies showed that characteristic structural 
and compositional peculiarities exist for different muscle 

Figure 3 Color-coded maps. (A) Representative color-coded proton density fat fraction (PDFF) map of a 26-year-old male subject (mean 
PDFF of psoas muscle: 7.3%; erector spinae muscle: 5.7%); (B) representative color-coded PDFF map of a 22-year-old female subject (mean 
PDFF of psoas muscle: 14.3%; erector spinae muscle: 5.6%). 

Figure 4 Color-coded maps. (A) Color-coded proton density fat fraction (PDFF) map of a 33-year-old female subject (PDFF of quadriceps 
femoris muscle: 1.0%, hamstring muscle: 3.1%); (B) color-coded PDFF map of a 22-year-old female (PDFF of quadriceps femoris muscle: 
5.0%; hamstring muscle: 7.2%).
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groups depending on their function and topography. 
These macroscopic and microscopic structural patterns are 
dependent on intra- and interindividual specifications like 
anatomic location, age and BMI (20,22-24). In contrast to 
the abundance of data on the physiology and pathology 

of musculoskeletal motion segments of the vertebral 
column there is a scarcity of information on thigh muscle 
composition (25-29). There are only few studies analyzing 
thigh muscle composition with state-of-the-art techniques 
like water-fat MRI. In the past several approaches towards 
muscle quality assessment using CT and T2 based MRI 
have been conducted allowing for extraction of CSA values 
and estimates for muscle fat fraction (8,18).

A cross-sectional study by Kumar et al. revealed 
significant correlations between the degree of intramuscular 
fat accumulation in the quadriceps femoris verified by water-
fat MRI and the presence and severity of knee osteoarthritis 
confirmed by conventional radiography and functional 
isokinetic strength measures (30). Furthermore, Grimm 
et al. showed that extracting PDFF values from MRS in 
semitendinosus muscle provides valid and reproducible 
surrogate parameters for muscle quality allowing for 
quantification of the tissue alterations and damage due to 
aging or muscular diseases (31). 

Even if the correlations of the PDFF distribution 
patterns have to be considered rather weak, our findings 
point to resembling fatty infiltration mechanisms in the 
flexors and extensors of the thigh and the erector spinae 
muscle in this young cohort of subject with a representative 
BMI. A potential reason for the weak significance may 
be the relatively small sample size (n=30). Keeping this 
drawback in mind it still can be concluded that the 
presented results indicate a rather homogenous muscle 
composition across paraspinal and thigh muscle groups 
except for the psoas muscle. The methodical reproducibility 
of the acquired sequence protocol was validated in previous 
studies on the thigh and paraspinal musculature (20,32).

Table 3 Correlations (r with corresponding P value) of the 
contractile mass index (CMI) values of the erector spinae and psoas 
muscle with the quadriceps and hamstring muscles

CMIerector spinae CMIpsoas muscle

CMIquadricpes femoris

r 0.761 0.691

P <0.0001 <0.0001

CMIhamstring group

r 0.603 0.588

P <0.0001 0.001

Table 2 Correlations (r with corresponding P value) of the proton 
density fat fraction (PDFF) values of the erector spinae and psoas 
muscle with the quadriceps and hamstring muscles

PDFFerector spinae PDFFpsoas muscle

PDFFquadriceps femoris

r 0.400 0.199

P 0.029 Not significant

PDFFhamstring group

r 0.499 0.390

P 0.005 0.033

Figure 5 This figure plots the proton density fat fraction (PDFF) of the erector spinae against the quadriceps muscle (A) and the hamstring 
muscle group (B). The areas between the dotted lines represent the 95% confidence band of the best-fit line. PDFF, proton density fat fraction.
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In the long-term future studies should focus on 
the exploration and establishment of valid and precise 
physiological ranges. Additionally, keeping the slight 
differences of approximately 1.5% changes in muscular 
fat fraction in mind detected by Kumar et al. discerning 
knee osteoarthritis from healthy controls, further studies 
investigating chemical shift encoding-based water fat MRI 
are needed, as in cases of subtle structural and compositional 
changes conventional T1-based qualitative imaging has its 
inherent methodical limits (30). 

When interpreting the results of the present study 
there are certain limitations, which are elucidated in the 
following. First, the relatively small cohort size with a 
narrow age range limits this study with regard to aging. 
Additionally, the average BMI values of the subjects 
included in this study are considered overweight according 
to the World Health Organization (WHO). However, it has 
to be kept in mind that current estimates conducted by the 

WHO state that, e.g., 65% of US adults are overweight to 
obese (33). Thus, the presented cohort can be considered 
representative regarding these global changes. In future 
studies, an analogously balanced but extended cohort with 
senescent subjects would be reasonable. Second, the cross-
sectional study design does not allow for evaluation of 
temporal and intraindividual dynamics. 

Conclusions

In the present study, strong statistically significant 
correlations for CMI values of the erector spinae as well 
as the psoas muscle with the quadriceps and hamstring 
musculature could be revealed. Furthermore, the PDFF 
values for the erector spinae and both thigh muscle groups 
showed a comparable distribution range. The presented 
findings may indicate a certain association in regard of fatty 
infiltration patterns of these muscle groups. The concordant 

Figure 6 This figure plots the contractile mass index (CMI) of the psoas muscle against the quadriceps muscle (A) and the hamstring muscle 
group (B). Furthermore, the CMI of the erector spinae is plotted against the quadriceps muscle (C) and the hamstring femoris muscle group 
(D). The areas between the dotted lines represent the 95% confidence band of the best-fit line. 
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spatial fat accumulation within the analyzed muscles suggest 
the potential suitability as biomarkers in holistic muscle 
assessment approaches.
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