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Introduction

Imaging speed in magnetic resonance imaging (MRI) is 
an important issue, especially in clinical settings because 
shortening the scan time can reduce the cost and increase 
throughput and patient’s comfort. However, the data 
acquisition is practically limited by hardware capability and 
signal-to-noise ratio (SNR) factors. Compressed sensing (CS) 
is a method that allows a sparse signal to be reconstructed 
from a set of randomly under-sampled projection data (1,2). It 
has been demonstrated that CS is useful for speeding up MRI 
acquisition, where data is collected in the k-space, i.e., Fourier 
space (3). 

Multi-channel imaging using array receiver system offers 
improved SNR (4,5) or accelerated speed with parallel 
imaging (PI). Therefore, integrating CS and PI are expected 
to further improve the MRI quality and/or speed (6-10). In 
doing so, CS and PI are coupled in a large linear system or 
decoupled in separated steps. In the latter case, CS algorithm 
is applied to each channel individually, then the final 
image can be reconstructed using the sensitivity encoding  
method (11) or a root-sum-of-squares method (12). In 
addition, the correlations of distributed compressed sensing 
has also been applied in the system to improve the image 

quality (13). In all the aforementioned methods, image 
reconstructions involves minimizing the l1 norm of a sparse 
image representation in certain domains, such as the wavelet 
domain or total variation (TV). Since l1 is an approximation of 
the sparsity measurements, i.e., l0 norm of the sparse domain, 
there have been efforts to further improve l1 minimization so 
that it will be closer to the l0 minimization solution. 

In this paper, we develop a method that reconstructs 
MRI image from multi-channel data in the CS framework 
with a reweighted l1 minimization. The main feature of 
the new method is that it uses an iterative, reweighted l1 
minimization method to perform the CS reconstruction of 
multi-channel MRI data. The method was compared with 
two existing multi-channel CS reconstruction methods 
using computer simulations and in vivo MRI data. The 
results show that the proposed method can provide an 
improved reconstruction quality at a slightly increased 
computation cost. This paper is developed based on 
preliminary work presented in a conference abstract (14). 

Methods

The array MR receiver system consists of a set of receiver 

Original Article

Improving multi-channel compressed sensing MRI with 
reweighted l1 minimization

Ching-Hua Chang, Jim X. Ji

Department of Electrical and Computer Engineering, Texas A&M University, USA

Corresponding to: Jim X. Ji. Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128, USA. 

Email: jimji@tamu.edu.

Abstract: Integrating compressed sensing (CS) and parallel imaging (PI) with multi-channel receiver 
has proven to be an effective technology to speed up magnetic resonance imaging (MRI). In this paper, we 
propose a method that extends the reweighted l1 minimization to the CS-MRI with multi-channel data. 
The method applies a reweighted l1 minimization algorithm to reconstruct each channel image, and then 
generates the final image by a sum-of-squares method. Computer simulations based on synthetic data and 
in vivo MRI imaging data show that the new method can improve the reconstruction quality at a slightly 
increased computation cost.

Keywords: Compressed sensing MRI; reweighted l1 minimization; multi-channel receive arrays; image reconstruction

Submitted Feb 10, 2014. Accepted for publication Feb 20, 2014.

doi: 10.3978/j.issn.2223-4292.2014.03.02

Scan to your mobile device or view this article at: http://www.amepc.org/qims/article/view/3434/4288



20 Chang and Ji. Improving multi-channel compressed sensing MRI using reweighted l1 minimization

© AME Publishing Company. All rights reserved. Quant Imaging Med Surg 2014;4(1):19-23www.amepc.org/qims

channels, which are individually connected to decoupled 
coil elements. With an array receiver system, a k-space data 
set yk, k = 1, 2,…, c, will be acquired from each channel. In 
applying CS reconstruction, each channel can be formulated 
as an underdetermined system, yk=Φxk, where Φ is an 
operator of randomly under-sampled Fourier Transform 
implemented by the phase-encoding and frequency-
encoding gradients. The CS theory states that an image xk 
can be recovered from the incomplete k-space data yk if it 
is sufficiently sparse. However, even the image itself is not 
sparse, it can often be transformed to a sparser domain and 
there is high probability that the image can be recovered. 
A commonly used sparsifying transform is the gradient 
operators; i.e., the image reconstruction can be achieved by 
solving the following convex optimization problem,

[1]minxk
TV(xk) subject to yk=Φxk  k=1, 2,…,c

where , where (Dxk)i,j represents 

the forward difference between adjacent pixels defined as 
(xi+1,j–xi,j, xi,j+1–xi,j). Here, total variation (TV) is considered 
as the l1 norm of the magnitudes of the gradients. This 
formulation follows the method described in (12). 

After all channels images are reconstructed. They are 
combined using a root-sum-of-squares method. The 
overall reconstruction procedure is shown in Figure 1. As 
shown, under-sampled k-space data is fed to the use of l1 
minimization algorithm, whose outputs are recursively 
calculated as the weights of the next iteration and finally 
produce the final image. 

In this paper, we utilize the reweighted l1 minimization 

algorithm (15) to enhance the CS image reconstruction 
from multi-channel data. To solve the minimization 
problem in Eq. [1], it is rewritten as a second-order cone 
problem with weights:

yk=Φxk

where the weights are set to be inversely proportional to 
the signal magnitude. Based on the theory of reweighted 
l1 minimization, the larger entries of wk, i.e., where signal 
magnitude is close to zero, will discourage small entries of 
the reconstructed image xk. In the proposed method, small 
weights are calculated from the previous reconstructed 
images. As a result, the weights can be considered as 
iterative parameters in the convex relaxation to improve the 
image reconstruction.

Specifically, each image xk is reconstructed as follows.
(I) Set the iteration count, l=1 and the initial weight, 

 for i=1,…,m and j=1,…,n. Note that  is the 
weight on pixel (i, j). 

(II)Solve the weighted l1 minimization problem 
 
subject to yk=Φxk  

[2]

This was performed using a home-made Matlab program 
by modifying the l1-magic software package (16).

(III) Update the weights:

[3]

The parameter ε is a small positive number to prevent 
zero-valued denominator. In this paper, it is set to 0.2 of the 
normalized received data.

(IV) If l<lmax, increase l and go to step 2.
Finally, all the reconstruction images are combined by 

the root-sum-of-squares of all channel images.

[4]

To test the proposed method, both simulated and in vivo 
data were used. The k-space data of four channels were 
simulated using the ‘Shepp-Logan’ phantom with an image 
size of 128×128. The individual channel sensitivities are 
assumed to be shifted 2-dimension Gaussian functions. The 
individual channel data were under-sampled in the k-space 
with radial sampling pattern. The under-sampling factor was 
about 15%, which meant only 15% of the total data were 
used in reconstructions. Finally, an 8-channel in vivo brain 

y1
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Root-sum-of-squares

l1 min. eq. [2] l1 min. eq. [2] l1 min. eq. [2]

y2 yc

Figure 1 Reconstruction procedure for multi-channel receiver 
system using the l1 reweighted minimization.
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MR data set was acquired and tested. The k-space data with 
an image size of 256×256 from each-channel were acquired 
in full field-of-view, i.e., without under-sampling. Then, 
the radial sampling was simulated by decimation with an 
under-sampling factor of 25%. Based on the same sampling 
factor, the reconstruction image using the proposed method 
was compared with two methods: (I) conventional TV 
minimization (l1 minimization with no reweighted iterations); 
and (II) a method combined in (9), which combine CS with 
SPACE-RIP (Sensitivity Profiles from an Array of Coils for 
Encoding and Reconstruction In Parallel).

The normalized means square error (NMSE) was used to 
evaluate the performance and defined as follows

 
[5]

Note that  is the referenced image, which is reconstructed 
from the fully sampled data in the k-th channel.

Results

To show the quantitative improvement of the proposed 
approach the NMSE of the reconstructions by the 
conventional TV (l1 minimization) and the proposed 
method is shown in Table 1. It shows that the proposed 
method has a lower NMSE than the conventional l1 

minimization algorithm since low NMSE represents less 
reconstruction error; the proposed method is superior in 
this study. Figures 2-5 show the images and reconstruction 
details in the simulated phantom study. Figure 2 indicates 
two regions and two lines on the original phantom study, 
which are used to compare the reconstructed details and 
resolutions. The comparisons of the reconstruction details 
are show in Figures 3 and 4. As the highlight region 1 and 
region 2 shown in Figure 3, the proposed method can 
recover more details of the edges pointed by the arrows. 
This is also illustrated in Figure 4, which displays the 
surface plots of the same corresponding zoom-in images 
shown in Figure 3. The three-dimension angle of view is 
also indicated along the arrows shown in Figure 3. Besides 
recovering sharper edges, it is observed that the proposed 
method can eliminate the staircase artifacts around smooth 
area noted by these arrows of Figure 4. In addition, the 
difference between the original image and the reconstructed 
image, i.e., reconstruction errors along line 1 and line 2, 
are shown in Figure 5. Again, it demonstrates the proposed 
method yields the reduced reconstruction error.

Figure 6 compares the image reconstructions in an 
8-channel in vivo brain imaging experiment. Here, the left 

Figure 2 Original phantom image with selected regions and lines 
for comparisons.

Figure 3 Reconstruction details of the Zoom-in region 1 (top 
row images) and region 2 (bottom row images) in the channel-
two image: (left) reference from the fully sampled data (middle) 
with conventional l1 minimization (TV) (right) with the proposed 
reweighted l1 minimization.

Table 1 NMSE of the image reconstruction in the simulated 
4-channel phantom study

NMSE Ch1 Ch2 Ch3 Ch4

TV (l1 minimization) 0.015 0.041 0.036 0.016

Proposed (with reweighted l1 
minimization)

0.011 0.026 0.025 0.014

NMSE, normalized means square error; TV, total variation.

Figure 4 Surface plots of the corresponding zoom-in regions 
shown in Figure 3: (left) reference from the fully sampled data 
(middle) with conventional l1 minimization (TV) (right) with the 
proposed reweighted l1 minimization.
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Table 2 NMSE of the image reconstruction in the 8-channel in 
vivo imaging experiment

NMSE Ch2 Ch4 Ch6 Ch8

TV (l1 minimization) 0.092 0.086 0.096 0.086

Proposed (with reweighted 

l1 minimization)

0.091 0.086 0.093 0.083

NMSE, normalized means square error; TV, total variation.

column represents the reconstructed images from the fully 
sampled data, the method in (9) , where CS is integrated 
into a large linear system of multiple receiver coils, and 
the proposed method, respectively. The middle and right 
columns show the zoom-in views of the regions highlighted. 
To facilitate visualization, arrows are placed at the area 
where significant differences can be observed. As can be 
seen, higher fidelity in details and sharper features are 

obtained with the proposed method. Note that all images in 
the middle and bottom rows are reconstructed from 25% of 
the fully sampled data. 

A comparison between the proposed method and the 
conventional TV minimization is shown in Table 2 (only 
even channels are shown). The performance in terms of 
NMSE is shown. One can see that the proposed method 
has smaller quantitative reconstruction error. 

Discussion

A new improved reconstruction method for compressive 
sensing MRI with multi-channel phased array data was 
presented. In this method, the image is reconstructed using 
the reweighted l1 minimization algorithm in a channel-
by-channel fashion. The simulated experimental results 
show that the new method can provide an improved image 
quality from the same data. On the other hand, the new 
algorithm requires more iterations than the conventional l1 

minimization algorithm. This might pose a problem when 
immediate delivery of images is preferred. In such cases, 
using multi-core processors such as graphic processing unit 
(GPU) can be applied to parallelize the reconstruction and 

Figure 5 Reconstruction errors (differences between the original image and reconstructed image) along (left) line 1 (right) line 2.

Figure 6 Images reconstructed from the 8-channel in vivo data 
using (TOP) sum-of-squares from fully sampled data, (middle) the 
method in (9), and (bottom) the proposed method.
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to shorten the reconstruction time. The proposed method 
can also be applied to the other CS methods where l1 

minimization is used. 
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