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Introduction

Since the first definition of sarcopenia made by Rosenberg 
et al. in 1989, who described it as a progressive muscle 
loss related to aging, much effort has been devoted by the 
scientific community to better characterize this condition 
that now is even recognized by a specific code according to 
the international classification of diseases (ICD-10) (1-3).  
In particular, in 2010, the European working group on 
sarcopenia in older people (EWGSOP) encouraged diagnosis 
and care for patients with sarcopenia (4). The same group 
released in 2018 an updated consensus paper with a strong 
focus on qualitative and quantitative features of muscle loss 
and proposing a revised diagnostic algorithm (5).

In addition to the recommendations of specific working 
groups, the increasing literature of the last decade about this 
disease underlines the global attention on this condition. 
The high consideration that sarcopenia is receiving is surely 
linked to the progressively aging of the world population and 
to the severe consequences accompanying muscle loss (6,7).

Concerning the aging process, in 2019, the World 
Health Organization (WHO) estimated that the number of 
people older than 60 years will grow by 56% in 2030, from 
962 million to 1.4 billion (8). Already in 2018, the WHO 
addressed the importance of muscle mass as key element 
for the well-being of the elderly. Indeed, an adequate 
muscle mass is considered essential to preserve cognitive 
functioning, delay care dependency, and reverse frailty (8).  
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In particular, prospective studies demonstrated how 
muscle loss is associated with adverse outcomes including 
falls, disability, and incidents. It may also start a vicious 
cycle, amplified by the aging process, in which the loss of 
power causes difficulties in procuring adequate nutrition 
and progressively reduces independence (6). Lastly, it was 
recently highlighted that even cognitive impairment and 
depression can be associated with sarcopenia (7,9,10).

The severe socio-economic impact of all these aspects 
cannot be underestimated. Thus, the scientific community 
has issued a call to action not only for tailored treatments 
and social support for patients with sarcopenia but also for 
an accurate and early diagnostic assessment.

In the diagnostic evaluation of sarcopenia, radiological 
imaging plays a key role and several techniques can be 
used. Dual-energy X-ray absorptiometry (DXA), based on 
the different absorption of low and high energy X-rays by 
the different body components, has initially been applied 
to measure bone mineral density but is now increasingly 
used for muscles evaluation (11-14). The importance of 
this technique is also demonstrated by the fact that it is 
recommended for clinical assessment by the last consensus 
paper of the EWGSOP (5).

Computed tomography (CT) and peripheral quantitative 
CT (pQCT) which are based on the attenuation of X-rays 
have a consolidated role for this condition, allowing also 
quantitative analyses (15-20).

The diagnostic value of techniques not associated with 
ionizing radiation and especially suitable for the evaluation 
of soft tissues like ultrasound (US) and magnetic resonance 
(MR) has been widely evaluated demonstrating good results. 
Nevertheless, according to the current guidelines, the latter 
method is still recommended mainly for research (5,21-23).

Thus, considering the importance of sarcopenia and the 
fundamental role of radiological imaging, aim of this review 
is to provide a comprehensive overview of the advantages 
and disadvantages of the main different imaging modalities 
useful for investigating muscle loss, including insights into 
specific techniques, such as diffusion-weighted imaging 
(DWI), diffusion tensor imaging (DTI), magnetic resonance 
spectroscopy (MRS) and mapping.

Radiological techniques

DXA

DXA provides a model of body composition including 
fat, bone mineral density and lean mass (12). As above-

mentioned, in the last consensus paper, the EWGSOP 
indicated DXA as the method of choice in clinical practice 
for the assessment of muscle mass, highlighting its good 
correlation with the measurements obtained by CT and 
MR (5,24).

Since the entire body mass influences muscle tissues, the 
absolute DXA measurements have to be adjusted according 
to the overall body surface (i.e., height squared, weight or 
body mass index) (25). In particular, the appendicular lean 
mass index provides clinically relevant information because 
the appendicular skeletal muscle mass is critical to preserve 
mobility and functional independence in the elderly (24,26).

Among the numerous advantages of DXA, it should be 
listed that it provides reliable measurements without being 
invasive, allows fast analyses, and it is highly reproducible 
when the same device and fixed thresholds are used. 
Unfortunately, the reliability of this technique decreases 
when different devices are applied. It should also be 
considered that factors like the level of hydration of the 
patients may influence the results (5). Lastly, it should be 
addressed that the position statements of the Sarcopenia 
Definition and Outcomes Consortium released in 2019 
highlight that the measurement of the appendicular lean 
mass obtained by DXA is not seen as a good predictor of 
adverse outcomes in the elderly (27,28).

CT

CT can be considered overall the gold standard for the 
assessment of body composition since it allows a distinction 
of different tissues according to the attenuation of the 
X-ray beam. Referring to the Hounsfield Unit (HU), the 
standard unit of measurement, muscles with values ranging 
from –29 to +29 are considered low attenuating (29-31). 
CT allows the analysis of fat distribution within muscles, 
distinguishing between fat around the muscle and interstitial 
adipose tissue, thus providing a qualitative and quantitative 
characterization (18,32).

The quantification of muscle mass is usually performed 
segmenting definite muscle groups,  whose cross-
sectional area correlates with the whole-body muscle mass 
(Figure 1). Even if one of the most frequent level for the 
measurements is represented by the third lumbar vertebra, 
when abdominal CT scans are available, other muscles, for 
instance at the thoracic or cervical level, have been used in 
the literature with good results (33-37).

For instance,  Nemec and colleagues diagnosed 
sarcopenia, using the muscles at the T12 level, in patients 
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that underwent transcatheter aortic valve replacement 
and found a correlation between the skeletal muscle index 
and the length of stay (36). Similarly, Nattenmüller et al., 
demonstrated how patients with lung cancer are affected 
by sarcopenia after chemotherapy and that it had a negative 
impact on the adherence to the treatment and to the overall 
survival (38).

It has to be highlighted that up to now, most of the 
studies were based on manual segmentations which are 
time consuming and affected by interobserver variability. 
Recently this drawback has been partially overcome by 
semi- or fully automated segmentation models that are 
providing promising results (15-17).

pQCT

pQCT, originally designed to assess structural properties 
like bone density and mineral content of the limbs, has been 
also successfully applied to investigate muscle loss (39).  
Indeed, muscle cross-sectional area, muscle density 
and intramuscular adipose tissue area can be evaluated 
on a single slice of interest using dedicated software 
distinguishing all the components (i.e., fat, muscles, and 
bones) by the selection of density thresholds (39).

Using pQCT, it has been demonstrated that the 
measurement of the muscle cross sectional area correlates 
with those obtained by MRI and that, in adults, smaller 
areas and muscles with lower density are associated with 
high mortality (19,20).

In comparison to conventional CT, pQCT carries the 
advantages of lower radiation doses and reduced costs (39).  
Nevertheless, its clinical application is still hampered 

by the lack of standardization in the protocols for the 
acquisition and analyses of the datasets. Moreover, specific 
recommendations regarding the site of measurement are 
still missing, even if the radius and the tibia are mainly 
examined (39).

US

Allowing a precise investigation of soft tissues, US has been 
successfully applied also for patients with sarcopenia (22).  
In addition to the qualitative assessment, which is 
characterized by a higher echogenicity in case of fibro-fatty 
infiltration, quantitative parameters like muscle thickness, 
cross-sectional area, fiber length, and pennation angle can 
be measured (Figure 2) (21,22). For instance, Ismail et al. 
demonstrated that US morphometry values are associated 
with lean body mass allowing the discrimination between 
women with and without sarcopenia (40).

While US shows certain intrinsic advantages (e.g., cost-
effectiveness and the absence of ionizing radiation), that 
make it especially suitable for repeated measurements 
and to investigate pediatric patients, there are some 
drawbacks which cannot be overlooked. Indeed, it is highly 
dependent on the expertise and skills of the operator (41). 
Furthermore, it does not provide a comprehensive overview 
of the body and up to now a standardized approach 
regarding the best and most representative sites where to 
target the assessment in patients with sarcopenia are not 
available. In fact, muscles investigated by US might not be 
representative of the whole-body mass since muscle loss 
may not affect all compartments simultaneously or with the 
same severity (21,42,43).

Figure 1 Axial CT scan of an 87-year-old female patient affected by cirrhosis and acute large bowel obstruction with signs of paravertebral 
muscles loss at level of L3 (yellow arrows in A). CT-based quantification of the muscle mass of the same patient using an open source 
software in (B) (3D slicer, www.slicer.org). CT, computed tomography.

A B
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MRI

MRI is widely considered as one of the most adequate and 
reliable techniques to investigate muscles because of its 
intrinsic high soft tissue contrast. Moreover, the continuous 
technical progress associated with the development of 
new sequences and tools allows a constantly increasing 
accuracy in assessing pathological changes affecting this 
tissue. The estimation of muscles’ degenerative processes 
routinely performed by semi-quantitative scores (e.g., 
Goutallier classification and Mercuri score) on T1-
weighted turbo spin-echo images, can be implemented by 
robust quantitative analyses able to reveal even subclinical 
progressions (Figure 3) (23,44,45).

Indeed, currently, not only a qualitative evaluation of 
features like edema and fatty replacement can be performed 
but techniques like Dixon, DWI, DTI and mapping can be 
used to collect accurate quantitative data.

Chemical-shift based imaging
Chemical shift-based water/fat separation imaging and 
two-/multi-point Dixon sequences are often the modalities 
of choice to evaluate muscle fat fraction, also in clinical 
settings (46,47). These techniques rely on the different 
resonance frequency of fat and water protons, which 
permits the differentiation and quantification of the fat 
fraction through slight adjustments of the echo time. In 
particular, Dixon allows “fat-only” and “water-only” images 
through the acquisition of two or more echoes at different 
echo times (Figure 4) (24,47). This technique, allowing the 
separation of “healthy” muscles with preserved contractile 

properties from fat-containing, un-contractile fibers, gives 
detailed information about the functional mass (46,48).

In in-vivo and phantom-based studies, Dixon showed 
high accuracy for the assessment of fatty replacement of 
muscles in dystrophic patients (49,50). Moreover, it has 
been successfully applied for evaluating muscle atrophy, 
adipose infiltration and interstitial fibrosis of denervated 
skeletal muscle due to traumatic injuries of the brachial 
plexus (46,48).

Adipose infiltration was accurately assessed also in patients 
with rotator cuff tears (51) and diabetes mellitus (52).

In addition to its quantitative properties, Dixon 
demonstrated a good performance in comparison to 
short tau inversion recovery (STIR) and/or chemical 
fat suppression sequences for diagnosing muscle edema 
occurring in early denervation stages (46).

The technical improvements of the last decade, including 
significant developments of new algorithms [e.g., iterative 
decomposition of water and fat with echo asymmetry and 
least-squares estimation (IDEAL)] further promoted the 
use of Dixon imaging (53). Despite all the advantages, some 
limitations may hamper the application of this sequence. 
For instance, it requires long acquisition time and is prone 
to artifacts in case of metal protheses. The recent three-
point Dixon allowed to overcome the sensitivity to B0 
inhomogeneities that was causing “fat-water swapping 
artifacts”, due to phase shift errors, typical of two-point 
Dixon imaging (54).

MRS
MRS is a non-invasive technique allowing a characterization 
of the biochemical composition of tissues by separating 
different metabolites according to their unique chemical 
shift properties (55).

The first musculoskeletal applications of MRS were 
focused on the analyses of phosphorus-containing (31P) 
compounds in muscles (56). Indeed, 31P is a component of 
adenosine triphosphate, phosphocreatine, and inorganic 
phosphate, all molecules involved in the metabolic processes 
of muscle fibers. Thus, 31P-MRS has been used to assess 
patterns of catabolic processes and exercise-related changes 
(56-60).

Numerous studies  on both animal  models  and 
humans, applying 31P-MRS, identified metabolic profiles 
characterizing muscle degeneration and regeneration in 
specific diseases like Duchenne, and facio-scapulo-humeral 
muscular dystrophy (46,61,62). In particular, it has been 
shown that in the latter disease, the concentration of 31P 

Figure 2 US scan of the left gluteus muscle of a 72-year-old 
male patient, referring loss of muscle strength, showing high 
echogenicity of the muscle tissue (yellow arrows). US, ultrasound.
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correlates with the extent and rate of fat replacement and 
muscle strength (46,62).

Unfortunately, the routine clinical application of 
31P-MRS is hampered by the low sensitivity of 31P (63). In 
fact, to obtain adequate signal-to-noise ratio of phosphate 
metabolites, which have a very low concentration, long 
acquisition times are needed (63).

On the contrary, in vivo proton MRS (1H-MRS) allows 
the assessment of intra and extramyocellular lipids on 

clinical MR devices (55). This was well demonstrated for 
instance by Torriani et al. in their 1H-MRS study showing 
how the amount of intramyocellular lipids is linked to 
reduced insulin sensitivity in healthy, obese or type 2 
diabetic patients (64).

Investigating patients with myositis, it has even been 
suggested that changes in 1H-MRS profiles may precede 
pathologic changes on anatomical MRI. Indeed, using 
this technique, Subhawong et al. showed that creatine 

Figure 3 T1-weighted axial turbo spin echo of a 64-year-old male patient with chronic pulmonary disease well demonstrating muscle 
atrophy especially affecting the semimembranosus muscle on both sides (yellow arrows).

Figure 4 Axial in-phase (A), water-only (B), out of phase (C), and fat-only (D) Dixon images of a 64-year-old male patient with severe 
myositis, well demonstrating diffuse severe fatty conversion of the muscles of both thighs more severe in the posterior compartment (yellow 
arrows).
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concentration is higher in apparently normal muscles (i.e., 
on T1-weighted and STIR sequences) of patients affected 
by myositis than in healthy controls (65). This finding 
might be applied to identify diseases at an early stage-
diseases, when they theoretically could still be reversible.

Recently, comparing Dixon and 1H-MRS similar levels 
of accuracy and repeatability in assessing the fat fraction 
have been demonstrated (24,49). It has to be highlighted 
that 1H-MRS has the capability of distinguishing between 
intramyocellular and extramyocellular lipid components 
whereas Dixon maps of the fat fraction distribution can be 
especially useful for “patchy” physio-pathological processes 
such as fibro-fatty replacement areas.

It should be also considered that recent technical 
improvements allow the examination of multiple voxels 
during a single acquisition. Previous protocols based 
on single-voxel spectroscopy were somehow affected 
by the same bias of muscle biopsies, providing a limited 
representation of the investigated disease due to sampling 
only of small muscle areas. The development of fast MRS 
techniques such as multiple-echo acquisition, echo-planar 
spectroscopy imaging, and parallel encoded MRS has 
reduced the scan time and allowed the efficient acquisition 
of spectra over large regions (46,66). Therefore, we may 
expect a progressively increasing application of MRS for 
muscle diseases, including sarcopenia.

DWI
DWI is a technique based on the degree of motion of 
water molecules in tissues that is related to their interaction 
with cell membranes and macromolecules (67,68). Aside 

from brain imaging, DWI’s main field of application is 
oncological imaging (69-71). However, it can be also 
reliably used for musculoskeletal diseases including myositis 
and sarcopenia (46,72-74). Indeed, in muscles, extra-, 
intra-, and transcellular water diffusion as well as capillary 
perfusion occur and the signal attenuation on DWI images 
is mainly due to the extracellular component and to 
microvascular perfusion (75).

Regarding the application of DWI for sarcopenia, Surov 
et al. found a significant correlation between the model 
for end stage-liver disease and muscle changes in patients 
with cirrhosis, and even proposed the apparent diffusion 
coefficient (ADC) as new biomarker (74). Similarly, 
McPherson and colleagues identified significant differences 
in ADC values of the lower limb muscles between patients 
with spinal cord injury and healthy controls (75) (Figure 5).

Despite its numerous advantages, DWI is affected by 
several limitations and technical challenges that should be 
taken into account, like, for instance, long acquisition times, 
high sensitivity to field inhomogeneities, and the necessity 
of strong gradients (76).

DTI
Muscles have a highly ordered structure that is especially 
suitable for being investigated by DTI. Indeed, the 
diffusion tensor is a 3D way of modeling DWI datasets 
with three principal diffusivities and as many directions. 
This technique allows an indirect assessment of tissues’ 
anisotropy and structural orientation (77-79) which are 
expressed by variables like fractional anisotropy (FA), mean 
(MD), radial, and axial diffusivity.

Figure 5 Axial T1-weighted turbo spin echo (A) and ADC map (B) of a 79-year-old male patient with metastatic colon cancer affected also 
by moderate atrophy of the paravertebral muscles at the L3 level (yellow arrows), especially on the left side. In agreement with the recent 
literature, which even proposed ADC values as biomarker of sarcopenia (70,71), in our patient, the left paravertebral muscles, which were 
more affected by atrophic changes, showed higher ADC values (red and yellow circles in B). ADC, apparent diffusion coefficient.
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Initially, most of the musculoskeletal studies applying 
DTI were focused on the feasibility and reproducibility of 
the analyses as well as on the assessment of characteristics 
like fiber length, pennation angles, fiber curvature (80-83).  
Recently, DTI has been successfully applied for muscle 
diseases, including sarcopenia, and injuries (84-86).

For instance, Esposito et al., using an animal model, 
demonstrated that, responding to muscle injury and 
adapting to aging, muscles show an increase in FA (87). 
It has also been shown, in healthy volunteers, that DTI 
is sensitive to age-related changes affecting the muscles 
of the lower limb (88). Furthermore, Ponrartana et al. 
found a significant correlation of MD and FA with age and 
muscle strength in pediatric patients affected by Duchenne 
dystrophy (89).

Although DTI gives new insights into muscle anatomy 
and diseases, several challenges and shortcomings are 
associated with this technique. Indeed, to achieve an 
accurate sensitivity for fiber anisotropy in muscles, long 
diffusion times are needed (90,91). It has been demonstrated 
that stimulated echo acquisition mode (STEAM) sequences, 
which can be adjusted for long diffusion times represent 
a good solution (91). Nevertheless, it should not be 
overlooked that, since random areas of signal loss, probably 
due to involuntary muscle contractions, may occur with 
STEAM-DTI, using this sequence, a post-processing 
correction of such artifacts is recommended (92-95).

T1 and T2 mapping sequences
Following the good results obtained in cardiac imaging, 
T1 and T2 mapping have been applied also in the 
musculoskeletal field providing information about the 
changes occurring in the entire examined muscles and not 
just in targeted areas.

For instance, Marty et al. using a fast, dedicated T1 
mapping sequence on healthy volunteers and patients with 
Becker muscle dystrophy, demonstrated that T1 values 
can represent biomarker of fatty infiltrations and that they 
correlate with the measurements (i.e., fat fraction) obtained 
by Dixon (96).

Similarly, the T2 mapping provided promising results for 
evaluating not only inflammatory alterations, occurring 
for example in neuromuscular diseases and juvenile 
dermatomyositis, but also muscle changes due to aging 
(97-100). Indeed, Azzabou et al. demonstrated that the 
increase of water T2 might be due to changes in the type 
of fibers, while T2 heterogeneity might be associated with 
muscles disorganization caused, for instance, by fibrotic 

replacement (98).
As all techniques, also T1 and T2 mapping are affected 

by certain weaknesses. For example, in the global assessment 
of muscles, the different components of water and fat are 
not separated. To overcome this limitation, recently, the use 
of sequences based on MR fingerprinting has been proposed 
(97,100).

Conclusions

In conclusion, several radiological techniques can be used 
for a reliable assessment of sarcopenia. Even if according 
to the last consensus paper of the EWGSOP, DXA still 
plays a pivotal role in clinical practice and CT and MR are 
mainly recommended for research, in an era pointing to 
the quantification and automatic evaluation of diseases, we 
call for future research extending the use of organ tailored 
protocols taking advantage of all the most recent technical 
developments. In particular, the use of MR sequences like 
DTI, MRS and mapping that could provide further insights 
into the physiopathological features of sarcopenia should be 
fostered. These techniques could potentially influence the 
global clinical management of such patients and contribute 
to the establishment of new standardized diagnostic criteria.
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