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Introduction

Several factors have been shown to lead to a positive 
energy balance, with aging, consumption of high caloric 
food or drinks, and lack of physical exercise being among 
the most prominent ones (1-3). A dysregulation of energy 

homeostasis can result in adiposity that is characterized 
by an accretion of fat in different tissues of the human 
body, with subcutaneous fat accumulation representing 
the major physiological buffer (4-6). However, the storage 
capacity of subcutaneous tissue is limited; therefore, when 
its capacity is exceeded and its expandability is restricted, 
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fat may also accumulate in other tissues (4-6). Against 
this background, muscular tissue can serve as an ectopic 
fat store, thus being able of absorbing fat. In the past, 
several studies have investigated elevated muscular fat 
fractions, particularly in the course of various metabolic, 
neuromuscular, degenerative or other diseases (7-16). Of 
note, the paraspinal musculature makes up one of the largest 
muscle compartments of the human body, but has rarely 
been studied when exploring characteristics of ectopic fat 
deposition.

Fat composition of the human body can be assessed in-
vivo using different imaging techniques. Dual energy X-ray 
absorptiometry (DXA), computed tomography (CT), and 
magnetic resonance imaging (MRI) are the most broadly 
used techniques to date (17-19). DXA is able to discriminate 
between bony structures, fat, and lean soft tissue, whereas 
CT can also determine adipose tissue volumes and the 
amount of fat deposition (17-20). MRI principally allows 
for both qualitative and quantitative evaluation of fat 
composition without radiation exposure and enables the 
evaluation of more sophisticated parameters, including 
assessments of specific regional fat distributions and fat 
phenotyping, for instance (17-19,21). However, most 
previous MRI-based studies applied conventional T1-
weighted or T2-weighted sequences, thus primarily enabling 
qualitative analyses of fat composition. Quantitative, more 
objective assessments of fat composition become possible 
when using advanced MRI techniques, such as chemical 
shift encoding-based water-fat MRI that has proven to 
be a time-efficient, field map-insensitive, and accurate 
technique enabling spatially resolved fat quantification 
(17-19,21-24). In chemical shift encoding-based water-
fat MRI, determination of the proton density fat fraction 
(PDFF) as a parameter representing the fat fraction is a 
reliable approach to obtain quantitative values on the fat 
composition of different body compartments or areas, with 
good concordance between such PDFF measurements and 
histologic findings or magnetic resonance spectroscopy 
(MRS) as the gold-standard method (22,25-29). When 
combined with conventionally used assessments of the 
cross sectional area (CSA), one can obtain information on 
both morphological sizes as well as fat fractions of specific 
muscles.

Although paraspinal musculature is one of the largest 
muscle compartments of the human body, its potential 
regional variation and dependency of region-specific fat 
fractions on gender or body mass index (BMI) are largely 
unknown to date. However, elucidating associations of fat 

fractions derived from paraspinal musculature may offer 
novel insight into basal muscle physiology and could further 
contribute to our understanding of diseases that entail 
alterations in fat composition and distribution. This plays 
a role given the close spatial and functional interactions 
of the paraspinal musculature and the adjacent vertebral 
column that is responsible for fundamental characteristics 
like body movement, spine stabilization, or balance keeping 
(30,31). Against this background, the purpose of this study 
was to systematically investigate potential regional variation 
in paraspinal muscle fat composition and distribution, 
depending on gender and BMI, using evaluations of the 
PDFF and CSA as derived from chemical shift encoding-
based water-fat MRI. 

Methods 

Ethics 

This study was approved by the Institutional Review Board 
(registration number: 2719/10 S) and was conducted in 
accordance with the Declaration of Helsinki. Written 
informed consent was obtained from all study participants.

Study cohort 

Subjects investigated were part of a large study aiming at 
exploring determinants of basal metabolic rate and were 
recruited at the Institute for Nutritional Medicine, Klinikum 
rechts der Isar, Technical University of Munich. Out of the 
various assessments performed for the investigation, the 
present study focusses on parameters derived from imaging 
by chemical shift encoding-based water-fat MRI to explore 
regional variation in paraspinal muscle fat composition and 
distribution, depending on gender and BMI. The study 
included volunteers who were at least 18 years old and had 
a BMI larger or equal to 18.5 kg/m². In this context, the 
individual BMI was calculated as the quotient of weight (in 
kg) and height (in m) squared (kg/m2). Subjects who had any 
history of severe diseases or surgery within the last three 
months, had acute physical impairment, or were pregnant 
or breast-feeding were excluded.

Overall, 111 volunteers were initially recruited for the 
investigation of determinants of basal metabolic rate, 76 
of these volunteers were considered in the present study. 
Thirty-two volunteers did not provide consent for the 
imaging part of the investigation or had contraindications 
for MRI and, thus, did not undergo imaging by chemical 
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shift encoding-based water-fat MRI. Another three subjects 
were excluded due to artifacts in imaging data or a field of 
view (FOV) that was too small, leading to a final cohort size 
of 76 subjects being considered in the present study (mean 
age: 40.0±13.7 years, age range: 21.2–77.3 years, median 
age: 38.0 years). 

MRI 

Subjects underwent MRI at 3 Tesla (Ingenia, Philips 
Healthcare, Best, Netherlands) using a six-echo multi-echo 
gradient echo sequence for chemical shift encoding-based 
water-fat separation. Scanning was performed in supine 
position using anterior and posterior coil arrays.

The entire abdomen was covered by two axial stacks 
using the following sequence parameters per stack: TR/
TE1/ΔTE =7.8/1.35/1.1 ms, FOV =300×400×150 mm3, 
fold-over suppression in both L/R directions with 50 mm, 
acquisition matrix size =152×133, acquisition voxel size 
=2×3×6 mm3, sensitivity encoding (SENSE) with reduction 
factor =2.2×1.2, receiver bandwidth =1,678 Hz/pixel, 
frequency direction =A/P (to minimize breathing artifacts), 
acquisition during a breathhold duration of 15 s per stack. 
The sequence acquired the six echoes in a single TR using 
bipolar readout gradients and applied a flip angle of 3° to 
reduce T1 bias effects (24,32-34).

Fat quantification

For fat quantification, the MRI data were first processed 
using the vendor’s routines. In this context, phase error 

correction and a complex-based water-fat decomposition 
considering a pre-calibrated seven-peak fat spectrum and a 
single T2* were applied (mDIXON, Philips Healthcare, Best, 
Netherlands). PDFF maps were computed as the ratio of the 
fat signal over the sum of fat and water signals (Figure 1).

Extraction of PDFF and CSA

Regions of interest (ROIs) were manually drawn in the 
PDFF maps of each subject using MITK [http://mitk.org/
wiki/The_Medical_Imaging_Interaction_Toolkit (MITK); 
German Cancer Research Center, Division of Medical 
and Biological Informatics, Medical Imaging Interaction 
Toolkit, Heidelberg, Germany]. The right erector spinae 
muscle, left erector spinae muscle, right psoas muscle, and 
left psoas muscle were identified and carefully enclosed 
by muscle-specific ROIs on each axial slice showing these 
muscles (Figure 2). All ROIs were placed at the muscle 
contour whilst avoiding the inclusion of subcutaneous fat or 
the muscle-fat interfaces (Figure 2). 

Subsequent to ROI placements, we extracted the PDFF 
(in %) and CSA (in cm²) for each subject and muscle by 
averaging the respective values derived from the muscle-
specific ROIs placed in the consecutive axial slices. For 
the right and left erector spinae muscles, we defined 
three segments that were analyzed separately, which were 
determined according to anatomical localization in relation 
to thoraco-lumbar spine anatomy. These three segments 
covered the right and left erector spinae muscles from the 
lower endplate level of L5 to the upper endplate level of 
L3, the lower endplate level of L2 to the upper endplate 

Figure 1 Proton density fat fraction (PDFF) maps. Representative axial PDFF maps of a 27-year-old female with a body mass index (BMI) 
of 20.5 kg/m2 at the level of L4 (A) and a 38-year-old male with a BMI of 37.6 kg/m2 at the level of L3 (B). Color coding was applied to 
these maps according to PDFF values (in %), ranging from dark blue to bright yellow. The bilateral psoas and erector spinae muscles are 
schematically enclosed by red contours. 
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level of T12, and the lower endplate level of T11 to the 
upper endplate level of T9. The separation into the three 
segments was not based on physiological considerations, but 
aimed at a balanced split of the lower thoracic and lumbar 
spine. The values obtained for both sides were averaged, 
leading to one PDFF and CSA value for the psoas muscles 
and three segment-wise PDFF and CSA values for the 
erector spinae muscles per subject. 

Placement of ROIs was performed by the same reader 
in all subjects (MD with experience in radiological imaging 
since 2012). To assess inter-reader reproducibility, a second 
reader (MD with experience in radiological imaging since 
2017) segmented five randomly selected subjects again, 
being blinded to the ROIs of the first reader. The same 
approach of ROI placements was followed by both readers. 

Statistical analyses 

SPSS (version 20.0; IBM SPSS Statistics for Windows, 
Armonk, NY, USA) and GraphPad Prism (version 6.04; 
GraphPad Software Inc., La Jolla, CA, USA) were used 
for statistical analyses. For statistical tests, the level of 
significance was set at P<0.05 (two-sided).

Descriptive statistics including absolute frequencies for 
categorical variables and mean ± standard deviation for 
continuous variables were calculated. The Kolmogorov-
Smirnov test indicated non-normal distribution for the 
majority of data. We performed Mann-Whitney U tests 
to compare age, BMI, PDFF, CSA, and CSA/BMI of 
the psoas muscles and the three segments of the erector 
spinae muscles between male and female subjects as well as 
between subjects younger and older than 38 years (median 
age of the cohort: 38.0 years), respectively. Furthermore, 
we performed Wilcoxon signed-rank tests to compare the 
PDFF of the psoas muscles and the three segments of the 

erector spinae muscles against each other, respectively. 
Regarding analysis of reproducibility, we calculated the root 
mean square coefficient of variation in percent (relative 
units) based on the PDFF measurements for those datasets 
that were evaluated by two readers (35).

Correlation analyses using Spearman’s rho were carried 
out considering age, BMI, PDFF of the psoas muscles and 
the three segments of the erector spinae muscles, followed 
by partial correlation analyses stratified by gender and using 
age and BMI as control variables. Bonferroni correction for 
multiple testing was applied for all correlation analyses. 

Results 

Cohort characteristics

We included 76 subjects (24 males and 52 females), with 
PDFF and CSA values of the psoas muscles and the three 
segments of the erector spinae muscles being available 
from all subjects. There were no significant differences in 
age (males: mean age: 39.5±10.5 years, age range: 26.9– 
61.3 years; females: mean age: 40.3±14.9 years, age range: 
21.2–77.2 years; P=0.733) or BMI (males: mean BMI: 
27.0±5.8 kg/m2, BMI range: 20.1–41.3 kg/m2; females: 
mean BMI: 24.6±5.3 kg/m2, BMI range: 17.2–43.5 kg/m2; 
P=0.067) between genders.

Measurements of PDFF and CSA

When considering the PDFF measurements of the three 
segments of the erector spinae muscles there was a regional 
variation depending on the anatomical localization. The PDFF 
of the erector spinae muscles of the segment L3–L5 showed 
the highest values when compared to the corresponding 
measurements of the segments T12–L2 and T9–T11 for 

Figure 2 Muscle segmentations. Representative illustration of the placement of regions of interest (ROIs) in axial proton density fat fraction 
(PDFF) maps in a 53-year-old male with a body mass index (BMI) of 20.7 kg/m2. The ROIs spatially enclosed the right psoas muscle [1], left 
psoas muscle [2], right erector spinae muscle [3], and left erector spinae muscle [4]. 

1 2

3 4
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both genders (Table 1). Accordingly, there was a significant 
difference between PDFF values of the segment L3–L5 and 
the PDFF values of the segments T12–L2 (P<0.001) and T9–
T11 (P<0.001), whereas the difference between the PDFF 
values of the segment T12–L2 and T9–T11 did not show 
significance (P=0.959). Furthermore, a significant difference 
was present when comparing the PDFF of the psoas muscles 
to the measurements derived from the erector spinae muscles 
of the segments L3–L5 (P<0.001) and T12–L2 (P=0.022), but 
not for the segment T9–T11 (P=0.073).

Compared to females, males showed significantly lower 
PDFF values for the psoas muscles (P=0.006) and erector 
spinae muscles of the segment L3–L5 (P<0.001), in contrast 
to the segments T12–L2 (P=0.269) or T9–T11 (P=0.947; 
Table 1). CSA values were significantly higher in males when 
compared to females for the psoas muscles and all segments 
of the erector spinae muscles (P<0.001; Table 1). 

Compared to subjects older than 38 years, young 
subjects showed significantly lower PDFF values for 
the psoas muscles and erector spinae muscles of the 
segment L3–L5, T12–L2, and T9–T11 (P<0.001; Table 2).  
CSA values did not show any significant differences in 
the comparison between subjects older and younger than  
38 years (P>0.05; Table 2).

Correlations of PDFF between muscles and segments

There were significant correlations among the PDFF of 

the psoas muscles and the PDFF of all three segments of the 
erector spinae muscles (P<0.001 for each correlation; Table 3).  
For age, significant correlations with the PDFF of the 
psoas muscles as well as the PDFF of the three segments 
of the erector spinae muscles were revealed (P<0.001 for 
each correlation; Table 3). Regarding BMI, significant 
associations were observed with the PDFF of the psoas 
muscles (P=0.003) as well as the PDFF of the erector spinae 
muscles of the segments T12–L2 (P<0.001) and T9–T11 
(P<0.001), whereas the association with the PDFF of the 
segment L3–L5 did not show significance (P=0.495; Table 3; 
Figure 3).

When performing partial correlation analyses in 
males using age and BMI as control variables, significant 
associations between the PDFF of the different muscles or 
segments were maintained except for the PDFF of the psoas 
muscles and the PDFF values of the erector spinae muscles 
of the segment T9–T11 and for the PDFF values of the 
erector spinae muscles of the segment L3–L5 and T9–T11 
(Table 4). In females, significant associations between the 
PDFF of the different muscles and segments were kept in the 
partial correlation analyses except for the PDFF values of the 
erector spinae muscles of the segment L3–L5 and T9–T11 
(Table 5). 

Reproducibility measurements

The reproducibility error expressed as root mean square 

Table 1 Mean values ± standard deviation of the proton density fat fraction (PDFF, in %) and cross-sectional area (CSA, in cm2) of the 
erector spinae muscles of the segments L3–L5, T12–L2, and T9–T11 as well as the psoas muscles for male and female subjects, respectively. 
Furthermore, the CSA divided by the body mass index (BMI, in kg/m2) is provided

Variable Value Males (n=24) Females (n=52) P

Erector spinae muscles L3–L5 PDFF (in %) 10.7±7.6 18.2±6.8 <0.001

CSA (in cm2) 229.5±41.6 179.0±27.7 <0.001

CSA/BMI 8.6±1.3 7.4±1.3 <0.001

Erector spinae muscles T12–L2 PDFF (in %) 6.1±4.9 7.0±4.5 >0.05

CSA (in cm2) 206.0±45.4 142.1±26.5 <0.001

CSA/BMI 7.9±2.5 5.9±1.1 <0.001

Erector spinae muscles T9–T11 PDFF (in %) 7.1±6.2 6.8±5.0 >0.05

CSA (in cm2) 115.7±25.6 79.7±14.4 <0.001

CSA/BMI 4.4±1.4 3.4±0.8 0.002

Psoas muscles PDFF (in %) 5.1±3.4 6.0±2.2 0.006

CSA (in cm2) 140.7±32.6 94.5±16.8 <0.001

CSA/BMI 5.5±1.9 4.0±1.0 <0.001
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coefficient of variation in percent (relative units) amounted 
to 5.6% for the PDFF of the erector spinae muscles of the 
segment L3–L5, 6.2% for the segment T12–L2, 5.9% for 
the segment T9–T11, and 6.0% for the psoas muscles, 
respectively.

Discussion 

The present investigation used chemical shift encoding-

based water-fat MRI to extract the PDFF and CSA of the 

psoas muscles and three segments of the erector spinae 

Table 3 Whole-group correlation analyses using Spearman’s rho and considering the variables age, body mass index (BMI), proton density fat 
fraction (PDFF) of the erector spinae muscles of the segments L3–L5, T12–L2, and T9–T11, and PDFF of psoas muscles

Variable Value Age BMI
PDFF erector spinae 

muscles L3–L5
PDFF erector spinae 

muscles T12–L2
PDFF erector spinae 

muscles T9–T11
PDFF psoas 

muscles

Age r 1.000 0.299 0.516 0.665 0.556 0.549

P – 0.009# <0.001* <0.001* <0.001* <0.001*

BMI r 0.299 1.000 0.080 0.460 0.491 0.337

P 0.009# – >0.05 <0.001* <0.001* 0.003*

PDFF erector spinae 
muscles L3–L5

r 0.516 0.080 1.000 0.694 0.495 0.746

P <0.001* >0.05 – <0.001* <0.001* <0.001*

PDFF erector spinae 
muscles 
T12–L2

r 0.665 0.460 0.694 1.000 0.808 0.784

P <0.001* <0.001* <0.001* – <0.001* <0.001*

PDFF erector spinae 
muscles 
T9–T11

r 0.556 0.491 0.495 0.808 1.000 0.643

P <0.001* <0.001* <0.001* <0.001* – <0.001*

PDFF psoas muscles r 0.549 0.337 0.746 0.784 0.643 1.000

P <0.001* 0.003* <0.001* <0.001* <0.001* –

*, statistically significant P values after Bonferroni correction for multiple testing (P<0.004). #, P values <0.05.

Table 2 Mean values ± standard deviation of the proton density fat fraction (PDFF, in %) and cross-sectional area (CSA, in cm2) of the erector 
spinae muscles of the segments L3–L5, T12–L2, and T9–T11 as well as the psoas muscles for subjects younger and older than 38 years, 
respectively. Furthermore, the CSA divided by the body mass index (BMI, in kg/m2) is provided

Variable Value Age <38 years (n=38) Age >38 years (n=38) P

Erector spinae muscles L3–L5 PDFF (in %) 12.3±5.6 19.4±8.2 <0.001

CSA (in cm2) 191.6±41.3 198.3±38.9 >0.05

CSA/BMI 8.2±1.4 7.4±1.4 0.015

Erector spinae muscles T12–L2 PDFF (in %) 4.2±2.5 9.2±5.0 <0.001

CSA (in cm2) 159.9±52.5 164.6±35.5 >0.05

CSA/BMI 6.8±2.3 6.2±1.5 >0.05

Erector spinae muscles T9–T11 PDFF (in %) 4.1±2.7 9.6±6.0 <0.001

CSA (in cm2) 94.5±27.8 87.6±21.4 >0.05

CSA/BMI 4.0±1.1 3.4±1.1 0.008

Psoas muscles PDFF (in %) 4.5±1.5 6.9±2.9 <0.001

CSA (in cm2) 115.1±34.7 103.1±26.6 >0.05

CSA/BMI 4.9±1.6 3.9±1.2 0.002
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Table 4 Partial correlation analyses in males between the proton density fat fraction (PDFF) of the erector spinae muscles of the segments L3–
L5, T12–L2, and T9–T11, and the PDFF of psoas muscles. Age and body mass index (BMI) were included as control variables

Variable Value
PDFF erector spinae 

muscles L3–L5
PDFF erector spinae 

muscles T12–L2
PDFF erector spinae 

muscles T9–T11
PDFF psoas  

muscles

PDFF erector spinae muscles L3–L5 r 1.000 0.923 0.502 0.819

P – <0.001* 0.020# <0.001*

PDFF erector spinae muscles T12–L2 r 0.923 1.000 0.673 0.847

P <0.001* – 0.001* <0.001*

PDFF erector spinae muscles T9–T11 r 0.502 0.673 1.000 0.373

P 0.020# 0.001* – >0.05

PDFF psoas muscles r 0.819 0.847 0.373 1.000

P <0.001* <0.001* >0.05 –

*, statistically significant P values after Bonferroni correction for multiple testing (P<0.008). #, P values <0.05.

Figure 3 Body mass index (BMI) versus proton density fat fraction (PDFF). Graphs plotting the BMI (in kg/m2, x-axis) against the PDFF (in 
%, y-axis) for the erector spinae muscles of the segments L3–L5 (A), T12–L2 (B), and T9–T11 (C) as well as the psoas muscles (D). Points 
represent the respective values of the single subjects, which are shown together with the best-fit line and its 95% confidence band. 
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muscles. The PDFF of the erector spinae muscles of the 
segment L3–L5 was independent of BMI and showed 
higher values when compared to the other segments. For 
the psoas muscles and the erector spinae muscles of the 
segment L3–L5, significant gender differences in PDFF 
values were observed. When considering age and BMI as 
control variables, significant correlations between segments 
of the erector spinae muscles were maintained for the 
PDFF in both genders. 

Regarding measurements of the CSA of both the psoas 
muscles as well as the three segments of the erector spinae 
muscles, males showed significantly higher values when 
compared to their female counterparts. This finding is 
in accordance with previous studies, showing gender 
differences in CSA for the paraspinal musculature with 
clearly higher values for males (33,36). Accordingly, volumes 
of paraspinal muscles were also shown to be gender-
specific, with larger volumes in males when compared to  
females (37). For the PDFF of the psoas muscles and the 
erector spinae muscles of the segment L3–L5 we found 
an inverse relationship, with males showing significantly 
lower values. This observation is again in concordance with 
previous studies investigating fat fractions by PDFF or other 
measures for paraspinal musculature (33,36,37). Regarding 
absolute values, a previous study in 26 healthy subjects of 
both genders (age: 30±6 years, BMI: 27.0±2.7 kg/m2) using 
six-echo chemical shift encoding-based water-fat separation 
with segmentations of paraspinal muscles between the 
upper endplate level of L2 and the lower endplate level of 
L5 reported on PDFF values of 8.9%±2.1% in males and 
11.6%±2.9% in females for the erector spinae muscles 

and 4.9%±1.1% in males and 5.3%±1.8% in females for 
the psoas muscles (36). Another study in females revealed 
PDFF values of 11.6±2.9% in premenopausal women (age: 
29.9±7.1 years, BMI: 26.0±1.6 kg/m2) and 24.6%±7.1% 
in  postmenopausa l  women (age :  63 .2±6.3  years ,  
BMI: 25.7±4.2 kg/m2) for erector spinae muscles, also 
derived from chemical shift encoding-based water-fat MRI 
with six echoes and the same method and area of muscle 
segmentation (34). The PDFF values extracted in this 
study seem to be principally in agreement with published 
data, with discrepancies being most likely attributable to 
differences in subject characteristics such as age, BMI, 
hormonal status, or gender distributions. In this context, it 
has already been shown by MRI-based investigations that 
fat fractions are subject to considerable variation even in 
the absence of any disease, thus depending on demographic 
characteristics and the effect of aging (37-40). Moreover, 
fat fractions can show early and significant increases in 
the course of many pathologies, including metabolic, 
neuromuscular, degenerative and other diseases (7-16). 

Concerning potential regional variation of fat fractions in 
the paraspinal musculature, there is scarce data. A previous 
study enrolled 40 healthy males (age: 40.0±11.2 years,  
BMI: 23.0±1.8 kg/m2) and 40 healthy females (age:  
39.0±11.6 years, BMI: 21.6±2.1 kg/m2) and performed 
an evaluation of the fat fraction of the multifidus and 
erector spinae muscles at the levels L1–L5 as derived from 
two-echo DIXON imaging (37). The study showed an 
increase in fat fractions from L1 to L5, with fat fractions 
in L5 reaching the highest values in both genders (males: 
25.7%±8.0%, females: 31.9%±9.3%) (37). We revealed the 

Table 5 Partial correlation analyses in females between the proton density fat fraction (PDFF) of the erector spinae muscles of the segments L3–
L5, T12–L2, and T9–T11, and the PDFF of psoas muscles. Age and body mass index (BMI) were included as control variables

Variable Value
PDFF erector spinae 

muscles L3–L5
PDFF erector spinae 

muscles T12–L2
PDFF erector spinae 

muscles T9–T11
PDFF psoas 

muscles

PDFF erector spinae muscles L3–L5 r 1.000 0.547 0.316 0.386

P – <0.001* 0.026# 0.006*

PDFF erector spinae muscles T12–L2 r 0.547 1.000 0.727 0.575

P <0.001* – <0.001* <0.001*

PDFF erector spinae muscles T9–T11 r 0.316 0.727 1.000 0.495

P 0.026# <0.001* – <0.001*

PDFF psoas muscles r 0.386 0.575 0.495 1.000

P 0.006* <0.001* <0.001* –

*, statistically significant P values after Bonferroni correction for multiple testing (P<0.008). #, P values <0.05.
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highest PDFF values for the segment L3–L5 of erector 
spinae muscles (males: 10.7%±7.6%, females: 18.2%±6.8%), 
whereas the segments T12–L2 and T9–T11 showed clearly 
lower PDFF values. Although both studies report on the 
highest fat fractions for paraspinal musculature on the level 
of the lower instead of the middle or upper lumbar spine, 
considerable differences in absolute values seem evident. In 
this context, the previous study used only two echoes during 
imaging, potentially leading to aberrant fat quantifications 
when compared to imaging with higher echo numbers, 
such as six or eight echoes. Further, T1-bias and T2*-
decay effects can lead to over- or underestimations of fat 
fractions (24,41,42). Against this background, the present 
study may provide more accurate estimations of fat fractions 
by means of PDFF using chemical shift encoding-based 
water-fat MRI with six echoes and a smaller flip angle to 
further reduce T1-bias effects. Furthermore, it expands the 
evidence for regional variations of fat fractions of paraspinal 
musculature by not only evaluating muscles on the lumbar 
level; instead, we also included lower thoracic levels up to 
T9. More importantly, we were able to show that the PDFF 
of the segment L3–L5 of the erector spinae muscles was 
independent of BMI. 

The absence of an association of the BMI with the PDFF 
of the segment L3–L5 of the erector spinae muscles might 
potentially suggest that muscle segmentation of this level 
could be preferred over segmentation of the level T12–
L2 or T9–T11 when segmentations should be restricted 
to a rather circumscribed area. This suggestion might at 
least hold true for healthy subjects as investigated in the 
present study. Patients that suffer from rather localized, 
focal pathologic conditions affecting muscle volume and fat 
fractions may show different patterns. Such conditions could 
be present in patients with vertebral fractures who have 
shown changes in paraspinal musculature (16,43); however, 
further evidence to make more distinct recommendations 
is needed. The need for identification of representative, 
independent levels for segmentation of paraspinal 
musculature is related to the commonly applied approaches 
of semi-automatic or manual segmentation, which have 
shown to be time consuming particularly when performed 
on several consecutive MRI slices instead of on one slice 
only (44,45). Thus, restrictions to the most suitable or 
representative areas are generally welcome, with the finding 
of the PDFF of the segment L3–L5 of the erector spinae 
muscles being independent of BMI providing a rationale for 
segmentations of a specific level when resources are limited. 
Furthermore, the PDFF of this muscle and level might 

qualify as a potential biomarker for muscle alterations due 
to the absence of significant associations with BMI, a factor 
commonly regarded as a confounder of absolute values of 
fat quantity. 

However, there are shortcomings of this study that 
need to be considered. First, the cohort included more 
female subjects than males and, thus, was not equally 
balanced regarding gender distribution. Second, we did not 
explicitly include subjects with a diagnosis of metabolic, 
neuromuscular, degenerative or other diseases that have 
an impact on fat fractions of musculature (7-16). Third, to 
measure PDFF, this study used chemical shift encoding-
based water-fat MRI only, which is a modern field map-
insensitive technique enabling spatially resolved fat 
quantification, but it does not allow for the quantification of 
intramyocellular and extramyocellular lipid levels like MRS 
does (17-19,21). Taken together, future studies may include 
patients with defined diseases and should make advantage 
of a multi-modal setup combining chemical shift encoding-
based water-fat MRI and MRS to also deliver insights into 
intramuscular lipid distributions. Additionally, such studies 
may allow to investigate further the potential role of the 
PDFF of the segment L3–L5 of the erector spinae muscles 
as a biomarker for muscle alterations.

In conclusion, the results derived from this study may 
offer new perspectives for a better understanding of basal 
muscle physiology. Of note, the PDFF of the erector spinae 
muscles at the level L3–L5 showed to be not dependent 
on BMI, suggesting that this level might be suitable for 
paraspinal muscle segmentations when time resources 
for manual segmentation of larger areas are restricted. 
However, future studies including patients with diseases 
entailing alterations in fat composition and distribution 
will have to investigate further the role of the PDFF of 
this level as a potential biomarker. Furthermore, distinct 
causes for the finding of higher PDFF values of paraspinal 
musculature at the segment L3–L5 when compared to 
segments above should be investigated. 
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