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Background: To evaluate the potential of clinical-based model, a biparametric MRI-based radiomics model
and a clinical-radiomics combined model for predicting clinically significant prostate cancer (PCa).
Methods: In total, 381 patients with clinically suspicious PCa were included in this retrospective study; of
those, 199 patients did not have PCa upon biopsy, while 182 patients had PCa. All patients underwent 3.0-
T MRI examinations with the same acquisition parameters, and clinical risk factors associated with PCa (age,
prostate volume, serum PSA, etc.) were collected. We randomly stratified the training and test sets using
a 6:4 ratio. The radiomic features included gradient-based histogram features, grey-level co-occurrence
matrix (GLCM), run-length matrix (RLM), and grey-level size zone matrix (GLSZM). Three models were
developed using multivariate logistic regression analysis to predict clinically significant PCa: a clinical model,
a radiomics model and a clinical-radiomics combined model. The diagnostic performance and clinical net
benefit of each model were compared via receiver operating characteristic (ROC) curve analysis and decision
curves, respectively.

Results: Both the radiomics model (AUC: 0.98) and the clinical-radiomics combined model (AUC: 0.98)
achieved greater predictive efficacy than the clinical model (AUC: 0.79). The decision curve analysis also
showed that the radiomics model and combined model had higher net benefits than the clinical model.
Conclusions: Compared with the evaluation of clinical risk factors associated with PCa only, the
radiomics-based machine learning model can improve the predictive accuracy for clinically significant PCa,

in terms of both diagnostic performance and clinical net benefit.
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Introduction affects many families. According to the 2017 European

Prostate cancer (PCa) is one of the most prevalent Association of Urology PCa Guidelines, patients with a

malignant neoplasms in elderly males worldwide (1). Gleason score (GS) <7 PCa are recommended to undergo
Currently, with the rapid increase in the incidence rate in active surveillance and watchful waiting. In contrast,

China (2), PCa has become a major health concern that patients with a GS >7 PCa have an increased risk of
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progression and a shorter overall survival and should adopt
timely treatment. Thus, accurate risk assessment is critical
for selecting the optimal treatments for these patients (3,4).

Total prostate-specific antigen (tPSA), free PSA (fPSA),
PSA density (PSAD) and the ratio of free-to-total PSA (f/t
PSA) are clinically used indicators for PCa detection and
grading (5-7). To date, there is still controversy regarding
which indicators are more suitable for the diagnosis and
grading of PCa, and no consensus has been reached (8,9).
Furthermore, the clinical utility of these indicators has
certain inadequacies, such as overdiagnosis and subsequent
overtreatment (5). Therefore, there is an urgent need for a
new method for early and accurate PCa risk stratification to
achieve a good prognosis for patients.

In recent years, multi-parameter MRI (mp-MRI) has
been increasingly applied in PCa localization, qualitative
assessment and staging diagnosis (10,11). The proposal
of PI-RADS is to better standardize the examination and
interpretation of prostate MRI. The PI-RADS version
2.1 proposes a concept of biparametric MRI (bp-MRI)
(including only T2WI and DWI) to simplifies prostate
MRI sequences (12). Radiomics based on MRI as a
trending and promising area of research, has been widely
used to evaluate tumour heterogeneity and has achieved
high diagnostic efficiency. Radiomics is defined as the
high-throughput extraction of large numbers of medical
imaging features that are then converted to mineable high-
dimensional data, quantitative analysis of these data can
provide an unprecedented opportunity to improve clinical
decision-making (13-15). Currently, many previous studies
have focused on radiomics feature analysis to assess and
classify PCa lesions (16-18). More specifically, these studies
analysed cancerous pixels in quantified regions of interest
by using the feature extraction function, and combined
numerous radiomics features with machine learning
methods have shown high accuracy on PCa differentiation
and aggressiveness (19-21). However, the research methods
of previous articles used different standards and the results
are inconsistent. Some studies have shown that radiomics
plays an important role in GS score grading of PCa (22,23);
some clinical indicators have certain implications for the
invasiveness of PCa, but not many researches combine
radiomics features with clinical factors together to conduct
risk assessment. Therefore, we constructed three models
based on radiomics signatures and clinical factors separately
and together to predict clinically significant PCa and
compared whether the combination of the two can help
improve the diagnosis performance.
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Methods
Patients

This retrospective study was approved by the Institutional
Ethics Committee of our hospital, which waived the
requirement for written informed consent. A total of 416
patients were included in our study between December 2014
and March 2017 in our hospital. The inclusion criteria were
as follows: (I) patients with clinical symptoms indicative
of PCa (frequent micturition, urgency of urination, pain
while urinating or dysuria, etc.) or elevated PSA levels;
(IT) patients with a prostate 3.0T MRI examination before
ultrasound-guided biopsy; and (III) biopsy with confirmed
pathological results. The exclusion criteria were as follows: (I)
pathological biopsy of lesions that were difficult to delineate
on MRI (pathological results show that the lesions' location
cannot be displayed on the magnetic resonance image)
(n=19); (II) tumour volume that was too small (maximum
diameter <5 mm) (n=9); (III) prostate biopsy, surgery,
radiation therapy or endocrine therapy performed before
MRI examination (n=4); or (IV) incomplete MRI data (n=2)
or the presence of imaging artefacts preventing segmentation
of cancerous lesions (n=1). Ultimately, the study population
consisted of 381 patients including 182 PCa patients and
199 patients without any histological evidence of cancer.
According to the final pathological diagnosis results,
we defined clinically significant PCa as patients with a
GS >7 PCa, whereas patients with a GS <7 (including
non-clinically significant cancer and benign lesions) were
classified as having no significant PCa. The details of patient
selection are shown in Figure 1.

Pathology

All patients underwent transrectal ultrasound-guided
(TRUS) systematic prostate biopsy. The area of systematic
prostate biopsy was divided as follows: the prostate gland
was divided into 3 sections (the basal region, the body and
the apex) from top to bottom, and each part was divided
into the left and right regions. The right and left regions of
the basal and body regions were divided into the inner and
outer regions, and the whole prostate gland was divided into
10 areas. Each area was punctured with 1 needle, and 2-4
additional needles were used to puncture the suspicious area.

Clinical data

We collected clinical information including age, prostate
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Figure 1 Flow diagram of patient selection.

volume (PV), serum PSA [including tPSA and free PSA
(Fpsa)], f/t PSA, PSAD, and prostate biopsy pathology from
the selected patients. The PV was calculated as the width
x length x height x0.52 on T2-weighted images (24), and
detailed measurements are shown in Figure SI. The PSAD
was calculated as total PSA/PV.

MRI acquisition and preprocessing

All patients underwent 3.0-T MRI scanner (Philips Ingenia,
The Netherlands) with a 32-channel body phased array
coil as the receiving coil. Scan sequences included sagittal
T2-weighted imaging (T2WI), axial T2WI, T1-weighted
imaging (T1WI), diffusion-weighted imaging (DWI) (b
values of 0 and 1,000 sec/mm®) and dynamic contrast-
enhanced MRI (DCE-MRI) The details regarding MRI
acquisition are listed in 7able S1. The details of the imaging
sequence parameters, including sequence type, section, echo
time (TR), repetition time (TE), slice thickness, slice gap,
field of view (FOV) and matrix, are summarized in Tible S2.

Bp-MRI sequences, including axial T2WI and ADC
images, were chosen to extract radiomics features due to the
availability and emphasis in PI-RADS v2.1. The obtained
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T2WI and ADC images (DICOM format) of each case
were imported into A.K. [Artificial Intelligence Kit, V3.0.1,
independently developed by GE Healthcare (China)]
software. Prior to tumour segmentation, three preprocessing
techniques were applied to standardized images in order to
improve texture recognition. Firstly, the p + 36 method was
adopted for image intensity normalization and the intensity
signals beyond 36 were eliminated, which could enhance
the difference between two classes; then, 64 grey levels was
used for grey-level quantization. Finally, we used a voxel
size of 1x1x1 mm’ for image resampling isotopically (25,26).

MRI lesion segmentation

For consistency between ROIs in both pre-processed
T2WTI and ADC images, all depicted ROIs were strictly
delineated with the same criteria and visually validated by
the same expert. The location and size of the lesions were
determined as follows: (I) the detailed records of the prostate
system punctures (injection site and depth) and pathological
diagnostic results were used to determine the location and
nature of the lesion; (II) the location described by pathology
was matched to the corresponding lesion on the MRI
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Figure 2 Example axial T2-weighted imaging (T2WI) (A), apparent diffusion coefficient (ADC) map (B), diffusion-weighted imaging (DWI)
(C), and dynamic contrast-enhanced MRI (DCE-MRI) (D) from the same position of a 80 years old patient with prostate cancer (PSA,
59.90 ng/mL; biopsy GS, 3+4=7). Cancer ROI (rad solid line) is outlined in the T2WI with ADC map, DWI, DCE-MRI as reference.

images; and (III) combined with the PI-RADS V2 scoring
diagnostic criteria (27), the range of lesions was determined.
Peripheral zone (PZ) lesions were mainly based on the ADC
map, supplemented by DWI and DCE-MRI sequences, and
transitional zone (TZ) lesions were mainly based on T2WI,
supplemented by DWI and the ADC map. The ROIs
were manually delineated layer-by-layer along the lesion
boundary, obtaining a three-dimensional data. There are
several notable points in the process of sketching ROI: (I) the
urethra, ejaculation tube, and seminal vesicle root structure
were avoided; (II) to truly reflect tumour heterogeneity, ROI
delineation included areas of necrosis, haemorrhage, cystic
tissue and calcification; (III) for multifocal PCa, the ROI
of lesions with the highest GS were selected and confirmed
by biopsy pathology; if the GSs were the same, the ROI
of the lesions with the maximum diameter was selected;
and (IV) for patients with non-cancerous prostate regions
confirmed by biopsy pathology, ROIs were also delineated
using a volume of no less than 0.5 mL. An example of lesion

© Quantitative Imaging in Medicine and Surgery. All rights reserved.

segmentation in a PCa patient is shown in Figure 2.

The intra-observer and inter-observer repeatability
of lesion segmentation was based on the repeatability
of feature extraction. To evaluate the intra- and inter-
observer repeatability in feature extraction, 40 patients
were randomly selected, and their radiomics features
were extracted by two radiologists who were blinded to
their clinical data. Radiologists A and B had 9 and 3 years
of clinical experience in the diagnosis of prostate MRI,
respectively, and the same 2 years of experience in feature
extraction. Radiologist A repeated the feature extraction for
the same 40 patients’ MR images over a 2-week period.

Radiomics feature extraction and feature selection

Feature extraction and feature selection were also performed
using A.K. software. The kinds of computer-derived
features included gradient-based histogram features, grey-
level co-occurrence matrix (GLCM), run-length matrix
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(RLM), and grey-level size zone matrix (GLSZM), which
were calculated based on the voxels in the delineated ROIL.
Although large numbers of features were extracted, not
all features were helpful in predicting clinically significant
PCa; therefore, we used two feature selection methods to
determine the best discriminating feature set. First, mRMR
was performed to eliminate the redundant and irrelevant
features. Then, least absolute shrinkage and selection
operator (LASSO) analysis was conducted to choose the
optimized subset of features to construct the final model.

Model construction

Clinical factors and radiomic features were used to identify
biomarkers of PCa. We randomly assigned 60% of the
patients to the training set (n=229) and the remaining
40% to the test set (n=152). In terms of clinical factors,
univariate and multivariate logistic analyses were used
to establish the logistic regression model to find the
associations between clinical features and significant PCa.
For the radiomics model, a logistic regression model was
trained using the selected features through feature selection
methods to classify clinically significant PCa. A formula
called the radiomics score (RAD-SCORE) was generated
using a logistic regression analysis of selected features
that were weighted by their coefficients. A multivariable
logistic regression method was used to establish a combined
clinical-radiomics model with a combined weight of
radiomic features and clinical risk factors.

Statistical analysis

For clinical model establishment, univariate logistic
regression was used to select clinical risk factors, then clinical
features with P<0.05 were introduced into a multivariate
logistic regression to build a clinical model. In logistic
regression, a backward stepwise selection was applied using
a likelihood ratio test with Akaike’s information criterion as
the stopping rule. Meanwhile, the variance inflation factor
(VIF) was used to evaluate collinearity; features with VIF >10
were excluded. Finally, a clinical model was established. The
performance of each model was quantified by the area under
the receiver operating characteristic (ROC) curve (AUC)
with 95% confidence intervals (95% Cls). The DeLong test
was used to determine whether significant differences existed
in terms of the AUC values among these three models. The
nomogram of the clinical-radiomics model was constructed
to assist in using the abovementioned signature to improve
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decision making. Decision curve analysis was conducted
to determine the clinical usefulness of the radiomics-based
nomogram by quantifying the clinical net benefits at different
threshold probabilities in the test set (28). Decision curves
were also plotted for the clinical, radiomics and combined
models. The abovementioned analyses were performed using
R software (version 3.4.3, http://www.Rproject.org).

The entire workflow of this research is presented in
Figure 3.

Results
Patient characteristics

For all 381 patients, 199 patients (52%) were negative
(benign lesions), and the other 182 patients were positive
(PCa). Biopsy showed a GS <7 PCa in 40 patients (11%) and
a GS >7 PCa in 142 patients (37%). The GS distribution of
all patients was as follows: 3+3=6 (40 patients); 3+4/4+3=7
(57 patients); 4+4=8 (46 patients); 4+5/5+4=9 (31 patients);
and 5+5=10 (8 patients). The characteristics of all patients
are listed in 7able 1. The sample distribution of this study is
listed in 7able S3.

Clinical model

In terms of clinical factors, univariate logistic analysis
showed that patient age, PV, tPSA, fPSA and PSAD were
significant factors for predicting clinically significant PCa.
The multivariate logistic analysis showed that age, tPSA and
PSAD were significant (P<0.05), and these three clinical
factors could be used as independent predictors. The
results of the univariate and multivariate logistic regression
analyses are shown in Table 2. Finally, the logistic regression
classifier was established based on the selected clinical
features. The AUC, accuracy rate, sensitivity and specificity
of the training set were 0.76 (95% CI: 0.70-0.82), 0.78,
0.81, and 0.76, respectively, and the AUC, accuracy rate,
sensitivity and specificity of the test set were 0.79 (95% CI:
0.70-0.88), 0.74, 0.76, and 0.74, respectively.

Radiomics model

Intra- and inter-class correlation coefficients (ICCs) were
used to evaluate the intra- and inter-observer agreement of
feature extraction, with an ICC greater than 0.75 indicating
good agreement. The intra-observer ICCs based on
radiologist A’s two stages of feature extraction ranged from
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Figure 3 Workflow of this research. (A) Three-dimensional (3D) regions of interest that were segmented from T2-weighted magnetic

resonance imaging (MRI). (B) Quantitative imaging texture features were extracted and selected to construct the radiomics model. (C)

Clinical models were constructed using clinical risk factors, and clinical nomograms were developed. (D) Both radiomics and clinical factors

were added to construct a clinical-radiomics combined model. (E) Receiver operating characteristic (ROC) curve analysis and decision curve

analysis were used to evaluate the performance of the model.

Table 1 Characteristics of all patients (n=381)

Characteristics Non-clinically significant PCa cohort Clinically significant PCa cohort
Number of patients, n 239 142
Age, years (median; IQR) 69.00; 63.00-75.00 75.00; 68.00-81.00
PV, mL (median; IQR) 52.35; 38.04-81.03 36.27; 27.03-57.28
tPSA, ng/mL (median; IQR) 9.92; 6.70-15.89 49.30; 21.14-83.37
fPSA, ng/mL (median; IQR) 1.38; 0.89-2.29 4.68; 1.80-14.21
fAPSA, % (median; IQR) 0.15; 0.11-0.21 0.12; 0.07-0.23
PSAD, ng/mL/mL (median; IQR) 0.19; 0.11-0.30 1.21; 0.53-1.89
Biopsy pathology, n (%)

Benign lesion 199 (52.2) -

GS =6 40 (10.5) -

GS =7 - 142 (37.3)

PCa, prostate cancer; IQR, interquartile range; PV, prostate volume; tPSA, total prostate-specific antigen; fPSA, free PSA; f/tPSA, ratio of

free-to-total PSA; PSAD, PSA density; GS, Gleason score.

0.83 t0 0.96 and 0.82 to 0.97 for T2WI and ADC mapping,
respectively, and the inter-observer ICCs based on the feature
extraction of radiologist A (the first time) and radiologist B
ranged from 0.76 to 0.93 and 0.78 to 0.90 for T2WI and
ADC mapping, respectively. Radiologist A completed the

process for the remaining images, and the radiomics-based
models were built with the features extracted by radiologist
A. Through feature selection, 396 features were reduced to
15 potential predictors with non-zero coefficients using the
LASSO logistic regression classifier. The relative important
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Table 2 Univariate and multivariate logistic analysis results

Li et al. Radiomics model improves prediction of clinically significant PCa

Univariate logistic analysis results

Multivariate logistic analysis results

Clinical factors

OR (95% CI) P value OR (95% Cl) P value
Age 1.05 (1.02-1.08) 0.001 1.03(0.99-1.06) 0.138
tPSA 1.04 (1.03-1.05) 0.015 1.02 (1.00-1.03) 0.113
fPSA 1.11 (1.06-1.16) <0.001
PV 0.99 (0.98-0.10) <0.001
PSAD 50 (22.74-125.59) <0.001 2.23 (1.10-4.54) 0.027
f/t PSA 1.28 (0.20-8.39) 0.797

OR, odds ratio; tPSA, total prostate-specific antigen; fPSA, free PSA; PV, prostate volume; PSAD, PSA density; f/tPSA, ratio of

free-to-total PSA.

features are shown in Figure S2. These features were
incorporated into the RAD-SCORE, which indicated the
sum of the weighted features as follows:

RAD-SCORE =-5.555xT2_SizeZoneVariability
+1.33x T2_HighIntensitySmallAreaEmphasis +0.783x
T2_GLCMEnergy_anglel35_offset7-3.751xADC_
HighlIntensityLargeAreaEmphasis +3.752xT2_
GLCMEnergy_angle90_offset7+0.512xT2_
ShortRunHighGreyLevelEmphasis_AllDirection_
offset7_SD +0.658xT2_LowlntensityLargeAreaEmphasis
+0.023xADC_GLCMEnergy_angle0_offset7+2.333xT2_
ZonePercentage +0.285xT2_GLCMEnergy_AllDirection_
offset7+0.085xT2_ShortRunEmphasis_angle0_offset4-
1.094xADC_Quantile0.025-5.209xT2_GLCMEnergy_
angle90_offset4-0.603xT2_SmallAreaEmphasis
+1.314xADC_LargeAreaEmphasis -3.991.

The radiomics signature showed high predictive
efficiency with AUC values of 0.99 (95% CI: 0.98-1.00) in
the training set and 0.98 (95% CI: 0.97-1.00) in the test set.

Clinical-radiomics combined model

The clinical-radiomics nomogram incorporating age, tPSA,
PSAD and RAD-SCORE is shown in Figure 4. The clinical-
radiomics combined model also showed good predictive
ability with high AUC values of 0.99 (95% CI: 0.98-1.00)
in the training set and 0.98 (95% CI: 0.97-1.00) in the test
set. The diagnostic efficacy of the clinical-radiomics model
was the same as the radiomics model. The AUC, accuracy,
sensitivity and specificity of the three models are listed in
Table 3. A comparison of the ROC curves of these three
models is shown in Figure 5.
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Decision curve

The decision curves for the clinical, radiomics and
combined models are presented in Figure 6. The decision
curves show that either the radiomics or combined model
to predict clinically significant PCa adds more benefit than

using the clinical model.

Discussion

This study extends the analysis of individual imaging
texture features to an “omics”-based risk level estimation
approach. By extracting a large number of quantitative
imaging features and efficiently selecting these features,
radiomics models based on logistic regression analysis
were established. Then, the RAD-SCORE combined with
clinical factors was used to construct a clinical-radiomics
combined model. The radiomics model and the clinical-
radiomics combined model showed higher performance
than the clinical model in terms of clinical net benefit
and AUC for predicting clinically significant PCa, both
in the training set and test set. This conclusion shows
that including the RAD-SCORE in the clinical model
improved the diagnostic efficiency of clinical factors, which
demonstrates the distinctive value of the radiomics signature
for predicting clinically significant PCa.

In previous studies, researchers have attempted to
identify better prostate-related clinical factors for the
diagnosis of PCa and assessment of aggressiveness;
however, to date, there is no clear consensus. Xiao et /. (29)
combined PSA, digital rectal examination (DRE) texture,
DRE nodules and B-ultrasound results in a nomogram and
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Figure 4 Nomogram of the combined model for predicting clinically significant PCa. PCa, prostate cancer.

Table 3 AUC results of the clinical, radiomics and combined models for predicting clinically significant Pca

Clinical model

Radiomics model Combined model

Training set Test set

Training set

Test set Training set Test set

Cut-off 0.05

AUC (95% Cl) 0.76 (0.70-0.82) 0.79 (0.70-0.88)

Accuracy 0.78 0.74
Sensitivity 0.81 0.76
Specificity 0.76 0.74
PPV 0.52 0.45
NPV 0.93 0.92

P value (vs. Combined <0.001 <0.001
Model, Bonferroni

correction)

0.99 (0.98-1.00) 0.98 (0.97-1.00)

-0.42 -1.19

0.99 (0.98-1.00) 0.98 (0.97-1.00)

0.95 0.90 0.94 0.90
0.95 0.95 0.88 0.82
0.95 0.87 0.99 0.97
0.91 0.82 0.99 0.95
0.97 0.97 0.92 0.87
>0.05 >0.05 - -

AUC, area under the receiver operating characteristic curve; 95% CI, 95% confidence interval; PPV, positive predict value; NPV, negative

predictive value.

created a classifier to predict PCa patients with a GS >7;
their model had an AUC of 0.831. Niu et /. (30) indicated
that age, Prostate Imaging-Reporting and Data System
(PI-RADS) version 2 score, and adjusted PSAD were
independent predictors of high-grade PCa (HGPCa), with
an AUC of 0.83. Fang er al. (31) utilized clinical factors
(age, PSA, fPSA, PV, and TRUS) with or without MRI
results to predict the presence of PCa and HGPCa. The
AUC values with or without MRI for predicting PCa were
0.875 and 0.841, respectively, whereas those for predicting
HGPCa were 0.872 and 0.850, respectively. Through

univariate and multivariate logistic analyses, our research

© Quantitative Imaging in Medicine and Surgery. All rights reserved.

shows that clinical factors including age, tPSA and fPSA
were significant factors for predicting clinically significant
PCa, with AUC values of 0.911 for the training set and 0.842
for the test set, which were also different from the results of
the above-mentioned studies. The possible reasons are first,
the clinical factors selected by each study are different; in
addition, this study grouped benign prostate cases into the
non-clinically significant PCa group, which was different
from the above study. Therefore, a more convenient and
accurate method should be sought for the GS grading of
preoperative PCa evaluation.

Different pathological grades of PCa show differences
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376 Li et al. Radiomics model improves prediction of clinically significant PCa

1.0
I
0.8 — —
> 0.6 ~
S i
® [ AUC: 0.98 (0.97-1.00)
3 04 AUC: 0.98 (0.97-1.00)
2 AUC: 0.79 (0.70-0.88)
02—~ |/ Con.1bin.ed
~—— Radiomics
| Clinics
0.0
1 1 1 1 I ]
0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity

Figure 5 Comparison of ROC curves for differentiation of the
three models for predicting clinically significant PCa. PCa,

prostate cancer.

in internal cellular components, liquid contents, collagen
levels, and fibromuscular stromal features. Non-significant
PCa is well differentiated and has some remaining glandular
structures that preserve some intercellular space. Clinically
significant PCa has poor differentiation and is characterized
by high cellularity and reduced extracellular space. These
differences in histopathological features can be reflected by
quantitative analysis and radiomics methods. Many studies
have shown that extracted texture parameters can be used
for PCa diagnosis and risk classification. Wibmer ez a/. (32)
used T2WI and ADC maps and certified that the five
parameters of the Haralick texture analysis (energy, entropy,
correlation, homogeneity, and inertia) were beneficial for
evaluating PCa and GS; in particular, ADC maps of energy
and entropy were significantly different in GS <3+4 versus
>4+3 cancers. Sidhu et 4l. (33) showed that the textural
features of ADC kurtosis and T'1 entropy can discriminate
significant TZ PCa, and the combination of these
parameters had an AUCof 0.86. Nketiah er /. (34) showed
that combining T2WI textural features [angular second
moment (ASM), contrast, correlation, and entropy] resulted
in a higher classification performance (AUC: 0.82) than
the use of MRI-based physiological parameters [ADC and
DCE pharmacokinetic parameters (K™ and V,)] combined
(AUC: 0.75). However, the number of patients included in
these studies was relatively small, ranging from a few dozen
to more than one hundred patients, and the results may be
less stable. In addition, these research methods only focused
on extracting several texture features, and the information
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Figure 6 Decision curves of the clinical, radiomics and combined
models for predicting clinically significant PCa. PCa, prostate

cancer.

provided was relatively limited. Therefore, to increase
the amount of information and enhance the stability of
the results, the present study utilized a larger sample size
(enrolled 381 cases) and expanded the types of extracted
image texture features to establish a radiomics model based
on bpMRI images to achieve an accurate preoperative
diagnosis of clinically significant PCa.

At present, some studies have compared or combined
radiomics methods with common methods to evaluate
the diagnostic value of PCa. Wang er a/. (21) showed that
a radiomics model was more effective than the PI-RADS
score in the diagnosis of PCa of either in the PZ or TZ, and
the combined diagnostic efficiency of the two methods was
significantly increased. Litjens ez a/. (35) also proved that
the diagnostic efficiency of a computer-aided diagnostic
model combined with the PI-RADS score in identifying
PCa was better than that of either of the two models
alone, and the AUC reached 0.88. Bonekamp er al. (36)
showed that the diagnostic efficacy of quantitative methods
(radiomics and the ADC value) was higher than that of
qualitative methods (PI-RADS score) in differentiating
benign and malignant prostate tissues, but there was no
significant difference between radiomics and the ADC
value. Chen et 4/. (19) indicated that radiomics models based
on T2WI and ADC maps had high diagnostic efficacy and
was superior to the PI-RADS v2 scores in distinguishing
cancerous vs. noncancerous prostate tissue and high-
grade vs. low-grade PCa. In the current study, radiomics
methods were combined with clinical factors related to PCa
diagnosis to construct a combined model for the diagnosis
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of clinically significant PCa. In the test set, the radiomics
model (AUC value: 0.98) and the combined model (AUC
value: 0.98) were significantly better than the clinical model
(AUC value: 0.79) in the diagnostic efficacy of clinically
significant PCa, and the difference was significant (P<0.05).
At the same time, the two models based on radiomics
(the radiomics model and the combined model) also had
a greater clinical net benefit than that of clinical model. It
is obvious that the addition of the RAD-SCORE into the
clinical model improved the diagnostic efficacy and clinical
net benefit of the clinical model in the diagnosis of clinically
significant PCa; the model based on radiomics features
has a clear application value in the diagnosis of clinically
significant PCa.

In recent years, the nomogram figure forecast model has
been widely used in clinical medicine, and there have been
many studies related to this model published in high-impact
clinical professional journals (37-39). The nomogram
figure forecast model uses a risk score to represent multiple
disease risk factors and predict patient outcomes, which is
more clear, concise and easier to be understood. At the same
time, it can be effectively applied to clinical work and is
advantageous for doctor-patient communication, improving
the doctor-patient relationship. The present study
developed the nomogram of a clinical-radiomics combined
model, which provided an intuitive and convenient method
for doctors to diagnose clinically significant PCa and is
expected to become a new means of auxiliary diagnosis in
clinical work.

Despite its promising results, our study still has several
limitations. First, it was a retrospective study performed in
a single institution. Although we extracted partial data from
this group of patients as a test set to validate the models,
multicentre validation with a larger sample size is warranted
to acquire better evidence for clinical application. Second,
the pathological gold standard of the enrolled patients in
this study was TRUS systematic prostate biopsy, instead of
the large pathological sections of the specimens after radical
prostatectomy were compared. When delineating the ROIs
of lesions, it was difficult to completely match the MRI
images with the pathological sections, which had a certain
impact on the accuracy of ROI delineation. In addition,
the puncture pathology may underestimate the accuracy
of the PCa score and may not accurately reflect the true
pathological status. Therefore, we will enrol PCa patients
with large pathological sections after radical prostatectomy
in further research. Third, our study did not separate the
PZ of the prostate from the TZ because some patients
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had highly malignant disease in both zones. Therefore,
further research is needed to increase the size of the studied
population and to separate the PZ and TZ of the prostate
differently.

Conclusions

In this study, a radiomics model was developed to predict
the presence of clinically significant PCa with high
diagnostic efficacy and clinical net benefit. In addition, the
radiomics signature added value to PCa-related clinical
risk factors for estimating the aggressiveness of PCa. The
incorporation of radiomics features and clinical factors
into the nomogram can provide a quantitative and intuitive
approach for radiologists that could more confidently
predict clinically significant PCa. Although the radiomics
model established in this study is quantitative and relatively
objective and has achieved good results, it still needs to be
verified by comparison with subjective methods, such as the
PI-RADS score, which is our future research direction.
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Supplementary

Table S1 The details about MRI acquisition

() SENSE(philips)-P reduction(RL): 2

(I) Acquisition/reconstruction-Act. TR (ms): 6000, Act. TE (ms): 78, ACQ matrix MxP: 104x125, ACQ voxel MPS (mm): 2.50/2.08/3.00,
REC voxel MPS (mm): 1.16/1.16/3.00

(1) Matrix size: 104x125

(IV) k space scheme: cartesian

Table S2 Magnetic resonance imaging sequence parameters

Section Sequence Type TR (ms) TE (ms) Slice Thickness (mm) Slice gap (mm) FOV (mm) Matrix NSA
T2WI Sagittal TSE 4,765 100 4 1 240x180 240x161 1
TiWI Axial SE 529 8 5 0 249x415 276x406 1
T2WI Axial TSE 3,000 100 3 0 220x220 276x238 3
DWI Axial EPI 6,000 77 3 0 260x260 104x126 2
(b =0.1000)
DCE-MRI Axial e-THRIVE 3.2 1.5 3 0 220x220 124x121 2

TR, echo time; TE, repetition time; FOV, field of view; T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; DWI, diffusion-weighted
imaging; DCE-MRI, dynamic contrast-enhanced MRI.

Table S3 List of sample distribution

Total Non-significant/benign patients Clinically significant PCa patients
Data 381 239 142
Training set 229 135 94
Test set 152 104 48

o A Sy

Figure S1 Measurement method for prostate volume.



T2_SizeZoneVariability -
T2_GLCMEnergy_angle90_offset4 1
ADC_HighlntensityLargeAreaEmphasis
ADC_Quantile0.025 -|

T2_SmallAreaEmphasis |

ADC_GLCMEnergy_angle0_offset7

T2_ShortRunEmphasis_angle0_offset4

T2_GLCMEnergy_AlIDirection 7|

T2_ShortRunHighGreyLevelEmphasis_AlIDirestion_offset7_SD
T2_LowIntensityLargeAreaEmphasis

T2_GLCMEnergy_angle135_offset7

ADC_LargeAreaEmphasis |

T2_HighIntensitySmallAreaEmphasis |

T2_ZonePercentage

T2_GLCMEnergy_angle90_offset7

Figure S2 The relative important features.

-6

-4

gguEEm——
N

-2
Coefficients




