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Radiomics prediction model for the improved diagnosis of 
clinically significant prostate cancer on biparametric MRI
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Background: To evaluate the potential of clinical-based model, a biparametric MRI-based radiomics model 
and a clinical-radiomics combined model for predicting clinically significant prostate cancer (PCa).
Methods: In total, 381 patients with clinically suspicious PCa were included in this retrospective study; of 
those, 199 patients did not have PCa upon biopsy, while 182 patients had PCa. All patients underwent 3.0-
T MRI examinations with the same acquisition parameters, and clinical risk factors associated with PCa (age, 
prostate volume, serum PSA, etc.) were collected. We randomly stratified the training and test sets using 
a 6:4 ratio. The radiomic features included gradient-based histogram features, grey-level co-occurrence 
matrix (GLCM), run-length matrix (RLM), and grey-level size zone matrix (GLSZM). Three models were 
developed using multivariate logistic regression analysis to predict clinically significant PCa: a clinical model, 
a radiomics model and a clinical-radiomics combined model. The diagnostic performance and clinical net 
benefit of each model were compared via receiver operating characteristic (ROC) curve analysis and decision 
curves, respectively. 
Results: Both the radiomics model (AUC: 0.98) and the clinical-radiomics combined model (AUC: 0.98) 
achieved greater predictive efficacy than the clinical model (AUC: 0.79). The decision curve analysis also 
showed that the radiomics model and combined model had higher net benefits than the clinical model.
Conclusions: Compared with the evaluation of clinical risk factors associated with PCa only, the 
radiomics-based machine learning model can improve the predictive accuracy for clinically significant PCa, 
in terms of both diagnostic performance and clinical net benefit. 

Keywords: Prostate cancer; radiomics; clinical risk factors; machine learning; classification

Submitted Apr 08, 2019. Accepted for publication Dec 03, 2019.

doi: 10.21037/qims.2019.12.06

View this article at: http://dx.doi.org/10.21037/qims.2019.12.06

379

Introduction

Prostate cancer (PCa) is one of the most prevalent 
malignant neoplasms in elderly males worldwide (1). 
Currently, with the rapid increase in the incidence rate in 
China (2), PCa has become a major health concern that 

affects many families. According to the 2017 European 
Association of Urology PCa Guidelines, patients with a 
Gleason score (GS) <7 PCa are recommended to undergo 
active surveillance and watchful waiting. In contrast, 
patients with a GS ≥7 PCa have an increased risk of 
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progression and a shorter overall survival and should adopt 
timely treatment. Thus, accurate risk assessment is critical 
for selecting the optimal treatments for these patients (3,4).

Total prostate-specific antigen (tPSA), free PSA (fPSA), 
PSA density (PSAD) and the ratio of free-to-total PSA (f/t  
PSA) are clinically used indicators for PCa detection and 
grading (5-7). To date, there is still controversy regarding 
which indicators are more suitable for the diagnosis and 
grading of PCa, and no consensus has been reached (8,9). 
Furthermore, the clinical utility of these indicators has 
certain inadequacies, such as overdiagnosis and subsequent 
overtreatment (5). Therefore, there is an urgent need for a 
new method for early and accurate PCa risk stratification to 
achieve a good prognosis for patients.

In recent years, multi-parameter MRI (mp-MRI) has 
been increasingly applied in PCa localization, qualitative 
assessment and staging diagnosis (10,11). The proposal 
of PI-RADS is to better standardize the examination and 
interpretation of prostate MRI. The PI-RADS version 
2.1 proposes a concept of biparametric MRI (bp-MRI) 
(including only T2WI and DWI) to simplifies prostate 
MRI sequences (12). Radiomics based on MRI as a 
trending and promising area of research, has been widely 
used to evaluate tumour heterogeneity and has achieved 
high diagnostic efficiency. Radiomics is defined as the 
high-throughput extraction of large numbers of medical 
imaging features that are then converted to mineable high-
dimensional data, quantitative analysis of these data can 
provide an unprecedented opportunity to improve clinical 
decision-making (13-15). Currently, many previous studies 
have focused on radiomics feature analysis to assess and 
classify PCa lesions (16-18). More specifically, these studies 
analysed cancerous pixels in quantified regions of interest 
by using the feature extraction function, and combined 
numerous radiomics features with machine learning 
methods have shown high accuracy on PCa differentiation 
and aggressiveness (19-21). However, the research methods 
of previous articles used different standards and the results 
are inconsistent. Some studies have shown that radiomics 
plays an important role in GS score grading of PCa (22,23); 
some clinical indicators have certain implications for the 
invasiveness of PCa, but not many researches combine 
radiomics features with clinical factors together to conduct 
risk assessment. Therefore, we constructed three models 
based on radiomics signatures and clinical factors separately 
and together to predict clinically significant PCa and 
compared whether the combination of the two can help 
improve the diagnosis performance.

Methods

Patients

This retrospective study was approved by the Institutional 
Ethics Committee of our hospital, which waived the 
requirement for written informed consent. A total of 416 
patients were included in our study between December 2014 
and March 2017 in our hospital. The inclusion criteria were 
as follows: (I) patients with clinical symptoms indicative 
of PCa (frequent micturition, urgency of urination, pain 
while urinating or dysuria, etc.) or elevated PSA levels; 
(II) patients with a prostate 3.0T MRI examination before 
ultrasound-guided biopsy; and (III) biopsy with confirmed 
pathological results. The exclusion criteria were as follows: (I) 
pathological biopsy of lesions that were difficult to delineate 
on MRI (pathological results show that the lesions' location 
cannot be displayed on the magnetic resonance image) 
(n=19); (II) tumour volume that was too small (maximum 
diameter <5 mm) (n=9); (III) prostate biopsy, surgery, 
radiation therapy or endocrine therapy performed before 
MRI examination (n=4); or (IV) incomplete MRI data (n=2) 
or the presence of imaging artefacts preventing segmentation 
of cancerous lesions (n=1). Ultimately, the study population 
consisted of 381 patients including 182 PCa patients and 
199 patients without any histological evidence of cancer. 
According to the final pathological diagnosis results, 
we defined clinically significant PCa as patients with a  
GS ≥7 PCa, whereas patients with a GS <7 (including 
non-clinically significant cancer and benign lesions) were 
classified as having no significant PCa. The details of patient 
selection are shown in Figure 1.

Pathology

All patients underwent transrectal ultrasound-guided 
(TRUS) systematic prostate biopsy. The area of systematic 
prostate biopsy was divided as follows: the prostate gland 
was divided into 3 sections (the basal region, the body and 
the apex) from top to bottom, and each part was divided 
into the left and right regions. The right and left regions of 
the basal and body regions were divided into the inner and 
outer regions, and the whole prostate gland was divided into 
10 areas. Each area was punctured with 1 needle, and 2–4 
additional needles were used to puncture the suspicious area. 

Clinical data

We collected clinical information including age, prostate 
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volume (PV), serum PSA [including tPSA and free PSA 
(Fpsa)], f/t PSA, PSAD, and prostate biopsy pathology from 
the selected patients. The PV was calculated as the width 
× length × height ×0.52 on T2-weighted images (24), and 
detailed measurements are shown in Figure S1. The PSAD 
was calculated as total PSA/PV.

MRI acquisition and preprocessing

All patients underwent 3.0-T MRI scanner (Philips Ingenia, 
The Netherlands) with a 32-channel body phased array 
coil as the receiving coil. Scan sequences included sagittal 
T2-weighted imaging (T2WI), axial T2WI, T1-weighted 
imaging (T1WI), diffusion-weighted imaging (DWI) (b 
values of 0 and 1,000 sec/mm2) and dynamic contrast-
enhanced MRI (DCE-MRI) The details regarding MRI 
acquisition are listed in Table S1. The details of the imaging 
sequence parameters, including sequence type, section, echo 
time (TR), repetition time (TE), slice thickness, slice gap, 
field of view (FOV) and matrix, are summarized in Table S2.

Bp-MRI sequences, including axial T2WI and ADC 
images, were chosen to extract radiomics features due to the 
availability and emphasis in PI-RADS v2.1. The obtained 

T2WI and ADC images (DICOM format) of each case 
were imported into A.K. [Artificial Intelligence Kit, V3.0.1, 
independently developed by GE Healthcare (China)] 
software. Prior to tumour segmentation, three preprocessing 
techniques were applied to standardized images in order to 
improve texture recognition. Firstly, the µ ± 3σ method was 
adopted for image intensity normalization and the intensity 
signals beyond 3σ were eliminated, which could enhance 
the difference between two classes; then, 64 grey levels was 
used for grey-level quantization. Finally, we used a voxel 
size of 1×1×1 mm3 for image resampling isotopically (25,26).

MRI lesion segmentation

For consistency between ROIs in both pre-processed 
T2WI and ADC images, all depicted ROIs were strictly 
delineated with the same criteria and visually validated by 
the same expert. The location and size of the lesions were 
determined as follows: (I) the detailed records of the prostate 
system punctures (injection site and depth) and pathological 
diagnostic results were used to determine the location and 
nature of the lesion; (II) the location described by pathology 
was matched to the corresponding lesion on the MRI 

Figure 1 Flow diagram of patient selection.

Total patients
(n=416)

Final study population (n=381)

Benign patients (n=199) Prostate cancer patients (n=182)

Clinically significant
PCa cohort (n=142)

Non-significant/benign
cohort (n=239)

GS=6 (n=40) GS≥7 (n=142)

Pathology-MRI mismatch (n=19)

Small tumor volume (n=9)

Prostate biopsy, surgery or therapy before 
MRI examination (n=4)

Incomplete mp-MRI information (n=2) or 
imaging artefacts (n=1)



371Quantitative Imaging in Medicine and Surgery, Vol 10, No 2 February 2020

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2020;10(2):368-379 | http://dx.doi.org/10.21037/qims.2019.12.06

images; and (III) combined with the PI-RADS V2 scoring 
diagnostic criteria (27), the range of lesions was determined. 
Peripheral zone (PZ) lesions were mainly based on the ADC 
map, supplemented by DWI and DCE-MRI sequences, and 
transitional zone (TZ) lesions were mainly based on T2WI, 
supplemented by DWI and the ADC map. The ROIs 
were manually delineated layer-by-layer along the lesion 
boundary, obtaining a three-dimensional data. There are 
several notable points in the process of sketching ROI: (I) the 
urethra, ejaculation tube, and seminal vesicle root structure 
were avoided; (II) to truly reflect tumour heterogeneity, ROI 
delineation included areas of necrosis, haemorrhage, cystic 
tissue and calcification; (III) for multifocal PCa, the ROI 
of lesions with the highest GS were selected and confirmed 
by biopsy pathology; if the GSs were the same, the ROI 
of the lesions with the maximum diameter was selected; 
and (IV) for patients with non-cancerous prostate regions 
confirmed by biopsy pathology, ROIs were also delineated 
using a volume of no less than 0.5 mL. An example of lesion 

segmentation in a PCa patient is shown in Figure 2.
The intra-observer and inter-observer repeatability 

of lesion segmentation was based on the repeatability 
of feature extraction. To evaluate the intra- and inter-
observer repeatability in feature extraction, 40 patients 
were randomly selected, and their radiomics features 
were extracted by two radiologists who were blinded to 
their clinical data. Radiologists A and B had 9 and 3 years 
of clinical experience in the diagnosis of prostate MRI, 
respectively, and the same 2 years of experience in feature 
extraction. Radiologist A repeated the feature extraction for 
the same 40 patients’ MR images over a 2-week period.

Radiomics feature extraction and feature selection

Feature extraction and feature selection were also performed 
using A.K. software. The kinds of computer-derived 
features included gradient-based histogram features, grey-
level co-occurrence matrix (GLCM), run-length matrix 

Figure 2 Example axial T2-weighted imaging (T2WI) (A), apparent diffusion coefficient (ADC) map (B), diffusion-weighted imaging (DWI) 
(C), and dynamic contrast-enhanced MRI (DCE-MRI) (D) from the same position of a 80 years old patient with prostate cancer (PSA,  
59.90 ng/mL; biopsy GS, 3+4=7). Cancer ROI (rad solid line) is outlined in the T2WI with ADC map, DWI, DCE-MRI as reference.
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(RLM), and grey-level size zone matrix (GLSZM), which 
were calculated based on the voxels in the delineated ROI. 
Although large numbers of features were extracted, not 
all features were helpful in predicting clinically significant 
PCa; therefore, we used two feature selection methods to 
determine the best discriminating feature set. First, mRMR 
was performed to eliminate the redundant and irrelevant 
features. Then, least absolute shrinkage and selection 
operator (LASSO) analysis was conducted to choose the 
optimized subset of features to construct the final model. 

Model construction 

Clinical factors and radiomic features were used to identify 
biomarkers of PCa. We randomly assigned 60% of the 
patients to the training set (n=229) and the remaining 
40% to the test set (n=152). In terms of clinical factors, 
univariate and multivariate logistic analyses were used 
to establish the logistic regression model to find the 
associations between clinical features and significant PCa. 
For the radiomics model, a logistic regression model was 
trained using the selected features through feature selection 
methods to classify clinically significant PCa. A formula 
called the radiomics score (RAD-SCORE) was generated 
using a logistic regression analysis of selected features 
that were weighted by their coefficients. A multivariable 
logistic regression method was used to establish a combined 
clinical-radiomics model with a combined weight of 
radiomic features and clinical risk factors.

Statistical analysis

For clinical model establishment, univariate logistic 
regression was used to select clinical risk factors, then clinical 
features with P<0.05 were introduced into a multivariate 
logistic regression to build a clinical model. In logistic 
regression, a backward stepwise selection was applied using 
a likelihood ratio test with Akaike’s information criterion as 
the stopping rule. Meanwhile, the variance inflation factor 
(VIF) was used to evaluate collinearity; features with VIF >10 
were excluded. Finally, a clinical model was established. The 
performance of each model was quantified by the area under 
the receiver operating characteristic (ROC) curve (AUC) 
with 95% confidence intervals (95% CIs). The DeLong test 
was used to determine whether significant differences existed 
in terms of the AUC values among these three models. The 
nomogram of the clinical-radiomics model was constructed 
to assist in using the abovementioned signature to improve 

decision making. Decision curve analysis was conducted 
to determine the clinical usefulness of the radiomics-based 
nomogram by quantifying the clinical net benefits at different 
threshold probabilities in the test set (28). Decision curves 
were also plotted for the clinical, radiomics and combined 
models. The abovementioned analyses were performed using 
R software (version 3.4.3, http://www.Rproject.org).

The entire workflow of this research is presented in 
Figure 3.

Results

Patient characteristics

For all 381 patients, 199 patients (52%) were negative 
(benign lesions), and the other 182 patients were positive 
(PCa). Biopsy showed a GS <7 PCa in 40 patients (11%) and 
a GS ≥7 PCa in 142 patients (37%). The GS distribution of 
all patients was as follows: 3+3=6 (40 patients); 3+4/4+3=7 
(57 patients); 4+4=8 (46 patients); 4+5/5+4=9 (31 patients); 
and 5+5=10 (8 patients). The characteristics of all patients 
are listed in Table 1. The sample distribution of this study is 
listed in Table S3.

Clinical model

In terms of clinical factors, univariate logistic analysis 
showed that patient age, PV, tPSA, fPSA and PSAD were 
significant factors for predicting clinically significant PCa. 
The multivariate logistic analysis showed that age, tPSA and 
PSAD were significant (P<0.05), and these three clinical 
factors could be used as independent predictors. The 
results of the univariate and multivariate logistic regression 
analyses are shown in Table 2. Finally, the logistic regression 
classifier was established based on the selected clinical 
features. The AUC, accuracy rate, sensitivity and specificity 
of the training set were 0.76 (95% CI: 0.70–0.82), 0.78, 
0.81, and 0.76, respectively, and the AUC, accuracy rate, 
sensitivity and specificity of the test set were 0.79 (95% CI: 
0.70–0.88), 0.74, 0.76, and 0.74, respectively. 

Radiomics model

Intra- and inter-class correlation coefficients (ICCs) were 
used to evaluate the intra- and inter-observer agreement of 
feature extraction, with an ICC greater than 0.75 indicating 
good agreement. The intra-observer ICCs based on 
radiologist A’s two stages of feature extraction ranged from 
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Table 1 Characteristics of all patients (n=381)

Characteristics Non-clinically significant PCa cohort Clinically significant PCa cohort

Number of patients, n 239 142

Age, years (median; IQR) 69.00; 63.00–75.00 75.00; 68.00–81.00

PV, mL (median; IQR) 52.35; 38.04–81.03 36.27; 27.03–57.28

tPSA, ng/mL (median; IQR) 9.92; 6.70–15.89 49.30; 21.14–83.37

fPSA, ng/mL (median; IQR) 1.38; 0.89–2.29 4.68; 1.80–14.21

f/tPSA, % (median; IQR) 0.15; 0.11–0.21 0.12; 0.07–0.23

PSAD, ng/mL/mL (median; IQR) 0.19; 0.11–0.30 1.21; 0.53–1.89

Biopsy pathology, n (%)

Benign lesion 199 (52.2) –

GS =6 40 (10.5) –

GS ≥7 – 142 (37.3)

PCa, prostate cancer; IQR, interquartile range; PV, prostate volume; tPSA, total prostate-specific antigen; fPSA, free PSA; f/tPSA, ratio of 
free-to-total PSA; PSAD, PSA density; GS, Gleason score.

Figure 3 Workflow of this research. (A) Three-dimensional (3D) regions of interest that were segmented from T2-weighted magnetic 
resonance imaging (MRI). (B) Quantitative imaging texture features were extracted and selected to construct the radiomics model. (C) 
Clinical models were constructed using clinical risk factors, and clinical nomograms were developed. (D) Both radiomics and clinical factors 
were added to construct a clinical-radiomics combined model. (E) Receiver operating characteristic (ROC) curve analysis and decision curve 
analysis were used to evaluate the performance of the model.

Segmentation Radiomics model

T2WI

3D ROI

Feature exaction

Feature selection

Logistic regression

Logistic analysis

Clinical nomogram

Radiomics model

Clinical factors

ROC

DCA

Clinical model Combined model Model performanceA B C D E

0.83 to 0.96 and 0.82 to 0.97 for T2WI and ADC mapping, 
respectively, and the inter-observer ICCs based on the feature 
extraction of radiologist A (the first time) and radiologist B 
ranged from 0.76 to 0.93 and 0.78 to 0.90 for T2WI and 
ADC mapping, respectively. Radiologist A completed the 

process for the remaining images, and the radiomics-based 
models were built with the features extracted by radiologist 
A. Through feature selection, 396 features were reduced to 
15 potential predictors with non-zero coefficients using the 
LASSO logistic regression classifier. The relative important 
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features are shown in Figure S2. These features were 
incorporated into the RAD-SCORE, which indicated the 
sum of the weighted features as follows: 

RAD-SCORE =-5.555×T2_SizeZoneVariabil i ty 
+1.33× T2_HighIntensitySmallAreaEmphasis +0.783× 
T2_GLCMEnergy_angle135_offset7−3.751×ADC_
H i g h I n t e n s i t y L a r g e A r e a E m p h a s i s  + 3 . 7 5 2 × T 2 _
G L C M E n e r g y _ a n g l e 9 0 _ o f f s e t 7 + 0 . 5 1 2 × T 2 _
ShortRunHighGreyLevelEmphasis_AllDirection_
offset7_SD +0.658×T2_LowIntensityLargeAreaEmphasis 
+0.023×ADC_GLCMEnergy_angle0_offset7+2.333×T2_
ZonePercentage +0.285×T2_GLCMEnergy_AllDirection_
offset7+0.085×T2_ShortRunEmphasis_angle0_offset4-
1.094×ADC_Quantile0.025-5.209×T2_GLCMEnergy_
ang le90_o f f s e t4 -0 .603×T2_Sma l lAreaEmphas i s 
+1.314×ADC_LargeAreaEmphasis −3.991.

The radiomics signature showed high predictive 
efficiency with AUC values of 0.99 (95% CI: 0.98–1.00) in 
the training set and 0.98 (95% CI: 0.97–1.00) in the test set.

Clinical-radiomics combined model

The clinical-radiomics nomogram incorporating age, tPSA, 
PSAD and RAD-SCORE is shown in Figure 4. The clinical-
radiomics combined model also showed good predictive 
ability with high AUC values of 0.99 (95% CI: 0.98–1.00) 
in the training set and 0.98 (95% CI: 0.97–1.00) in the test 
set. The diagnostic efficacy of the clinical-radiomics model 
was the same as the radiomics model. The AUC, accuracy, 
sensitivity and specificity of the three models are listed in 
Table 3. A comparison of the ROC curves of these three 
models is shown in Figure 5.

Decision curve

The decision curves for the clinical, radiomics and 
combined models are presented in Figure 6. The decision 
curves show that either the radiomics or combined model 
to predict clinically significant PCa adds more benefit than 
using the clinical model.

Discussion

This study extends the analysis of individual imaging 
texture features to an “omics”-based risk level estimation 
approach. By extracting a large number of quantitative 
imaging features and efficiently selecting these features, 
radiomics models based on logistic regression analysis 
were established. Then, the RAD-SCORE combined with 
clinical factors was used to construct a clinical-radiomics 
combined model. The radiomics model and the clinical-
radiomics combined model showed higher performance 
than the clinical model in terms of clinical net benefit 
and AUC for predicting clinically significant PCa, both 
in the training set and test set. This conclusion shows 
that including the RAD-SCORE in the clinical model 
improved the diagnostic efficiency of clinical factors, which 
demonstrates the distinctive value of the radiomics signature 
for predicting clinically significant PCa.

In previous studies, researchers have attempted to 
identify better prostate-related clinical factors for the 
diagnosis of PCa and assessment of aggressiveness; 
however, to date, there is no clear consensus. Xiao et al. (29) 
combined PSA, digital rectal examination (DRE) texture, 
DRE nodules and B-ultrasound results in a nomogram and 

Table 2 Univariate and multivariate logistic analysis results

Clinical factors
Univariate logistic analysis results Multivariate logistic analysis results

OR (95% CI) P value OR (95% CI) P value

Age 1.05 (1.02–1.08) 0.001 1.03(0.99–1.06) 0.138

tPSA 1.04 (1.03–1.05) 0.015 1.02 (1.00–1.03) 0.113

fPSA 1.11 (1.06–1.16) <0.001

PV 0.99 (0.98–0.10) <0.001

PSAD 50 (22.74–125.59) <0.001 2.23 (1.10–4.54) 0.027

f/t PSA 1.28 (0.20–8.39) 0.797

OR, odds ratio; tPSA, total prostate-specific antigen; fPSA, free PSA; PV, prostate volume; PSAD, PSA density; f/tPSA, ratio of  
free-to-total PSA.
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created a classifier to predict PCa patients with a GS ≥7; 
their model had an AUC of 0.831. Niu et al. (30) indicated 
that age, Prostate Imaging-Reporting and Data System 
(PI-RADS) version 2 score, and adjusted PSAD were 
independent predictors of high-grade PCa (HGPCa), with 
an AUC of 0.83. Fang et al. (31) utilized clinical factors 
(age, PSA, fPSA, PV, and TRUS) with or without MRI 
results to predict the presence of PCa and HGPCa. The 
AUC values with or without MRI for predicting PCa were 
0.875 and 0.841, respectively, whereas those for predicting 
HGPCa were 0.872 and 0.850, respectively. Through 
univariate and multivariate logistic analyses, our research 

shows that clinical factors including age, tPSA and fPSA 
were significant factors for predicting clinically significant 
PCa, with AUC values of 0.911 for the training set and 0.842 
for the test set, which were also different from the results of 
the above-mentioned studies. The possible reasons are first, 
the clinical factors selected by each study are different; in 
addition, this study grouped benign prostate cases into the 
non-clinically significant PCa group, which was different 
from the above study. Therefore, a more convenient and 
accurate method should be sought for the GS grading of 
preoperative PCa evaluation.

Different pathological grades of PCa show differences 

Figure 4 Nomogram of the combined model for predicting clinically significant PCa. PCa, prostate cancer.

Table 3 AUC results of the clinical, radiomics and combined models for predicting clinically significant Pca

Clinical model Radiomics model Combined model

Training set Test set Training set Test set Training set Test set

Cut-off 0.05 −0.42 −1.19

AUC (95% CI) 0.76 (0.70–0.82) 0.79 (0.70–0.88) 0.99 (0.98–1.00) 0.98 (0.97–1.00) 0.99 (0.98–1.00) 0.98 (0.97–1.00)

Accuracy 0.78 0.74 0.95 0.90 0.94 0.90

Sensitivity 0.81 0.76 0.95 0.95 0.88 0.82

Specificity 0.76 0.74 0.95 0.87 0.99 0.97

PPV 0.52 0.45 0.91 0.82 0.99 0.95

NPV 0.93 0.92 0.97 0.97 0.92 0.87

P value (vs. Combined 
Model, Bonferroni  
correction)

<0.001 <0.001 >0.05 >0.05 – –

AUC, area under the receiver operating characteristic curve; 95% CI, 95% confidence interval; PPV, positive predict value; NPV, negative 
predictive value.

Points
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PSAD

rad_score

Total points

Risk

0         10       20        30       40        50        60       70        80        90      100

95    60

0

0    2    4

−6          −4          −2            0             2            4             6            8            10

0       10     20      30      40     50      60      70      80      90    100    110    120

0.1  0.4    0.9
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Figure 5 Comparison of ROC curves for differentiation of the 
three models for predicting clinically significant PCa. PCa, 
prostate cancer.

Figure 6 Decision curves of the clinical, radiomics and combined 
models for predicting clinically significant PCa. PCa, prostate 
cancer.

in internal cellular components, liquid contents, collagen 
levels, and fibromuscular stromal features. Non-significant 
PCa is well differentiated and has some remaining glandular 
structures that preserve some intercellular space. Clinically 
significant PCa has poor differentiation and is characterized 
by high cellularity and reduced extracellular space. These 
differences in histopathological features can be reflected by 
quantitative analysis and radiomics methods. Many studies 
have shown that extracted texture parameters can be used 
for PCa diagnosis and risk classification. Wibmer et al. (32)  
used T2WI and ADC maps and certified that the five 
parameters of the Haralick texture analysis (energy, entropy, 
correlation, homogeneity, and inertia) were beneficial for 
evaluating PCa and GS; in particular, ADC maps of energy 
and entropy were significantly different in GS ≤3+4 versus 
≥4+3 cancers. Sidhu et al. (33) showed that the textural 
features of ADC kurtosis and T1 entropy can discriminate 
significant TZ PCa, and the combination of these 
parameters had an AUCof 0.86. Nketiah et al. (34) showed 
that combining T2WI textural features [angular second 
moment (ASM), contrast, correlation, and entropy] resulted 
in a higher classification performance (AUC: 0.82) than 
the use of MRI-based physiological parameters [ADC and 
DCE pharmacokinetic parameters (Ktrans and Ve)] combined 
(AUC: 0.75). However, the number of patients included in 
these studies was relatively small, ranging from a few dozen 
to more than one hundred patients, and the results may be 
less stable. In addition, these research methods only focused 
on extracting several texture features, and the information 

provided was relatively limited. Therefore, to increase 
the amount of information and enhance the stability of 
the results, the present study utilized a larger sample size 
(enrolled 381 cases) and expanded the types of extracted 
image texture features to establish a radiomics model based 
on bpMRI images to achieve an accurate preoperative 
diagnosis of clinically significant PCa.

At present, some studies have compared or combined 
radiomics methods with common methods to evaluate 
the diagnostic value of PCa. Wang et al. (21) showed that 
a radiomics model was more effective than the PI-RADS 
score in the diagnosis of PCa of either in the PZ or TZ, and 
the combined diagnostic efficiency of the two methods was 
significantly increased. Litjens et al. (35) also proved that 
the diagnostic efficiency of a computer-aided diagnostic 
model combined with the PI-RADS score in identifying 
PCa was better than that of either of the two models 
alone, and the AUC reached 0.88. Bonekamp et al. (36) 
showed that the diagnostic efficacy of quantitative methods 
(radiomics and the ADC value) was higher than that of 
qualitative methods (PI-RADS score) in differentiating 
benign and malignant prostate tissues, but there was no 
significant difference between radiomics and the ADC 
value. Chen et al. (19) indicated that radiomics models based 
on T2WI and ADC maps had high diagnostic efficacy and 
was superior to the PI-RADS v2 scores in distinguishing 
cancerous vs. noncancerous prostate tissue and high-
grade vs. low-grade PCa. In the current study, radiomics 
methods were combined with clinical factors related to PCa 
diagnosis to construct a combined model for the diagnosis 
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of clinically significant PCa. In the test set, the radiomics 
model (AUC value: 0.98) and the combined model (AUC 
value: 0.98) were significantly better than the clinical model 
(AUC value: 0.79) in the diagnostic efficacy of clinically 
significant PCa, and the difference was significant (P<0.05). 
At the same time, the two models based on radiomics 
(the radiomics model and the combined model) also had 
a greater clinical net benefit than that of clinical model. It 
is obvious that the addition of the RAD-SCORE into the 
clinical model improved the diagnostic efficacy and clinical 
net benefit of the clinical model in the diagnosis of clinically 
significant PCa; the model based on radiomics features 
has a clear application value in the diagnosis of clinically 
significant PCa.

In recent years, the nomogram figure forecast model has 
been widely used in clinical medicine, and there have been 
many studies related to this model published in high-impact 
clinical professional journals (37-39). The nomogram 
figure forecast model uses a risk score to represent multiple 
disease risk factors and predict patient outcomes, which is 
more clear, concise and easier to be understood. At the same 
time, it can be effectively applied to clinical work and is 
advantageous for doctor-patient communication, improving 
the doctor-patient relationship. The present study 
developed the nomogram of a clinical-radiomics combined 
model, which provided an intuitive and convenient method 
for doctors to diagnose clinically significant PCa and is 
expected to become a new means of auxiliary diagnosis in 
clinical work.

Despite its promising results, our study still has several 
limitations. First, it was a retrospective study performed in 
a single institution. Although we extracted partial data from 
this group of patients as a test set to validate the models, 
multicentre validation with a larger sample size is warranted 
to acquire better evidence for clinical application. Second, 
the pathological gold standard of the enrolled patients in 
this study was TRUS systematic prostate biopsy, instead of 
the large pathological sections of the specimens after radical 
prostatectomy were compared. When delineating the ROIs 
of lesions, it was difficult to completely match the MRI 
images with the pathological sections, which had a certain 
impact on the accuracy of ROI delineation. In addition, 
the puncture pathology may underestimate the accuracy 
of the PCa score and may not accurately reflect the true 
pathological status. Therefore, we will enrol PCa patients 
with large pathological sections after radical prostatectomy 
in further research. Third, our study did not separate the 
PZ of the prostate from the TZ because some patients 

had highly malignant disease in both zones. Therefore, 
further research is needed to increase the size of the studied 
population and to separate the PZ and TZ of the prostate 
differently.

Conclusions

In this study, a radiomics model was developed to predict 
the presence of clinically significant PCa with high 
diagnostic efficacy and clinical net benefit. In addition, the 
radiomics signature added value to PCa-related clinical 
risk factors for estimating the aggressiveness of PCa. The 
incorporation of radiomics features and clinical factors 
into the nomogram can provide a quantitative and intuitive 
approach for radiologists that could more confidently 
predict clinically significant PCa. Although the radiomics 
model established in this study is quantitative and relatively 
objective and has achieved good results, it still needs to be 
verified by comparison with subjective methods, such as the 
PI-RADS score, which is our future research direction.
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Supplementary

Table S1 The details about MRI acquisition

(I) SENSE(philips)-P reduction(RL): 2

(II) Acquisition/reconstruction-Act. TR (ms): 6000, Act. TE (ms): 78, ACQ matrix M×P: 104×125, ACQ voxel MPS (mm): 2.50/2.08/3.00, 
REC voxel MPS (mm): 1.16/1.16/3.00

(III) Matrix size: 104×125 

(IV) k space scheme: cartesian

Table S2 Magnetic resonance imaging sequence parameters

Section Sequence Type TR (ms) TE (ms) Slice Thickness (mm) Slice gap (mm) FOV (mm) Matrix NSA

T2WI Sagittal TSE 4,765 100 4 1 240×180 240×161 1

T1WI Axial SE 529 8 5 0 249×415 276×406 1

T2WI Axial TSE 3,000 100 3 0 220×220 276×238 3

DWI  
(b =0.1000)

Axial EPI 6,000 77 3 0 260×260 104×126 2

DCE-MRI Axial e-THRIVE 3.2 1.5 3 0 220×220 124×121 2

TR, echo time; TE, repetition time; FOV, field of view; T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; DWI, diffusion-weighted 
imaging; DCE-MRI, dynamic contrast-enhanced MRI.

Table S3 List of sample distribution

Total Non-significant/benign patients Clinically significant PCa patients

Data 381 239 142

Training set 229 135 94

Test set 152 104 48

Figure S1 Measurement method for prostate volume.

A B

Height

Width

Length



Figure S2 The relative important features.

T2_SizeZoneVariability

T2_GLCMEnergy_angle90_offset4

ADC_HighIntensityLargeAreaEmphasis

ADC_Quantile0.025

T2_SmallAreaEmphasis

ADC_GLCMEnergy_angle0_offset7

T2_ShortRunEmphasis_angle0_offset4

T2_GLCMEnergy_AllDirection

T2_ShortRunHighGreyLevelEmphasis_AIIDirestion_offset7_SD

T2_LowIntensityLargeAreaEmphasis

T2_GLCMEnergy_angle135_offset7

ADC_LargeAreaEmphasis

T2_HighIntensitySmallAreaEmphasis

T2_ZonePercentage

T2_GLCMEnergy_angle90_offset7

−6       −4      −2        0         2         4
Coefficients


